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Abstract

The number of written works describing scienti�c progress is steadily increasing, which

necessitates development of supportive tools for their e�cient analysis. These documents

are characterized not only by their textual content, but also by a number of metadata at-

tributes of various kinds, including any relationships between documents. This complexity

makes development of a visualization approach to aid examination of written works a

challenging task. Patents exemplify this problem as large amounts of them are studied by

companies to gain competitive advantages and guide research and development e�orts.

We propose an approach for explorative visualization based on both metadata and semantic

embeddings of patent’s content. Word embeddings from a pre-trained word2vec model

are used to determine similarities between documents. Moreover, hierarchical clustering

methods help provide several levels of semantic detail with via extracted relevant key

terms. To the best of our knowledge, no existing visualization approach combines semantic

embeddings with hierarchical clustering while supporting various interaction types based

on metadata attributes.

Our approach makes use of user interaction techniques such as brushing and linking, focus

plus context, details on demand and semantic zoom. Because of that, it becomes possible

to examine the patterns that result from the interplay between 1) distributions of metadata

values and 2) positions in the semantic space.

The visualization concept is shaped by user interviews and evaluated via a think-aloud

study with patent experts. During the evaluation we compared our approach to a baseline

approach based on Term Frequency - Inverse Document Frequency (TF-IDF) vectors. The

usability study indicated that visualization metaphors and interaction techniques were

appropriately chosen. Moreover, it showed that the user interface of the prototype played a

much larger role in participants’ impression than the way patents are situated and clustered.

In fact, both approaches resulted in very similar extracted cluster key terms. Nevertheless,

the semantic approach resulted in more intuitive relative placement of clusters and better

separation of clusters.

Proposed visualization layout, interaction techniques and semantic methods may be

extended to other kinds of text documents, i. e. scienti�c publications. Other embedding

methods such as paragraph2vec [61] or BERT [32] could be used to take advantage of

contextual dependencies in text above the level of single words.
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Zusammenfassung

Die Menge der Verö�entlichungen, die den wissenschaftlichen Fortschritt dokumentieren,

wächst kontinuierlich. Dies erfordert die Entwicklung der technologischen Hilfsmittel

für eine e�ziente Analyse dieser Werke. Solche Dokumente kennzeichnen sich nicht nur

durch ihren textuellen Inhalt, sondern auch durch eine Menge von Metadaten-Attributen

verschiedenster Art, unter anderem Beziehungen zwischen den Dokumenten. Diese Kom-

plexität macht die Entwicklung eines Visualisierungsansatzes, der eine Untersuchung

der schriftlichen Werke unterstützt, zu einer notwendigen und anspruchsvollen Aufgabe.

Patente sind beispielhaft für das beschriebene Problem, weil sie in großen Mengen von Fir-

men untersucht werden, die sich Wettbewerbsvorteile verscha�en oder eigene Forschung

und Entwicklung steuern wollen.

Vorgeschlagen wird ein Ansatz für eine explorative Visualisierung, der auf Metadaten und

semantischen Embeddings von Patentinhalten basiert ist. Wortembeddings aus einem vor-

trainierten Word2vec-Modell werden genutzt, um Ähnlichkeiten zwischen Dokumenten

zu bestimmen. Darüber hinaus helfen hierarchische Clusteringmethoden dabei, mehre-

re semantische Detaillierungsgrade durch extrahierte relevante Stichworte anzubieten.

Derzeit dürfte der vorliegende Visualisierungsansatz der erste sein, der semantische Embed-

dings mit einem hierarchischen Clustering verbindet und dabei diverse Interaktionstypen

basierend auf Metadaten-Attributen unterstützt.

Der vorgestellte Ansatz nimmt Nutzerinteraktionstechniken wie Brushing and Linking,

Focus plus Kontext, Details-on-Demand und Semantic Zoom in Anspruch. Dadurch wird er-

möglicht, Zusammenhänge zu entdecken, die aus dem Zusammenspiel von 1) Verteilungen

der Metadatenwerten und 2) Positionen im semantischen Raum entstehen.

Das Visualisierungskonzept wurde durch Benutzerinterviews geprägt und durch eine

Think-Aloud-Studie mit Patentenexperten evaluiert. Während der Evaluation wurde der

vorgestellte Ansatz mit einem Baseline-Ansatz verglichen, der auf TF-IDF-Vektoren basiert.

Die Benutzbarkeitsstudie ergab, dass die Visualisierungsmetaphern und die Interaktions-

techniken angemessen gewählt wurden. Darüber hinaus zeigte sie, dass die Benutzer-

schnittstelle eine deutlich größere Rolle bei den Eindrücken der Probanden gespielt hat

als die Art und Weise, wie die Patente platziert und geclustert waren. Tatsächlich haben

beide Ansätze sehr ähnliche extrahierte Clusterstichworte ergeben. Dennoch wurden bei

dem semantischen Ansatz die Cluster intuitiver platziert und deutlicher abgetrennt.

Das vorgeschlagene Visualisierungslayout sowie die Interaktionstechniken und semanti-

schen Methoden können auch auf andere Arten von schriftlichen Werken erweitert werden,

z. B. auf wissenschaftliche Publikationen. Andere Embeddingmethoden wie Paragraph2vec

[61] oder BERT [32] können zudem verwendet werden, um kontextuelle Abhängigkeiten

im Text über die Wortebene hinaus auszunutzen.
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1. Introduction

1.1. Background andmotivation

Semantic embeddings are used in Natural Language Processing (NLP) to capture relation-

ships between text documents. However, positions and distances in the embedding space

are not easily explainable and can hardly be understood by a user by themselves. Addi-

tional data dimensions incorporated into the representation of a semantic space provide

immense added value. This is especially the case when visually exploring large document

collections, where human perception must be aided in the task of �nding patterns in data

to prevent cognitive overload.

One example of a task in which such exploration takes place is patent landscaping. It

“constitutes an overview of patenting activity in a �eld of technology [...] and seeks to

present complex information about this activity in a clear and accessible manner” [105].

Patents are an enormously valuable source of technology intelligence. They exemplify the

problem at hand because they are text documents with a clearly de�ned structure, lots

of metadata and references to other patent documents. With help of patent landscaping,

companies acquire competitive advantages and steer their research and development

e�orts.

With about 3.1 million patent applications �led worldwide in 2016 [113] and thousands of

patent documents subject to analysis for a single domain, an e�ective approach facilitating

the analysis is crucial.

1.2. Objective and research questions

The objective of this work is to provide a solution for the problem of exploration of large

document collections. The proposed visualization approach should take particularities of

the patent domain into account and therefore be an e�cient aid in the task of patent land-

scaping. At the same time, the proposed approach should be generalizable for application

on various kinds of text documents.

The objective presents a number of challenges that have to be addressed. They are described

in section 1.3.

Research questions that are being asked in this thesis are:

• How can semantic embeddings be displayed in an transparent and explainable way?

1



1. Introduction

• How can semantic information enhance visual exploration of large document collec-

tions?

• How can metadata of various types be combined with the semantic dimension

through user interaction?

• Do semantic embeddings provide added value compared with traditional frequency-

based representations?

1.3. Challenges

1.3.1. Characteristics of data

1.3.1.1. Vocabulary

Language and especially vocabulary in patent documents deviate signi�cantly from generic

written language. Essentially, patents are written in a very abstract way, so that they

protect a higher number of potential embodiments (see subsection 3.2.2 for details). This

complicates searching for similarities and di�erences in patent texts.

Whenever the vocabulary used in patents is not too general, it is likely to be very speci�c.

Technical terminology used to describe inventions is very unlikely to be contained in

generic text corpora. Moreover, frequency-based text processing methods are susceptible to

inaccuracies when a large part of vocabulary consists of rare technical terms. This is why a

�ne-tuning of the algorithm parameters related to term frequency is necessary. We address

this 1) by using a model trained speci�cally on patent vocabulary (see subsection 5.1.1)

and 2) by carefully adjusting parameters for the key term extraction algorithm, especially

for cluster key terms as described in subsection 5.1.7.

1.3.1.2. Dimensionality and data types

The documents we are dealing with consist of textual parts and metadata. High-dimensional

text representations are necessary to represent content of patents. It is a challenge to map

them onto a lower-dimensional visualization space in a bene�cial way. Additionally, the

visualization approach we aim to develop has to combine semantics gained from text with

various visual dimensions derived from metadata of di�erent types. We experiment with

multiple dimension reduction techniques as described in subsection 5.1.6.

1.3.1.3. Visual scalability

The datasets that are being analyzed by patent experts can consist of hundreds to thousands

of documents. This is not “big data” in the classic sense of the word, but it de�nitely is

on the upper end of the spectrum when it comes to visual representation. The challenge

is to develop an approach that works equally well for a wide range of dataset sizes. It

2



1.4. Structure of the thesis

should be able to display thousands of documents in a comprehensive way. For that, the

proposed visualization approach has to use screen space wisely and leverage di�erent

levels of detail to avoid overwhelming the user. This is why we provide di�erent levels of

detail via semantic zooming as described in section 4.1.

1.3.2. Evaluation

The patent domain has been named in [25] as an area where visualization has potential

high-impact as a medium for �nding causality, forming hypotheses and assessing available

evidence. This makes interactive visualization an attractive research topic. At the same

time, the nature of the cognitive processes involved makes evaluation di�cult.

[23] argues that a great variety of cognitive reasoning tasks exists. Low-level detailed tasks

such as compare, contrast, cluster are more clearly de�ned. High-level complex cognitive

tasks include understanding of data trends, uncertainties, causal relationships or learning

a domain. No clear de�nition exists for some of those tasks, so they are challenging to test

empirically.

When testing visualization approaches with experts, success in a task may be attributed to

an interplay between expert’s 1) meta-knowledge, 2) knowledge from other sources and 3)

knowledge gained from the presented data. This complicates interpretation of evaluation

results further. We address this in our evaluation by having multiple tasks per hypothesis

that we evaluate as described in chapter 6.

1.4. Structure of the thesis

After the introduction in the �rst chapter, in chapter 2 we establish some fundamental

concepts our approach builds upon. Among other things, we introduce some de�nitions

from the patent domain that are used throughout this thesis. We then review the state of the

art for data visualization approaches that provide means to explore scienti�c publications

or patents.

Then, in chapter 3 we de�ne the framework for the case study to be conducted. The

methodology is being established: the frame of reference of the study, the methods for data

collection, etc. We justify our choice of semi-structured user interviews for the formative

part and think-aloud study followed by a SUS questionnaire for the summative part. We

then describe the course of the discussion during interviews with patent experts and

summarize our �ndings and their e�ect on the development of a visualization concept.

In chapter 4, we �rst brie�y outline the concept for the visualization. We propose a visual-

ization layout consisting of connected views of di�erent kinds of interactive charts: scatter

plot, histogram, sunburst with breadcrumbs and detail view. which implement principles

of focus + context, brushing and linking, semantic zoom and Shneiderman’s information

visualization mantra Next, we justify the choice of a two-dimensional visualization space.

We then describe how the initial idea appeared and how the concept evolved. Finally, we
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brie�y cover how we derive semantic representations of documents, cluster them and

extract relevant key terms to provide interpretability.

Next, chapter 5 goes into detail about the data processing necessary to prepare patent

documents for visualization: preprocessing and cleaning, computing document vectors,

dimension reduction, extracting relevant key terms, hierarchical clustering, etc. It also

contains a detailed description of the elements in the user interface of the visualization as

they were implemented in the prototype. We then elaborate on the interactions between

the coordinated views of the prototype.

chapter 6 establishes hypotheses about the visualization approach that pertain to the

di�erent visual elements and aspects of interaction. Then, the hypotheses are evaluated

through a think-aloud study, which detects usability problems and veri�es how suitable

the developed approach is for supporting exploration. We con�rm that the visualization

metaphors and interaction techniques were chosen appropriately. Moreover, the study

shows that the user interface of the prototype played a much larger role in participants’

impression than the way patents are situated and clustered.

Finally, chapter 7 summarizes the proposed approach and the key �ndings of this work.

We conclude by discussing possible improvements both in a general sense and speci�cally

related to patent domain.
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After having de�ned the objective and the research questions of this work, in this chapter

we �rst introduce the basic concepts our approach builds upon. We then discuss the state

of the art in visualization approaches that deal with large document collections.

2.1. Basic concepts

This thesis unites two domains - information visualization and machine learning, more

speci�cally NLP. This section introduces fundamental concepts from those two research

�elds that are not new, but serve as a foundation for our approach and a multitude of

other works in visualization and machine learning. Moreover, we introduce some terms

related to the patent system, which are not a result of some particular existing research as

such. They are, however, together with the machine learning and visualization concepts

mentioned above, the prerequisites necessary for a solid understanding of this work.

2.1.1. Information visualization

2.1.1.1. Visual information seekingmantra

The visual information seeking mantra by Shneiderman [93] is a seminal concept that has

contributed to the success of many powerful visualizations. It consists of three parts:

• overview �rst

• zoom and �lter

• details on demand.

This guideline is crucial for providing optimal bandwidth of the presentation of information

.

Overview �rst means that in the beginning, a more abstract or zoomed out view of a docu-

ment collection should be presented to the user. The goal at this point is to give a general

impression without overwhelming the user. Shneiderman [93] suggests complementing

this view with a detail view. Together they yield a focus + context representation (see

subsubsection 2.1.1.2).

Zoom allows users to satisfy their interest in some portion of the collection of data. To

support this, tools to control the zoom focus (the non-moving point the user zooms
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towards) and the zoom factor (the magnitude of the enlargement) are required. Moreover,

zooming should be smooth to preserve the sense of position and context.

Filter essentially means applying dynamic queries to the items in the collection and hiding

data points that are not in the result set. Filtering helps users to concentrate further on

parts of the data they �nd interesting. Shneiderman [93] argues that updating the display

in less than 100 milliseconds is the goal. Such reaction time is necessary to maintain the

responsiveness of the system, so that users do not feel uncertain about the result of their

action.

Details-on-demand means that the detail view for a single data point should be shown

after a request from the user such as clicking on the item. This constitutes the lowest

abstraction level of working with a data collection.

2.1.1.2. Focus + context

The basic idea with focus–plus–context–visualizations is to enable viewers to see the

object of primary interest presented in full detail while at the same time getting an

overview–impression of all the surrounding information — or context — available. Such

visualizations are “attention-warped displays”. They attempt to use more of the display

resource to correspond to the interest of the user’s attention[22] - “seeing the trees without

missing the forest”.

[12] provides an illustrative example of focus + context (see Figure 2.1). They demonstrate

a display that has an area with higher resolution nested inside a larger area with lower

resolution. A map is presented on the display, with its region of maximal interest (focus)
inside the area with higher resolution. One can see that only this small region shows street

names.

2.1.1.3. Panning and zooming

“Panning and zooming refer to the actions of a movie camera that can scan sideways across a

scene (panning) or move in for a closeup or back away to get a wider view (zooming)“ - [45].

This is an ubiquitous interaction form that creates a perception of space and movement in

said space. Is in most cases zooming is understood as physical zooming. For comparison

with semantic zooming, see subsubsection 2.1.1.4.

2.1.1.4. Semantic zooming

A physical zoom changes the size and visible details of objects. A semantic zoom, on the

other hand, changes the type and meaning of the information displayed by the object by

using a semantic transition between detailed and general views of information [73].

A thematically relevant example of semantic zooming is presented by Skupin [98]. He

automatically derives the thematic structure of a given domain. As shown in Figure 2.2,

he visualized scienti�c publications from the �eld of biomedicine.
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2.1. Basic concepts

Figure 2.1.: A focus + context interface. The iconic illustration at the bottom left shows

where the focus screen is located. The callout shows the di�erent resolutions

of focus and context area. Source: [12]
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2.1. Basic concepts

One can observe that in semantic zooming, the level of detail increases with the zoom level.

Speci�cally, �ner subareas with own labels and boundaries become visible. Unfortunately,

the zooming itself is not implemented in an interactive way in Skupin’s case. Instead,

static images are pre-rendered for speci�c zoom levels. Deciding when to switch between

di�erent levels of detail is a separate problem that we address in our work as described in

subsection 5.1.7.

2.1.1.5. Brushing and linking

“Brushing and linking refers to the connecting of two or more views of the same data,

such that a change to the representation in one view a�ects the representation in the

other views as well” - [45]. Multiple views of the same data are usually implemented via

di�erent types of visualizations. Common examples include combinations of scatter plots,

bar charts, parallel coordinate views and maps. Charts do not necessarily need to be of

di�erent types. They may show di�erent dimensions of the data instead (see Figure 2.3).

Brushing means selecting a part of the data in one of multiple views. A selection area is

usually formed by dragging the cursor, hence the name brushing. Some form of visual

indication is necessary to prevent confusion about what exactly has been selected. Linking
refers to highlighting the selected data points in other view or views. The data is “linked”

through the selection. A schematic example of coordinated views with brushing and

linking can be seen in Figure 2.4.

2.1.2. Machine learning

2.1.2.1. Word2vec

Word2vec was proposed by Mikolov [72]. It is a neural network architecture for computing

continuous vector representations of words in an n-dimensional space. The model learns

to predict words based on their context. With enough training data, the hidden layer

learns that semantically similar words can be represented with similar vectors. Those

word representations are called word embeddings and typically have between 100 and 300

dimensions, while less than 50 dimensions usually don’t represent the semantics well

enough.

Semantic relationships expressed by word embeddings can be of multiple types. [72]

evaluated semantic and syntactic relationships in question-answer pairs such as city-

in-state (i. e. Chicago - Illinois), man-woman (i.e. brother - sister), opposite (ethical

- unethical), nationality-adjective (Switzerland - Swiss). If two words are close in the

embedding space, it might also mean that they are synonyms or often appear together in

texts. An illustrative overview of concepts behind word2vec, its training and parameters

can be found in [5].
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Figure 2.3.: Correlation matrix of a well-known Iris dataset as an example of brushing and

linking. Linked views are all of the same type, which in this case is a scatter

plot. Brushed view is in the upper-left corner. Image source and demo: [18]
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2.1. Basic concepts

Figure 2.4.: A histogram and a scatter plot coordinated through brushing and linking. The

data points that do not belong to the current selection are grayed out in both

views.

2.1.2.2. t-SNE

t-SNE is a dimension reduction technique proposed by [60]. The aim of the technique is

to map high-dimensional data to a two- or three-dimensional space. At the same time,

the structure of the high-dimensional data should be preserved as much as possible. In

other words, t-SNE de�nes a probability distribution in high-dimensional space and tries

to preserve it for low-dimensional space using gradient descent. Gradient descent is an

iterative optimization algorithm which aims to �nd a minimum of a function by taking

small steps in the direction of the steepest decline. The optimization is initialized randomly

and is in the case of t-SNE de�ned by a non-convex cost function, which means that

risk of getting stuck in local minima exists. It is, however, completely acceptable to run

the algorithm multiple times and choose the best result. t-SNE succeeds in preserving

both global and local structure of the data, which makes clusters visible at several scales.

An excellent interactive overview of t-SNE’s parameters (especially perplexity) and their

in�uence on resulting behavior of the algorithm can be found in [109].

2.1.3. Definitions from the patent domain

This section contains some basic knowledge about the patent system which is a prerequisite

for an understanding of the patent visualization tools related to this work (described in

section 2.2), and also for an understanding of our own approach (described in chapter 4).

We show how patent documents are structured. We also de�ne some terminology from the

patent domain that we use throughout this work: patent family, citations and IPC classes.

2.1.3.1. Structure of a patent document

Each patent document possesses the following attributes:
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• Application number - a unique identi�er, starts with country code of the registration

country. Example: US-5448677-A.

• Country code - stands for the code of the patent o�ce the application was submitted

to. While some countries, like the US, have their own designated patent o�ces,

there are patent o�ces, such as the European Patent O�ce, that allow patents to be

valid in multiple countries. In those cases, terrestrial validity of patents is a complex

topic. For the purposes of simpli�cation, we only consider the code itself (e.g. US or

EP) in this work.

• Priority date - the date when the priority patent was submitted (see subsubsec-

tion 2.1.3.2 for details on priority). For our purposes this date is considered as the

creation date of the patent.

• Assignees - a list of one or many individuals (inventors) or institutions to which the

rights to the invention belong to. It is a categorical attribute.

• IPC classes - a list of one or many codes from the IPC classi�cation (see subsub-

section 2.1.3.4 for more details) describing the thematic areas of technology the

described invention is related to. It is a categorical attribute of a hierarchical nature.

• Citations - a list of patents (identi�able by their application numbers) cited by the

given document.

• Family identi�cator - a number that all members of one patent family share.

• Title - a text attribute describing the invention very brie�y . It often does not contain

enough useful information if used by itself, but adds some clarity when combined

with the abstract.

• Abstract - by analogy with scienti�c publications, it is a brief summary of the

invention.

• Claims - detailed description of the invention and its aspects that should be protected

(claimed) by a patent. This is the �eld with the most textual information as it can be

hundreds to thousands of words long. Our main data source, Google Patents Public

Datasets [111], only provides claims for patents registered in the US.

This list is not extensive and only includes �elds that are relevant to this work. For the

above-described �elds, we distinguish between textual content of a document (title, abstract

and claims) and the metadata which includes all remaining information.

2.1.3.2. Patent family and priority document

Patents can be assigned to the same patent family. Protection of intellectual property for

a patent is restricted to the country the application was submitted to. Therefore, many

inventions are registered in patent o�ces in multiple countries. The patents covering one

invention across several countries constitute a family. The earliest patent from a family is

called a priority document. Families can also be registered in the same country when they

describe di�erent aspects of the same invention.
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2.1.3.3. Forward and backward citations

A patent may include a list of tens to hundreds of citations de�ned by their application

numbers. When a new patent application cites an already existing patent, it indicates

that the cited patent is already known to the applicant [31]. The older patent in this

case is considered prior art. The new application must provide claims that are novel and

non-obvious in the view of the prior art. It is in the interest of the applicant to show

(through a citation) that they have thoroughly studied already existing patents. This is

analogous to scienti�c publications where the authors have to review state-of-the-art

before proposing novel approaches.

The citations directly de�ned in a patent, i. e. links to older documents that are being cited,

are called forward citations. Backward citations are the same links from the point of view

of the older patent. They show the patents citing the current one. As it is impossible to

know how a patent will be cited in the future, an explicit list of backward citations does

not exist and has to be assembled by reversing forward citations.

2.1.3.4. International Patent Classification

Each patent is assigned at least one, but usually multiple IPC codes. The IPC hierarchy

breaks the whole of humanity’s patented technological knowledge down into thematic

areas the inventions pertain to. One IPC class is an alphanumerical code which is hierar-

chical in nature and is based on pre�xes, i. e. it starts with one letter and with addition of

further symbols corresponding new nodes in the hierarchy tree appear. The tree structure

is of the constant depth of �ve levels and, as we learned in the expert interviews (described

in subsection 3.2.5), those levels have own names and are composed according to certain

rules (see Table 2.1).

Name Format Example Example title

Section One letter H Electricity

Class Two-digit number H04 Electric communication technique

Subclass One letter H04N Pictorial communication, e.g. television

Group One-to-three-digit number H04N5 Details of television systems

Subgroup Two- or three-digit number H04N5/76 Television signal recording

Table 2.1.: Structure of IPC classes

2.2. State-of-the-art visualization approaches

After all prerequisite concepts have been introduces, we review the state of the art with

regard to explorative visualization approaches.

Federico et al. [38] surveyed 21 existing visualization approaches for patents and 109

for scienti�c documents such as papers, focusing on non-commercially available tools.
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Figure 2.5.: The visualization proposed by [52]. Output of a query for “cell”. The point in a

circle shows the currently selected patent.

They distinguish between four data types that can be visualized: text, citations, authors
and metadata. We focus our review of state-of-the-art on approaches that visualize 1)

text alone, 2) other data types alone and 3) text in combination with other data types. A

separate section is devoted to a group of comparable themescape-based approaches. In

the following, a selection of works discussed by Federico et al. is expanded by some other

approaches which they did not include.

2.2.1. Text-based visualizations

Johnson et al. [52] present a similar visualization approach to ours with regard to processing

the text data for the visualization. They use a word2vec model trained on ca. 1.5 million

patent texts and compose document embeddings through averaging of word embeddings

as well. They, however, only focus on textual content and disregard visual representation

of metadata. An overview of the whole dataset is not provided. Instead, one needs to

query the data by keywords and only subset corresponding to the query is then shown (see

Figure 2.5. The only interaction available apart from querying is the selection of a single

patent by clicking on the corresponding point, so that patent details are displayed. The

approach proposes no method to automatically label data points to provide an overview.

Skupin [97] [96] applies a cartographic approach to create maps of non-geographic infor-

mation, more speci�cally, conference abstracts. In a successor work (see Figure 2.6(a)),

Skupin et al. [98] visualize medical publications based on MeSH terms, which are analo-

gous to tags assigned to scienti�c articles. In all of those works, a type of Arti�cial Neural

Network (ANN) called Self-Organizing Map (SOM) is used. The network is trained on

a term-document-/MeSH-document matrix. This way, each neuron is assigned multiple

terms as labels. In [98], the neurons are then clustered in the following way: “if two
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neurons are neighbors in the two-dimensional neuron lattice and they share the same

top-ranked label term, then their boundary is dissolved, thus forming a larger polygon,

a neuron label cluster” [98]. The same procedure is duplicated for the second and third

top-ranked label terms, and the resulting three clusterings are then overlaid on the same

map and distinguished by color. Cluster size declines with the dominance of the term,

which means the end result displays multiple levels of semantic detail.

In [97] and [96], Skupin uses an alternative clustering method - hierarchical clustering.

From the tree structure built on neuron similarities he derives three to �ve clustering levels

as shown in Figure 2.6(b). This approach served as an inspiration for our own hierarchical

clustering based on similarities between patent documents.

Our approach builds upon Skupin’s ideas and aims for a comparable result, while the

features of the data and the processing methods are di�erent. Visualizations proposed by

him are either static or provide a basic zooming interaction while limiting the richness of

display. We, on the contrary, speci�cally focus on supplementing a hierarchical themescape

with interactivity for e�ective exploration.

Choo et al. [27] present UTOPIAN (User-driven Topic modeling based on Interactive

Nonnegative Matrix Factorization). They perform topic modeling based on a bag-of-

words representation of a document. A hard-clustering algorithm is then applied to the

documents, which means that each document is assigned to only one topic. A modi�ed

version of t-SNE is utilized to draw a node-link diagram with topics/clusters distinctly

separated as shown in Figure 2.7. Edges are drawn between pairs of data points whose

distances are below a user-speci�ed threshold. Most importantly, the approach gives

the user a high level of control over the topic modeling result. Merging or splitting

topics, creation of a new topic based on a speci�ed document or a certain keyword are

possible. Choo’s approach in�uenced our initial idea of drawing a fully connected graph

of documents which would dynamically reform itself after some documents are �ltered

out (see subsection 4.2.3 for details). We, however, did not pursue this idea further because

of performance considerations.

2.2.2. Visualizations based purely onmetadata

Patent data is distinguished by a signi�cant amount of metadata attached to each record:

hierarchical classi�cation, assignees, citations, patent family information, etc. Many works

deal with one or a number of these attributes [115] [112] [46] [40] [39] [24] [2]. However,

Federico et al. emphasize that “only few works adopt, re�ne, or develop techniques for

visualizing classi�cation data. Other data types are just ignored in most approaches” [38].

Because of this, we aim to derive value speci�cally from the hierarchical representation of

IPC classi�cation data.

Wittenburg et al. [112] make extensive use of metadata for faceted visualization with what

they call embedded bar charts. They order the company, decade of �ling date, country

and IPC class vertically over each other and represent the distribution of values within

those attributes through widths of blocks as seen on Figure 2.8. The embedded bar charts

use negative space within the blocks to display temporal development of a company’s
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(a) Zoomed-out view of a complete map of medical literature and detailed views of some regions. Blue, green

and red labels indicate clusters derived from the �rst, second and third top-ranked label term, respectively.

Source: [98]

(b) Visualization of conference abstracts with simultaneous overlay of three levels of a hierarchical clustering.

Source: [97]

Figure 2.6.: Skupin’s maps of knowledge domains16
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Figure 2.7.: UTOPIAN by [27]. Given a scatter plot visualization generated by a modi�ed

t-SNE, it provides capabilities for 1) topic merging, 2) document-induced topic

creation, 3) topic splitting and 4) keyword-induced topic creation. The user

can adjust topic keyword weights (bottom-middle) and see representative

keywords in the document viewer (bottom-right).

Figure 2.8.: A visualization layout proposed by [112], a so called embedded bar chart. The

distribution of metadata attributes in the dataset is represented by a hierarchy

of attributes: assignee, then date of �ling, then country, then IPC class.

patenting behavior. Unfortunately, Wittenburg’s approach results in a cluttered view and

therefore lacks visual scalability when many companies and especially IPC classes are

present in the data. Nevertheless, we build upon their idea about displaying distributions

of metadata attributes in a stacked order.
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Figure 2.9.: ParallelTopics by [34]. Top left: Document Distribution view, top right: Tem-

poral view, bottom left: Topic Cloud, bottom right: Document Scatterplot.

2.2.3. Visualizations based on text in combination with other data types

Many approaches capture thematic similarities between documents with help of topic

modeling [75] [42] [34] [51]. They position a document depending on the degree to which it

belongs to the corresponding topic. For example, Dou et al. [34] uses the parallel coordinate

metaphor to present a probabilistic distribution of a document across pre-detected topics

as seen in Figure 2.9. With an interactive ThemeRiver view they present the temporal

development of the topics. Lastly, they use a scatter plot to show the distribution of single-

topic vs. multi-topic documents. Pie glyphs within the scatter plot describe the topical

contribution to a speci�c document. We consider the parallel coordinate plot a suboptimal

choice to represent a large number of similar dimensions such as >10 topics. Even though

the topic axes are ordered by similarity, the positive and negative correlations between

topics become spread over the >10 vertical axes, which makes them hardly perceptible.

Nevertheless, this approach served as an inspiration for our own glyphs in the form of a

pie chart.

Jiang et al. [51] present a comparable approach to Dou et al. as seen in [�g:jiang]. They

detect tens of topics using a hierarchical topic model. Each topic is then represented as a

vocabulary-length feature vector where each dimension corresponds to the word’s proba-

bility in a latent semantic space. The topic vectors are then reduced to two dimensions via

Multidimensional Scaling (MDS) and are shown in the form of a scatter plot. This approach

comes close to our idea of making patterns in the semantic space visible. Unfortunately,

it does not provide a representation of how separate documents relate to topics. It also

involves only the temporal dimension of documents and no as an addition to their textual

content, no other metadata is represented.
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2.2.4. Themescapes

Visualization approaches that produce themescapes constitute a separate noteworthy

category. They include commercial tools such as VxInsight [19], Thomson Reuter’s Aureka

and STN’s AnaVist. Information about those tools is limited because of their cost, but [91]

provides an extensive comparison. There are also some non-commercial approaches such

as IN-SPIRE [47]. All of those approaches utilize the metaphor of points in a landscape

comprised of “mountains” and “valleys” as seen in Figure 2.11. Mountains group patents

with similar textual content via word-frequency-based similarity metrics. The height of a

mountain peak corresponds to the document density in the area. A peak is usually labeled

with a list of automatically extracted relevant terms. Skupin’s work takes advantage of

the map metaphor as well, but does not completely �t into this category because he does

not use the third dimension to represent the amount of documents in a cluster.

In most themescape-based approaches, the user can highlight points on the landscape

which correspond to a certain author, patent assignee, time period, country, etc. Thus, a

distribution of metadata values can be explored. Moreover, coordinated views supplement

the main landscape view by providing statistics in form of histograms, co-occurrence

matrices, pie charts, citation graphs, etc. (see Figure 2.12 for an example from AnaVist).

The little information that is publicly available about the commercial themescape-based

tools seems to indicate that all of them use document representations based on frequency

and/or distribution of words. In such classical machine learning methods, words are treated

like indices in a dictionary and there is no concept of context or similarity between words.

In our work we compare one such approach (TF-IDF document vectors) with a newer

neural-net-based approach that takes semantics of words into account.

2.2.5. Summary

Many approaches use topic modeling as a way to give meaning to the positions in the

visualization space. Others use similarity metrics based on word frequencies to cluster

documents. Only one approach (Federico et al. [38]) uses semantic word embeddings

instead of word-frequency-based features.

Very few works handle patent classi�cation data, which is why we explicitly focus on

�nding an appropriate visual metaphor for IPC classes.

Ultimately, we are unaware of any approach that 1) relies on semantic embeddings to

show local and global structures within a dataset, 2) organizes themes into a conceptual

hierarchy via clustering and at the same time 3) enables exploration of document metadata

through additional visual dimensions or interaction techniques. This is the research gap

we address in this work.
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2.2. State-of-the-art visualization approaches

Figure 2.11.: A patent landscape map about graphene produced with Aureka. Highlighted

are Samsung’s patents published in 2013 and 2014. Image source: [41]
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3. Case study

After we have covered the basic concepts and reviewed the existing visualization ap-

proaches, we de�ne the framework for the case study which directs our solution and, later,

helps to evaluate it.

3.1. Design of case study

A case study is an empirical method aiming at investigating contemporary phenomena

in their context. While it does not uncover causal relationships as well as a controlled

experiment would, it provides deeper understanding of the studied phenomenon and is

�exible [90]. Nevertheless, a case study has to be carefully planned.

3.1.1. Plan for the case study

According to [87], a plan for a case study has to include:

• Objective—what to achieve?

• The case—what is studied?

• Theory—what is the frame of reference?

• Research questions—what to know?

• Methods—how to collect data?

• Selection strategy—where to seek data?

In this section we answer those questions.

Tools already exist to support exploration of corpora of text documents in general and

the patent landscaping process speci�cally. Therefore, the case study has an improving
objective.

The objective and the research questions of this work have already been covered in detail

in section 1.2.

The case that is being studied is the task of patent landscaping.

The study operates under the assumption that semantic embedding results in a similarity

measure that is meaningful for human perception. This assumption de�nes the frame of
reference.
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3. Case study

Next, methods for data collection and data selection strategy have to be de�ned. We use

�rst degree data collection techniques, more speci�cally, user interviews and a think-aloud

study complemented by a SUS questionnaire. The participants for those studies are experts

from the patent domain.

First degree data collection techniques are methods in which the researcher is in direct

contact with the subjects and collects data in real time[62]. Second and third degree

techniques mean collecting data without direct participant interaction or using data that

already exists, respectively. A comparison of techniques of various degrees of access can

be seen in Figure 3.1.

Figure 3.1.: Cost, reliability, �exibility and cognition vs. behavior compared. Source: [62]

First degree techniques require more time and e�ort from both researcher and study

participants. This is due to the fact that they tend to produce a large amount of data that

needs processing. On the positive side of this trade-o�, �rst degree techniques provide the

researcher with more �exibility and control over data collection. Most importantly, �rst

degree techniques allow the researcher not only to understand how the task is performed

(behavior), but why (cognition). The downside is that the gathered data relies on imper-

fect human recollection, so care must be taken if complete accuracy of reported facts is

important. Since we are interested in overall cognitive processes instead of minutia, we

implement �rst degree techniques in our case study.

3.1.2. Procedures for data collection

After having settled on using �rst degree data collection techniques, in this section we

de�ne how the data is to be collected. This includes a detailed discussion of the user

studies that produce the data to collect.

Formative study
First, a formative study in the form of expert interviews serves to understand scenarios

in the patent landscaping task and formulate the requirements. The purpose of this �rst

stage of data collection is to acquire subjective, qualitative results since actual human

experiences provide valuable insight into bene�ts and drawbacks of existing solutions.
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3.1. Design of case study

Accordingly, semi-structured interviews are chosen to understand the users’ mental model

of the task. A semi-structured interview consists of a mix of open and closed questions.

This type of interview is common in case studies [90]. It allows the researcher to follow

the natural development of the conversation, improvise and explore the subject at hand

while making sure that all relevant topics are addressed. We discuss the results of the

formative study in section 3.2.

Ideation
After the �rst data collection stage, a concept for the visualization itself must be developed.

The concept is in�uenced by the insights gained in the formative study. The result of

the decisions made at this stage is a digital mockup representing the future interactive

prototype (see chapter 4 for details). An implementation phase that follows consists of data

preprocessing, applying chosen semantic methods and implementing chosen interaction

techniques in a usable interactive prototype (see chapter 5 for details). After the �rst

proof-of-concept prototype is complete, a short feedback meeting with the potential users

takes place . This helps gather �rst reactions to the concept and, when necessary, adjust

further iterations.

Summative study
An evaluation of the approach is concluded by the second data collection stage. The

execution of this stage is covered . One of the purposes of the second data collection stage

is to uncover cognitive problems and mismatches between the user’s mental model of the

task and the proposed system. The second purpose is to evaluate the impact of semantic

embeddings as compared to a traditional approach such as TF-IDF features as document

vectors. To do that, participants are divided into two groups. One group evaluates the

traditional approach �rst and the approach with semantic embeddings afterwards. For the

second group, the order is reversed.

To gather direct qualitative feedback about usability, a think-aloud study is planned. The

think-aloud approach has its roots in cognitive psychology and is scienti�cally established

[95] [36]. It was originally applied in studying short-term memory processes. Two

embodiments of the think-aloud method exist. Ericsson et al. [35] keeps the in�uence of

the experimenter on the outcome to a minimum with rigid procedures. Contrarily, [16]

et al. approach the experiment as a dialogue. The participant is still encouraged to talk

most of the time. The researcher mostly listens and acknowledges what is being said,

but is allowed to ask questions or intervene in case the participant is lost or a bug in the

tested system prevents further progress. The two techniques were evaluated in [57]. The

outcome shows that the subjects’ evaluations were consistent between methods. However,

the subjects completed more tasks and felt less lost with approach from Boren et al. We

therefore choose this embodiment of think-aloud for the qualitative part of our summative

study.

For quantitative feedback, we measure the usability score resulting from the use of the

prototype. This helps verify that the visualization based on the proposed approach is

easy to use and satis�es the requirements. For that, SUS questionnaire [21] is chosen. It
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3. Case study

is preferred to other questionnaires such as Computer System Usability Questionnaire

(CSUQ) [65] and Questionnaire for User Interface Satisfaction (QUIS) [26] because it

produces reliable results even with small number of participants [107]. Moreover, it is

short, simple and addresses di�erent aspects of user’s reaction to the tested system as

a whole instead of its speci�c features. Alternating positive and negative questions (“I

thought the system was easy to use” vs. “I found the system unnecessarily complex”)

require attention from participants and provide more robust results. [59] proposes to

combine a SUS scale with a follow-up question about reasons for the given rating to derive

further qualitative insights. We follow this suggestion.

Study subjects
Experts with experience in patent landscaping from FIZ Karlsruhe serve as subjects of

the study. According to Nielsen [78], about 70% of the insight can be learned from three

participants. Additional participants, especially those after the �fth one, bring merely

diminishing returns. For this reason, the study is kept small with 3 participants for user

interviews and 4 for the think-aloud and SUS part.

Analysis of the data collected during the second data collection stage allows drawing

conclusions regarding the objectives of the study. Those are described in section 6.3.

3.2. Interviews

Since the formative study de�ned in the previous chapter had a direct impact on the

development of our approach described in chapter 4, we cover the study itself and its

results in this section. First, we describe the organizational and methodological aspects

of conducting a semi-structured interview, which is an integral part of the formative

study. After the organizational and methodological aspects follow the descriptions of

conversations with patent experts. We conclude by a summary of how the interviews

shaped our understanding of the patent domain and, subsequently, how they in�uenced

the development of a concept for our approach.

3.2.1. Procedure

Three patent experts were interviewed in a semi-structured format as de�ned in [87].

After greeting the participant, each interview started with some warm-up questions about

participant’s background. Afterwards followed the main part with the most important

questions about the domain of patent landscaping itself. The interview was concluded by

cool-down phase with more general questions. The questions covered relevant aspects of a

patent landscaping process such as data quality, usage scenarios and working with di�erent

abstraction levels. A full questionnaire for the interview can be found in section A.1.

Best practices for conducting user interviews were studied and adopted to the best of

interviewer’s ability. Here we list the guidelines that we followed based on [82]:
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3.2. Interviews

• Before scheduling the interview, ask participants if you are allowed to record them

talking. It is virtually impossible to actively listen and steer the conversation while

taking extensive notes. An audio recording is usually su�cient. Don’t forget to

check recording equipment before �rst interview starts.

• The questions should not assume a certain point of view. For example, “How do you

feel about X?” is better than “Why is X bad?”. Ask even if you think you know the

answer, you might be surprised.

• Show that you understood what the interviewee is saying and ask for clari�cation.

For example, “You said X, could you please tell me more about it?”.

• If questions come up while the interviewee is speaking, don’t interrupt them. Write

the question down and follow up later.

• Speak slowly, don’t show hurry. If the time is running out, prioritize.

• Pay attention to interviewee’s body language and try to imitate it when appropriate.

Try to prevent defensive poses such as crossed arms.

• Leave long pauses after the interviewee’s replies. Silence is mildly uncomfortable

and serves as a prompt to keep talking. It also gives the participant a chance for

contemplation, allowing them to formulate additions to their last thought.

• After the main part of the interview is �nished, ask the participant if they have

questions for you or would like to tell you something you both had not discussed

yet.

• After completing the interview thank the participant, stop the recording and note

the main topics of the conversation.

All participants were to some degree familiar with STN AnaVist, which is an interactive

visualization software speci�cally created for use in the patent domain. As seen in Fig-

ure 2.12, it displays a patent map with labeled clusters and allows the users to select an

area to compute statistics about the patents in that area as compared to the whole dataset.

Prior exposure to STN AnaVist most probably shaped experts’ expectations for a patent

landscaping tool.

The interviews provided valuable insights into work�ows and mental processes of patent

experts. In the the descriptions of the conversations we only elaborate on discussion

points that are relevant to the development of our approach. The issues not covered here

nevertheless signi�cantly contributed to our understanding of the patent domain.

We refer to the participants by the letters of the Greek alphabet and singular “they” for

both genders to preserve their anonymity. The grammatical form of singular “they” also

applies for any (potential) users we mention throughout this work.

3.2.2. Participant Alpha

Participant Alpha has the most experience with patent landscaping. They composed

patent landscape reports and are very familiar with the landscaping tool STN AnaVist and

presented it to clients.
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Participant Alpha characterized creating a patent landscape as an iterative process. It

consists of multiple feedback loops that run until converging to a satisfactory result.

The �rst feedback loop involves understanding the needs of the client better. It starts

when a client commissions a patent analysis and explains their requirements to the expert.

The mutual understanding of the task is di�cult to achieve, especially when it evolves

based on illustrative results. Therefore, after the patent expert presents the client with

the result of the current iteration, the client may in�uence the focus of the analysis. The

expert incorporates the client’s suggestions into the further work�ow.

The second feedback loop concerns the level of abstraction in the query to the patent

database. Participant Alpha pointed out that the patent attorneys often use very generic

vocabulary compared to scienti�c publications such as papers. This allows the claimed

invention to be protected in a wider variety of embodiments. Patent o�ces work against

this tactic by demanding a su�cient level of detail to prevent claims from being too broad.

As a result, patent expert sometimes has to experiment with making terms of the search

query more or less generic. If a query consists of parts A, B and C, a combination of generic

search terms for A and B and speci�c terms for C might be followed by a combination of

speci�c terms for A and C with generic terms for B. Thus, possible combinations of generic

and speci�c terms for parts of the query are tested iteratively until the query result is

satisfactory. The optimal level of detail for each part of the query constitutes a substrategy,

and such substrategies are merged in the �nal query.

Participant Alpha highlighted the importance of uniform names for assignees and inventors.

They reported a recent “information �ood” from Asia, especially from China, which

necessitates uniform rules for transliterating proper nouns. According to the participant,

uniform names of patent assignees are a distinguishing feature of high-quality datasets

that is required by clients. Non-uniform names make aggregating data, i. e. counting,

unreliable.

The participant made a distinction between two kinds of patent landscaping. One involves

looking at a patent set in a quantitative way through the set of metadata attributes. It

helps answer questions such as who are the biggest competitors, since when they have

been active, how many applications do they have, in which countries are they active.

The second kind involves better understanding of the technology domain and ability to

subdivide it into subdomains. The participant named freedom-to-operate research as

a possible scenario for this kind of analysis. In this area they saw potential for use of

semantic methods such as the contribution of this thesis.

The participant described multiple de�nitions of a patent family. The most widely accepted

one and also the broadest one is “simple family”, which constitutes a group of patents

associated with the same priority document. Simple family may contain patents with

claims that di�er signi�cantly because they protect di�erent parts of the same invention

or take into account regional di�erences. Creators of patent databases such as Derwent

also create their own de�nitions of family which are more narrow and typically contain

almost identical patents only.

Aside from the freedom-to-operate scenario, the participant also mentioned 1) whitespot

analysis, 2) searching for cooperation partners and 3)“licensing out” patents that are
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not in company’s core portfolio as valid scenarios where a patent landscaping tool has

successfully been used or might be useful. If one searches for a widespread technology,

whitespots can be recognized where a few data points are on their own and not in any big

cluster.

Participant Alpha emphasized strongly the importance of data quality. They reported

that a patent in a full-text database might be about 100 pages long, while same patent

in an added-value database, such as Derwent, might be about 2 pages. This di�erence is

explained by the fact that texts in an added-value database are rewritten by professional

writers to a more concise and understandable form. Added-value databases are used

as a default option during a patent search. Full-text databases are only searched when

necessary.

While on the topic of patent classi�cation systems, participant Alpha reported that IPC

is used by virtually all patent o�ces worldwide and covers about 98% patent documents.

Though Cooperative Patent Classi�cation (CPC) has more meaningful and better structured

hierarchy, it is assigned to only 40% of documents and is therefore unreliable if used by

itself. The participant named subclass level (i. e. A61K), main group (i. e. A61K6) and

subgroup (i. e. A61K6/02) as most widely used levels of the IPC hierarchy. Some IPC codes

are assigned consistently and are suitable for searching using IPC codes only, while others

require searching with help of key terms.

3.2.3. Participant Beta

Due to their background, this participant has some experience in text mining, especially

annotating patent texts. Accordingly, initial questions led to a detailed discussion on this

topic.

Participant Beta pointed out that machine translation, Optical Character Recognition (OCR)

artifacts and di�erent writing styles make automatic analysis error prone. Participant

Beta repeated Participant Alpha’s assertion about quality of the data playing a crucial role

in automated analysis. The participant elaborated that sometimes the user might get an

impression of some trends happening, while in reality they only can be attributed to the

noise and errors in the data.

According to Participant Beta, it is di�cult to separate citations from the rest of the text,

and noise in data occurs when this process was not successful. Nevertheless, assuming that

citations were recognized successfully, they constitute a very important kind of connection

between documents and represent a very strong similarity. If A cites B, but they do not

have similar key terms, the approach might be faulty. Patent families should be grouped

in an obvious way as well.

Considering usage scenarios, Participant Beta reported that in 80% of all cases solely the

distribution of assignees plotted by publication year was su�cient. Moreover, participant

expressed doubt about value of visual patent landscaping tools compared to traditional

non-visual tools. The participant themselves as well as other patent experts have di�culty

interpreting the visual representation of a landscape. The connection between terms that

29



3. Case study

describe clusters is perceived as far from obvious and needs an explanation. The meaning

of valleys between the mountains in tools such as STN AnaVist is also confusing. It is

unclear to patent experts how one is supposed to recognize patterns and draw conclusions

from such representation and what additional knowledge it provides. Dislike for black-box

algorithms was expressed by the participant and their acquaintances.

The participant provided some advice concerning processing of the textual content.

First, they recommended using patent title and abstract together because the title itself

might be too short (i. e. one word) or not expressive enough.

Second, they advised to pay special attention to stopword removal. There are stopwords

that apply for all English texts, such as “is”, “have”, etc. Stopwords speci�c to patent

domain include structural markers such as “patent application”, “description”, “prior art”

or“claim”. The participant reported that during demonstrations of patent analysis software,

they have regularly seen stopwords which should have been removed.

Third, Participant Beta highlighted the importance of not only single-word key terms but

phrases that are two or three words long. Such phrases may consist of nouns but also of

adjectives and participles. However, the participant’s impression was that single-word

key terms do not appear su�ciently often after key term extraction. The participant

disapproved of this, because some domains possess highly relevant one-word key terms.

The situation was attributed by the participant to insu�cient weighting by the extraction

algorithm.

Participant Beta stated that the description �eld in a patent can be separated into multiple

segments such as “Background of the Invention”, “Summary of the Invention”, “Brief

Description of the Drawings”, “Detailed Description of the Preferred Embodiment” and

“Claims”. The segmentation is not a straightforward process because the format of the parts

of the description varies signi�cantly. Assuming the segmentation is successful, “Summary

of the Invention” and “Detailed Description of the Preferred Embodiment” provide most

value. The participant expressed curiosity to compare results of a semantic approach

between the above-named description segments and “Background of the Invention”.

3.2.4. Participant Gamma

Participant Gamma had most experience with very speci�c questions from clients that

needed quite speci�c answers. Typical size of a query result for them is 30-50 patents from

which about 5 most relevant have to be selected and presented to the client.

Participant Gamma repeated statements from Participant Alpha about the iterative nature

of a patent search. They both described the process in a very similar way: one should

approach a search from multiple perspectives, develop multiple strategies and merge them

at the end.

Participant Gamma explained that freedom-to-operate research needs very complete

answers to the search query. It is very important that no relevant patents are missing from

the dataset, otherwise absence of any already protected inventions cannot be proven.
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When it comes to working with single patent documents, the work�ow is as follows. First

title and abstract are read. When those are interesting enough, the full text is requested

(which might require an additional fee) and studied.

Participant Gamma echoed Participant Alpha’s sentiment about limited usefullness of

IPC classes. For broad analyses they are found helpful, while the more speci�c the search

becomes, the more weaknesses IPC shows.

Due to the very narrow nature of requests Participant Gamma works on, they did not see

data visualization as the main tool for the search task for them personally. Instead, they

saw it as a way to generate impressive visuals for the stakeholders or other non-experts.

Nevertheless, they admit that visualization may be useful when dealing with large datasets.

In this case, interaction and usable �ltering features are seen as very important. Participant

Gamma acknowledged that demand for such patent visualization tools exists among their

clients.

3.2.5. Findings from user interviews and their implications

In this section, we brie�y summarize the �ndings from the user interviews and how they

in�uence our approach:

• Thematic consistency of IPC classes declines as one moves to the lower levels of

IPC hierarchy. It also varies a lot depending on the speci�c technology domain. One

therefore should not expect a clear separation of classes in the semantic space during

the clustering (see subsection 5.1.7 for details) and the evaluation (see chapter 6

for details on evaluation). Nevertheless, patent experts work with all levels of IPC

hierarchy.

• Names of assignees (companies or individuals a patent belongs to) are often spelled

di�erently throughout the dataset. This makes grouping patents by assignee name

unreliable. Disambiguated assignee names are one of the characteristics of a quality

dataset. We therefore merge assignees with similar names via fuzzy string matching

as a part of the preprocessing before we aggregate the documents (see subsection 5.1.3

for details).

• Patent language di�ers in form and structure from the common written language.

Both general and very speci�c vocabulary is used in patent texts, and, accordingly,

in patent searches. Consequently, we use a language model trained speci�cally

on patent texts because it re�ects the peculiarities of the patent domain best. We

then attempt to produce generalizations of cluster key terms as described in subsec-

tion 5.1.7.

• Special attention has to be paid to the elimination of stopwords that add no value to

the general understanding. We describe the process of the stopword removal and

the stopword lists we use in subsection 5.1.3 “Stopword removal”.

• Patent’s title is rarely su�cient to describe its content and thus should be considered

together with the abstract. The “Description” �eld of a patent consists of segments
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that vary in relevance and are di�cult to separate. Since our data source does not

provide a segmented description, we use another textual �eld named“Claims” instead

as described in subsection 5.1.3.

• In patent-speci�c language there are a lot of established expressions that consist

of multiple words. This means it is not su�cient to only extract single-word key

terms, which is why we extract both unigrams and bigrams to characterize content

of patent documents and document clusters as described in subsection 5.1.5.

• Belonging to the same patent family constitutes the strongest kind of connection

between patents. In most cases, patents from the same family should be adjacent in

the semantic space. At the same time, families with diverging content exist where

this rule of thumb does not apply. We use proximity of patent families as a minimal

criterion which has to be met in the visualization space (see subsection 5.1.6 for

details).
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In the previous chapter we described how the interviews with the patent experts shaped

our understanding of the patent landscaping task. The knowledge gained in the process

combined with the ideas gained from state-of-the-art approaches allowed us to develop a

concept for the visualization. In this chapter, we �rst outline the visualization concept in

its �nal state. We then cover the decisions that led to this stage. Lastly, a brief summary of

the data processing steps needed to produce document representations is given. In the

next chapter (chapter 5), we present the separate components of the user interface of the

visualization and of the data processing pipeline in their implemented form and discuss

them in detail.

4.1. Outline

In this work, we deal with semantic exploration of documents. This refers to, on the one

hand, the challenge of displaying high-dimensional semantic representations of documents

visually. On the other hand, we support semantic interactions, which means that the display

adapts to the intentions of the user with regard to information density and level of detail.

These two topics are re�ected in our concept.

A simpli�ed representation of the visualization layout can be seen in Figure 4.1. The user

interface consists of four interconnected parts: scatter plot, histogram, detail view and

sunburst including breadcrumbs.

The scatter plot is the main area of the visualization where each patent document is

represented as a point. Visualization space within the scatter plot is, e�ectively, the high-

dimensional semantic space reduced to two dimensions. The user can navigate this space

by panning and zooming (see subsubsection 2.1.1.3 for details on panning and zooming).

Each document is labeled by its relevant key terms which are extracted as described

in subsection 5.1.5. To keep the point labels readable, a heuristic is applied for optimal

text density depending on the number of points within view and the zoom factor (see

subsubsection 5.2.1.1 “Zooming” for details). Additionally, points and labels increase in

size slightly to support the feeling of “moving into” the data. Hovering over a patent

makes its family connections, forward and backward citations to become visible as lines

of di�erent color and stroke type.

The documents are grouped into clusters that are characterized by a list of key terms.

The three most relevant key terms per cluster are always visible, and a full list of top 15

key terms is shown on demand when the user hovers over the cluster label. Moreover,
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4. Visualization concept

additional context for every single-word key term is provided by a list of words which

are semantically similar to the term and occur often within the cluster. We call those

augmenting terms and describe how they are generated in subsection 5.1.7.

There are three sizes of clusters produced by a hierarchical clustering algorithm. As

the user zooms into the scatter plot, large clusters are �rst substituted by medium-sized

clusters and then by small ones. This is an embodiment of the semantic zooming (see

subsubsection 2.1.1.4 for details on semantic zooming).

The histogram and sunburst views present metadata attributes from the dataset in an

aggregated form. They enable �ltering of the the data points within the scatter plot by

brushing and linking (see subsubsection 2.1.1.5 for details on brushing and linking). When

�ltering happens, a subset of the points in the scatter plot becomes grayed out, so that the

user can focus their attention on the remaining documents.

The histogram shows the temporal dynamics of patent activity represented by the number of

patent applications per year. A user can select a time interval by brushing . A corresponding

�lter is then applied to the data.

The sunburst is essentially a stacked pie chart. It shows the distribution of patents across a

given set of metadata attributes in the form of a hierarchy. Patent assignee, country and IPC

classes can be used as levels for the sunburst hierarchy by themselves or in combination

with each other. The user can navigate back and forth between the sunburst hierarchy

levels. If one sector in the sunburst is clicked, it becomes the current root node and its

children occupy the whole circle. Then, with a click in the middle of the sunburst the user

can go one hierarchy level up. Moreover, colors of points in the scatter plot correspond to

colors of sunburst sectors in their current state. Pie-chart-shaped glyphs appear in place

of points where there are multiple values per document, for example, multiple assignees.

The sunburst is complemented by breadcrumbs analogous to the ones seen in website

navigation. They show the currently selected sunburst node and its predecessors. After

the breadcrumb path the percentage of all documents that correspond to the currently

selected sunburst node is displayed.

The detail view o�ers the possibility to study one patent document thoroughly in accordance

with the principle of details-on-demand (see subsubsection 2.1.1.1 for details-on-demand).

The details for a patent become visible in the detail view when the patent is selected by

clicking or hovered over.

All views are coordinated through user interactions, which fall into tree groups: selection,

highlighting and resetting the current selection. Those are implemented in a consistent

way across all views: hovering with a mouse causes a highlighting of an object/group

which is a preview of the selection, clicking means selecting an object/group and clicking

on the background of a view resets the selection. We apply the visual information seeking

mantra (described in subsubsection 2.1.1.1) to allow e�cient exploration of the data.
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Figure 4.1.: A schematic representation of the visualization layout.

4.2. Ideation

In this section we justify the decisions that led to the creation of the visualization concept.

We then discuss the �rst iteration of the concept and the changes it went through during

the development.

4.2.1. Dimensionality of the visualization space

The dimensionality of the embeddings that we intend to visualize is much too high to be

plotted as it is. A lower-dimensional presentation of the data must �rst be obtained via a

dimension reduction technique. For that, a choice between 2D- and 3D-representation has

to be made. The latter provides an advantage in the sense that one additional dimension

of the data can be displayed. However, this gain comes with trade-o�s with regard to

usability.

Nielsen [76] discourages using 3D for user interfaces. He argues that while navigation in

a 3D space looks impressive for an observer, it requires more cognitive resources from the

user. First, current interaction techniques are not speci�cally adapted for a 3D space and

are cumbersome. Second, even if the user successfully masters the controls, they still have

to pay extra attention to navigating the 3D view in addition to navigating the information

space. The perspective itself introduces some usability problems. For example, remote

objects are often hidden by nearby objects or are too small to be readable. Additionally, it

might be di�cult to estimate the exact depth of an object or the distance between objects.
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4. Visualization concept

The plausibility of this line of reasoning has to be tested empirically. Westerman et al.

[110], Banchs [10] and Fabrikant [37] performed comparison studies of 2D vs. 3D with

regard to information retrieval tasks.

Westerman et al. evaluated searching for objects in semantic spaces with multiple options

for the amount of variance explained by all dimensions together. They found that perfor-

mance was generally poorer in three-dimensional condition with comparable amount of

variance to a two-dimensional condition. Moreover, they suggest that three-dimensional in-

terfaces “incur greater cognitive costs because of the demands of a more complex semantic

mapping, i.e. maintaining a more complex mental model of the information space”.

In works of both Banchs and Fabrikant, 3D interfaces received positive feedback and were

the participants’ preferred representation. In Banchs’ study, the participants reported that

the 3D platform allowed faster search, when in fact task completion times were lower for

the 2D platform. Notably, a higher percentage of tasks was accomplished successfully using

a 3D platform. Nevertheless, Banchs’ conclusions match Nielsen’s reasoning, namely that

2D interfaces are currently still more familiar to users. Banchs highlights the performance

of the visualization as one of the signi�cant limitations, which was also mentioned by

the participants. This limitation also applies to our work, since our goal is to enable

exploration of thousands of documents.

A notable exception from mentioned negative aspects constitute applications with en-

tertainment purposes or for rendering physical objects in their solid form, where using

3D is encouraged [76]. Moreover, all above-mentioned arguments only apply assuming a

pseudo-3D representation on a conventional two-dimensional computer screen. A Virtual

Reality (VR) application would de�ne its own interaction techniques that feel natural for a

3D space. Immersive data visualization in such environment using a VR headset has been

researched, for example in [33] and [44]. Moreover, using a VR environment implies a

technology stack that is better adapted to displaying complex geometry, for example large

point clouds. Unfortunately, the advantages of a “true 3D” approach are not utilizable on a

standard desktop workstation without extra hardware.

Ultimately, gaining one additional spacial dimension for representation is not worth the

increased inconvenience of navigating the information space. Therefore, we decided upon

a 2D representation for our prototype.

4.2.2. Choice of a suitable visualizationmetaphor for hierarchical data

Most of the patent metadata attributes are of relatively common data types like date, string

or list of strings. But there is one attribute with an uncommon type and that is the IPC

class (described in subsubsection 2.1.3.4), or more speci�cally, a list of IPC classes. IPC

classes are hierarchical in nature, which necessitates a suitable visual metaphor.

The treemap as shown in Figure 4.2 is a space-�lling type of diagram that was proposed

by Shneiderman [94] and has often been used to visualize hierarchical data. It uses nested

shapes, usually rectangles, to represent the parent-child relationship. A parent rectangle’s

space is divided into child rectangles along an axis that changes with each nesting level. Size
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4.2. Ideation

Figure 4.2.: Treemap visualization of the class structure in a programming library Flare.

Source: [101]

and color of rectangles represent various attributes of hierarchy nodes. In an interactive

version of a treemap, the user can select a node to examine its children in detail. The

available space is then redistributed to a subset of the hierarchy with the chosen node as

its top.

The sunburst type of diagram was inspired by the treemap. It utilizes a radial layout

in which child nodes are not contained in the parent nodes, but expand outwards from

the circle center. Size (angle) and color of the radial sectors can, just as with a treemap,

represent chosen attributes of nodes in a hierarchy. One can also navigate within the

hierarchy by choosing a node to serve as a starting point in the center.

[99] evaluated treemap and sunburst in their study. Their conclusion was that the sunburst

“more frequently aided task performance, both in correctness and in time, particularly

so for larger hierarchies. The explicit portrayal of structure appeared to be a primary

contributor to this bene�t.” Supported by this �nding, we initially chose to use a sunburst

for a fairly large hierarchy that is the IPC classi�cation. Later, an idea emerged that the

attributes represented by sunburst do not necessarily have to be of a hierarchical nature.

It is possible to “stack” multiple categorical attributes, for example country and assignee,

to produce subgroups/child nodes which are represented in a sunburst. Moreover, it is

also possible to combine categorical and hierarchical attributes to show, for example, a

distribution of IPC classes per country. In our visualization concept, we evaluate the

feasibility of using metadata attributes of various types in a sunburst diagram.

4.2.3. Initial concept and its evolution

The initial concept was inspired by a demonstration of coordinated views showing mock

data by [53]. This demonstration implemented brushing and linking (see subsubsec-

tion 2.1.1.5 for more on brushing and linking). The demonstration consists of a scatter

plot on the left, a histogram on the right and an additional representation of a time axis at

the bottom (see Figure 4.3).
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4. Visualization concept

Figure 4.3.: Demonstration of coordinated views that served as an inspiration for our

concept. Image source and demo: [53]

The Y-axis of the scatter plot corresponds to a numerical dimension in the mock dataset,

while the X-axis represents timestamps of data points. The histogram splits the values

of the numerical dimension into �ve bins. The element at the bottom of the demo is

essentially a rug plot, i. e. it denotes the X-positions of data points by tick marks that look

similar to tassels on a rug. A classic example of a rug plot can be seen in Figure 4.4.

Rug plots are used to illustrate the distribution of a variable along the axes, in this case the

time axis. Usually, a rug plot is drawn as a part of the original plot (scatter plot, line plot,

histogram, etc.), but in this instance it has been separated from the corresponding scatter

plot. The main purpose of the element is to enable selection of the data by brushing and

linking, which is why we and the author refer to it as the brush element. The histogram

values are recomputed in accordance with the updated selection. Moreover, when the

mouse is hovering over the histogram bins, corresponding data points are highlighted

both in the scatter plot and in the brush element.

The �rst iteration of our visualization concept (see Figure 4.5) was built on ideas borrowed

from the above-mentioned demonstration by [53].

Firstly, it was the idea of a main area that contains data points and is in�uenced by controls

on the edge of the display. Displaying distribution of patent applications over time and the

ability to select a time interval we consider especially useful for the patent landscaping

use case. Therefore, we decided to implement the same linking and brushing functionality,

yet considering the size of the data, a histogram with yearly bins was judged more �tting

to show the distribution over time.

Secondly, inspired by the ideas from [53] and [112], our UI concept was designed to show a

distribution of the dimensions of the data. In our case those attributes are mostly categorical,

and IPC classes are also hierarchical in nature. The wish to display multiple dimensions of
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4.2. Ideation

Figure 4.4.: A scatter plot is augmented with a rug plot. The rug plot shows distribution of

the data points with regard to X and Y coordinates. Image source: [89]

the metadata resulted in our choice of a sunburst chart in the place of a histogram in the

original demonstration. This decision was partly motivated by Wittenburg et al. [112],

who make extensive use of metadata in their faceted visualization (see Figure 2.8). They

show the assignee, country and application year as a vertical stack of blocks where the

width of a block corresponds to the number of patents with the corresponding attribute

value. Unfortunately, their approach results in a cluttered view and therefore lacks visual

scalability. We address the scalability problem via interactivity, i. e. through the fact that

it is possible to change levels of a sunburst chart 1) through navigating up and down

the hierarchy of attributes and 2) by choice of di�erent sets of metadata attributes to be

charted. For more details on our implementation of the sunburst chart see subsection 5.2.3.

The main area of our visualization was initially conceived as a fully connected graph.

Similarities between each pair of documents were supposed to correspond to the attraction

forces in the force-directed graph layout. When a part of the dataset would be eliminated

through �ltering, the corresponding graph nodes would disappear and the whole layout

would rearrange itself. E�ectively, the process would amount to computing and then

dynamically updating a t-SNE representation of the dataset. An interactive demonstration

of such a layout is presented in [100]. While it would certainly be of value to cluster

subsets of the data dynamically depending on the selection, performance considerations

outweigh the bene�ts. Therefore, a scatter plot with static positions of data points was

chosen as a viable alternative.
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4.3. Data processing

Figure 4.6.: Pipeline of processing steps for a single patent document

Initially, the concept included no standalone detail view. Instead, the idea was to display

some tooltip elements directly above the currently chosen patent and above patents related

to it. Type and amount of the information presented in the tooltips were supposed to

change depending on current selection and zoom level according to the principle of

semantic zooming. Upon further consideration it became clear that such tooltips would

cover a signi�cant portion of the scatter plot and would therefore render it unusable. The

decision was made to place the detailed patent information to the available space in the

lower-right corner.

The zoom control in the upper-left corner is an idea borrowed from various interactive map

interfaces. The red markings were supposed to show boundaries between di�erent detail

levels of hierarchical clustering. Ultimately, we implemented di�erent visual indications

that su�ciently support the feeling of “moving into” the landscape and back, so this part

of the initial concept was omitted. Other elements were utilized in the prototype without

changing much.

4.3. Data processing

Before a dataset can be displayed in a visualization, it has to be processed in a preparatory

step. Figure 4.6 and Figure 4.7 present an overview of the processing pipeline which is

necessary to produce data for the visualization. In this section, we give a brief overview of

the steps, which are covered in more detail in section 5.1.

First, each patent needs to be processed individually (see Figure 4.6). This starts with

splitting the textual part into separate words and removing stopwords. Stopwords include

general grammar-related words such as “is”, but also patent-speci�c vocabulary such as

“embodiment”. Then, for each word a 300-dimensional embedding is retrieved from the

word2vec model explained in more detail in subsection 5.1.1. A vector representing the

whole document is composed by aggregating the word vectors as a weighed average. Each

word is weighted with its IDF. Our purpose is to make semantic similarities and di�erences

41



4. Visualization concept

Figure 4.7.: Continuation of the pipeline after all individual patents have been processed

tangible, but numerical document vectors do not provide an explanation of why any pair

of documents are close or distant. Therefore, TF-IDF is also used to extract relevant key

terms per patent.

Second, after all document vectors and document key terms are computed, the processing

on the dataset as a whole can begin (see Figure 4.7). 300-dimensional document vectors

are reduced to two dimensions with t-SNE to �t the visualization space. This enables

hierarchical clustering, which splits the dataset into a number of clusters on three detail

levels, resulting in large, medium and small clusters. It is crucial for user’s understanding

to know what common semantic characteristics the grouped patents share. To cover that,

we extract the key terms per cluster. We take most relevant terms per document and count

them across all patents within a cluster. The terms with most occurrences are assigned to

the cluster to explain its thematic focus.

To aid the understanding of cluster key terms, for each single-word term we retrieve

similar words from the above-mentioned word2vec model. We then check whether those

similar words occur in more than 10% of the patents in the cluster. If that is the case, the

word is added to the list of augmenting terms for the given key term. For example, if we

try to augment the term plate, the word2vec model might retrieve base, spoon, mounting
as similar words because they often appear in similar contexts with plate. Assuming the

dataset is not about cutlery, spoon does not appear in many patents, but base and mounting
might. Therefore, base and mounting are the terms that provide context for the term plate
in the given cluster.

Herewith the processing of the textual part of the patent dataset is complete. As for meta-

data, some of the attributes can be used in the visualization as is, while others require special

processing (see subsection 5.1.3 “Parsing of metadata attributes” and subsection 5.1.4).

We elaborate on the processing of both textual and metadata parts of a patent dataset in

section 5.1.
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5. Implementation

After having de�ned the concept for our approach as described in the previous chapter,

we created a proof-of-concept prototype to evaluate our approach. In this chapter, we

describe both the visual part of the implementation and the behind-the-scenes processing

which serves to prepare the data to be visualized.

The code of the implementation can be found at https://github.com/gingergenius/

patent-embedding-visualization.

5.1. Implementation of the data processing

In this section we describe what data source we use. We then justify our choice of

programming languages and tools. Finally, we elaborate on the data processing pipeline

described brie�y in section 4.3.

5.1.1. Data source

Google Patents Public Datasets [111] is a data source available for public use on Google’s

BigQuery platform. It contains full-text patent publications for the US and bibliographic

data (abstract + metadata) for patents �led in the rest of the world (see subsubsection 2.1.3.1

for the description of data �elds per patent). The database has about 100 million patent

document records and is updated quarterly. While a quick examination of a sample of the

data revealed some format errors, probably resulting from optical recognition, most of the

text is readable. This data source is therefore su�cient for a quality analysis.

We extracted four separate datasets about di�erent technology domains from Google

Patent Public Datasets:

• Hair dryer contains approximately 250 patents. It was included in the codebase from

[3] and consists purely of patent applications from the US. Because of relatively small

size of this dataset, separate thematic areas within it are not clearly distinguishable.

• Video codec contains about 1600 patents. It was also included in the codebase from

[3] and consists purely of patent applications from the US. This dataset consists

overwhelmingly of patent families of di�erent sizes. Because of that, it is suitable

for evaluating how well the family similarities are handled by the semantic embed-

dings. However, because of our unfamiliarity with the topic of video encoding, an

alternative dataset was necessary for the evaluation.
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5. Implementation

• 3D printer with roughly 1000 patents was produced by us using a query adapted

from an existing patent landscaping report [1]. The full text of the query can be seen

in section A.2. The dataset consists of both US and non-US patents. Non-US patents

have only abstract text available while US patents have all textual �elds available,

of which we use the abstract and claims. We wished, however, to exclude e�ects

resulting from di�erent text lengths, but still make a considerable number of patents

available for exploration. Consequently, we additionally prepared the contact lens

dataset.

• Contact lens consists of ca. 2600 patents and was based on a query adapted from an

existing patent landscaping report [29]. The full text of the query can be found in

section A.3. We restricted this dataset to US-only patents so that we would be able

to work with both the abstract and claims for the whole dataset. The contact lens

dataset contains a variety of topics and is large enough for interesting exploration

tasks. This is why we chose it for our evaluation.

Additionally, FIZ Karlsruhe kindly provided one more dataset extracted from the World

Intellectual Property Organization (WIPO) database on the topic of diesel engines (ca. 4500

patents). The patents in it had both abstract and claims available, but no citation or family

information. Moreover, multiple languages were present in the text and everything beside

English had to be �ltered out. This dataset was necessary to check how the approach

performs on large data. Unfortunately, it could not be used for the evaluation with experts

because of the missing metadata attributes.

Many existing pretrained models for word embeddings are based on general vocabulary.

Language and especially vocabulary in patent documents deviate signi�cantly from general

speech, which must be taken into account. Abood et. al [3] provide a word2vec model

trained on 5.9 million patent documents. It contains a 300-dimensional embedding for each

of 110239 words in its vocabulary. We make use of this model for our semantic analysis to

compute document embeddings.

5.1.2. Choice of technology

Python [83] is chosen as the programming language for preparing the data for visualization.

It is an extremely widespread language in the �eld of machine learning with a great number

of libraries available. Of those libraries, Tensor�ow [103] in combination with Keras as

a high-level Application Programming Interface (API) [55] is a state-of-the-art library

for neural networks. In fact, [3] used them in their approach for data preprocessing and

for creating the word2vec model we use. We based our approach on their codebase, so

Tensor�ow and Keras were also inherited by us. Other widely used Python libraries we

take advantage of are Numpy [79] and SciPy [92] for scienti�c computing and scikit-learn

for machine learning. Finally, JupyterLab [54] with an IPython [50] kernel is selected as

the development environment of choice because of ease of quick prototyping.

For the interactive visualization itself, information visualization frameworks such as

Axiis [9], Bokeh [15], D3.js [17], Altair [6] and several others were considered. For the

given problem, creating both custom user interaction techniques and custom visualization
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layouts consisting of new forms of charts is required. Unfortunately, most visualization

frameworks do not support this. Instead, they restrict the developer’s alternatives to pre-

determined chart types. Coordinated interactions between views are either not supported

or very limited. Consequently, D3.js is chosen as the visualization framework with most

�exibility. It requires a hands-on, low-level approach to programming, where the developer

has to manually de�ne SVG shapes and bind their attributes such as position or color to

the data. However, this is exactly why D3.js provides the necessary level of control for the

implementation of our prototype.

5.1.3. Data preprocessing

In subsection 5.1.1, we mentioned multiple datasets that were prepared for the visualization

in the course of this work and the queries used to produce them. In this section, we describe

the preprocessing steps that are executed for each patent document within a retrieved

dataset.

The diesel engine dataset was, unlike the others, not derived from Google Patents Public

Datasets, so it required some minor additions to the pipeline. The data structure was

slightly di�erent and therefore had to be transformed for compatibility. Moreover, the

patent texts had to be cleaned as there were some Extensible Markup Language (XML) tags

present that we removed. Additionally, the diesel engine dataset included a non-negligible

amount of text in French and German within the patent claims. To �lter out non-English

text, we split the text into sentences and detected their language using the Python library

langid [68]. This language detection tool utilizes a multinomial naive Bayes classi�er

trained on n-grams to reliably produce a robust result independently of domain and text

length [67].

The interviews with the patent experts indicated that title, abstract and claims are the most

valuable textual parts of a patent document for understanding the described invention.

Other textual parts, such as background art or description of �gures, do not contribute

signi�cantly to the essence of the invention. Therefore, for all further steps we concatenate

the patent’s title, abstract and, when available, its claims. This way, we maximize the

length of relevant textual content taken into account. We do not consider the three above-

mentioned textual �elds separately for sake of simplicity. However, for future work it

might be worth examining how di�erent textual parts of the same document compare to

each other when semantic methods are applied to them separately.

Tokenization
The proper preprocessing starts with tokenization, which means splitting the text into

tokens. Tokens in our case are not characters or sentences but words since we use word

embeddings from a pre-trained word2vec model. We use a Tokenizer class from Keras

which replaces all punctuation except the apostrophe character with spaces. It then

translates the whole text to lowercase and splits the text into words divided by spaces.

The last step is replacing the numbers that occur separately or as parts of a word with a

_NUMBER_ token.
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Stopword removal
After we have successfully tokenized the data, the next step in the pipeline is the stopword

removal to increase the amount of meaningful information per document. We use two

stopword lists: one is a general list of English stopwords from Natural Language Toolkit

[13] and the other one is a patent-speci�c list kindly provided by FIZ Karlsruhe. The latter

list includes words like “comprised”, “abovedescribed’ and “obtained” which often appear

in patent texts and do not contribute to the meaning. Words shorter than 3 characters or

longer than 50 characters are eliminated as well. Finally, when the number of meaningful

words per patent becomes clear, we remove all patent documents that contain less than 30

words. The amount of the remaining text at this stage varies between the datasets, but in

all cases it followed a left-skewed distribution with a mode of approximately 250 words

and an average of 500 up to 1000 words. Distributions for diesel engine and contact lens

can be found in Figure A.3.

Parsing of metadata attributes
This step is independent of the processing of textual content, but instead prepares the

metadata attributes for visualization. Metadata attributes such as references, assignees and

IPC classes are included in the data as a string made up of comma-separated values, so we

split the list to get each separate value. For IPC classes, we compute a list of unique codes

for all levels of the IPC hierarchy per document (see Table 2.1 for description of levels).

The assignee names present a challenge with regard to the data quality. Institutions’ legal

names are written out in a very inconsistent way throughout the data. There are often

multiple variants with parts of the name which are abbreviated in some cases but not in

others. Di�erent branches or subsidiaries of the same company are also often present.

Lastly, there are errors and misspellings as well, partly as a result of OCR artifacts. This

last point applies to assignee names signifying private persons as well as companies.

We would like to be able to reliably group patents by their assignees. For this, we merge

similar assignee names with fuzzy string matching, which is a technique of �nding strings

that are approximately the same. We use the Python library FuzzyWuzzy [28], which is based

on Levenshtein distance between two sequences of characters. The Levenshtein distance

is a measure of similarity composed of the number of character deletions, insertions or

substitutions required to transform one string into another [64]. The value returned by

the library is not the absolute distance but a similarity percentage that takes string length

into account. We use a simple similarity threshold of 88% to determine which assignees to

combine into one entry. The threshold value was chosen empirically to provide su�ciently

good results. Fuzzy string matching allows us to reduce the number of unique assignees

in the dataset by 10-15%. However, false positives (match detected where none exists)

and false negatives (existing match not detected) could not be completely excluded from

among the matches.
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5.1.4. Sunburst hierarchies

As we would like to use the sunburst control for arbitrary combinations of metadata

attributes, corresponding hierarchical aggregations need to be computed. For that, we

consider IPC class, country, assignee by themselves and also all possible permutations

(orderings) of those attributes of size two. We do not consider stacking all three attributes

as sunburst levels because of space restrictions and because the groups after the third

division would become very small. However, it would only be e�ective for larger datasets

and documents with multiple non-hierarchical metadata attributes.

For metadata attributes, we distinguish between a single value per document (e. g. country),

a list of values per document (e. g. assignee) and a hierarchical code such as an IPC code or

a list of such codes. This allows us to adjust how the aggregation is computed depending

on the type of the attribute. For value attributes, we can just group all documents by their

unique values of the corresponding attribute. For list attributes, a single document can

be referenced in multiple hierarchy nodes, so it should be counted multiple times. Code
attributes are essentially multiple list attributes in a certain order (section, class, subclass,

group, subgroup) with one extra condition: a subclass from one IPC code (for example,

N04N) can only count as a child of its own class (N04) and not some other class (B02).

As mentioned in subsubsection 5.2.3.1, because patents simultaneously belong to multiple

nodes, a total number of patents in the hierarchy may exceed the size of the dataset. In

this case, the values of all nodes are normalized so that they yield 100% when combined.

The normalization starts from the shallowest hierarchy level and then goes into the depth.

5.1.5. Key term extraction

We extract relevant key terms per document so that the user can get a �rst impression

of the content of a document with just a quick glance. For this extraction we use TF-IDF

which is a widely used weighting technique to determine most important words or phrases

in a corpus. Essentially, the more often a phrase occurs in a document, the most important

it is for this document (Term Frequency (TF)). At the same time, the more often the same

phrase occurs throughout the whole document corpus, the less explanatory power it has

(IDF).

For our data, unigrams (single words) and bigrams (two-word phrases) produce most

meaningful results. To exclude extremely rare terms and spelling mistakes, only phrases

that occur in more than ten documents are considered for their relevancy. Additionally,

we also explicitly exclude terms appearing in over 20% of the corpus from consideration

because they are unlikely to result in an information gain. For each patent, we save a list

of ten terms that were most highly ranked by TF-IDF for visualization.

5.1.6. Embeddings

Document vectors
The purpose of this stage is to produce a representation of a document based on the words
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it consists of. The input of this step is a sanitized list of words per patent, which is a result

of the tokenization and stopword �ltering operations described in subsection 5.1.3. We

compute each document embedding as a weighed average of the embeddings of words the

document contains. 300-dimensional word embeddings are retrieved from the pre-trained

word2vec model provided by [3]. The weighting factor for each word is its IDF, which

at this point had already been computed as described in subsection 5.1.5. Adjusting the

weight of a word by its frequency in the corpus takes the varying importance of separate

words into consideration and therefore helps capture themes in the dataset in a better way.

Weighting with IDF has been successfully used for computing semantic similarity [114]

[74], [7] and for sentiment analysis [30]. In our case, we found that compared to non-

weighted word averages, weighted word vectors result in a clearer separation of clusters

after dimension reduction compared to non-weighted word vectors. The documents

were more likely to gather into dense groups instead of being distributed uniformly. A

comparison of weighted and non-weighted word averages can be seen in Figure 5.1 and

Figure A.2.

Dimension reduction
Points in a very high-dimensional space are not suitable for an understandable visualization.

For the purposes of visualization we need to transform document vectors into a two-

dimensional space so that any patterns in the data become recognizable.

We compared multiple dimension reduction techniques such as metric and non-metric

MDS [80], Isomap [102], Principal Component Analysis (PCA) [48], Uniform Manifold

Approximation and Projection (UMAP) [69] and t-SNE (see subsubsection 2.1.2.2). In the

interviews, patent experts emphasized that patents from the same family possess a great

degree of semantic similarity and one should expect them to be placed closely to each other

(see subsection 3.2.5). Handling patent families correctly is a minimum requirement for a

suitable dimension reduction technique. For this reason, the comparison was conducted

on the video codec dataset since it chie�y consists of patent families of di�erent sizes.

Among the tested dimension reduction techniques, t-SNE was the only one in which

families were clearly identi�able and separated from their surroundings. Figure 5.2(a)

shows numerous “clumps” of closely situated points. Further inspection showed that they

mostly belonged to the same family, even when the family information present in the

dataset was incomplete and did not explicitly list a connection. In the majority of other

cases, the patents within the groups belonged to the same assignee, dealt with the same

invention and were therefore textually very similar (see Figure Figure 5.2). When tested

with other datasets, t-SNE resulted in easily identi�able accumulations of points distinctly

separated from each other by empty areas. Other techniques were apt to clump the points

into one big area or distribute them uniformly without de�ned groups. Large sparse zones

consisting purely of apparent outliers were also likely to appear. For comparison, see

Figure A.1 for the results from other dimension reduction methods.

As t-SNE tries to retain distances from the high-dimensional space in the lower-dimensional

representation (see subsubsection 2.1.2.2 for details), a suitable distance metric has to be

used. Distances in high-dimensional spaces behave in a non-intuitive way and currently
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(a) Non-weighted average

(b) Weighted average

Figure 5.1.: A comparison of document vectors computed with and without IDF weighting.

Diesel engine dataset. 49



5. Implementation

(a) The result of the dimension reduction by t-SNE. The points are plotted in the same color and size to make

close groups visible

(b) Same coordinates as above, displayed in the interactive prototype. The patents from the same assignee are

drawn in the same color, which shows that groups constitute patent families

Figure 5.2.: The result of dimension reduction by t-SNE on the video codec dataset.
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there is no consensus on the “best” metric for all possible applications. We experimented

with multiple distance metrics such as euclidean distance, cosine similarity and manhattan

distance. The local structure of the data seemed stable independently of the used metric,

only the relative placement of larger groups changed. Ultimately, we settled on cosine
similarity, which is widely used in NLP applications. For two vectors A and B, cosine

similarity is measured as the cosine of the angle between them. It can be derived easily

using a dot product as shown in Equation 5.1.

A · B = ‖A‖‖B‖ cosθ (5.1)

As a result of this stage, 300-dimensional document vectors have been transformed into

two dimensions for visualization using t-SNE with cosine similarity as a distance metric.

5.1.7. Hierarchical clustering

At this step we have 2D coordinates of all patents, but it is not immediately clear to the

user why they are placed in a certain way. To explain the semantic similarities within

groups at multiple levels of detail, we use agglomerative (bottom-up) hierarchical clustering.

Essentially, is a process in which every data point is considered its own cluster at the

beginning. Those singular clusters are then merged into their nearest clusters one-by-one,

and in the following iterations, clusters join the adjacent clusters until the whole dataset

is joined into one single cluster. The changes are tracked throughout the algorithm within

a distance matrix, in which pairwise distances between any two clusters are stored. The

process constructs a tree called dendrogram which re�ects the structure present in the

distance matrix.

An example dendrogram is shown in Figure 5.3. Points E and F are the nearest pair of

points in the dataset, so they are combined to a cluster EF on the �rst iteration of the

algorithm. The same thing happens to A and B on the second iteration. Point D and

subsequently point C join cluster EF and �nally, cluster AB and cluster CDEF are merged

to create a root node of the hierarchy. Since it is a tree structure, there is no single correct

number of clusters in a hierarchical clustering. After every merge one can decide to make

a “cut” as shown by the orange line. At this speci�c level of detail, the dataset is then

divided into a number of clusters equal to the number of dendrogram lines the cut crosses.

A distance between any two points is clearly de�ned in a 2D space, but multiple de�nitions

exist for distance between two clusters. SciPy’s linkage method, which we used as an

implementation of the hierarchical clustering, o�ers various options for calculating the

distance between two clusters:

• single (Nearest Point Algorithm) uses the minimal distance between points from

di�erent clusters

• complete (Farthest Point Algorithm) uses the maximal distance between points from

di�erent clusters
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Figure 5.3.: An example of dendrogram used in hierarchical clustering and its input data.

Image source: [14]

• average uses d(u,v) =
∑

ij
d(u[i],v[j])
(|u |∗|v |) where u and v are the two clusters and |u| and

|v| are their respective cardinalities

• weighted uses d(u,v) = (dist(s,v) + dist(t,v))/2 where clusters s and t were previ-

ously combined to form u and v is the remaining cluster

To identify the best algorithm, we computed a Cophenetic Correlation Coe�cient [84]

for all above-mentioned algorithms on all �ve of our datasets. The coe�cient compares

(correlates) the actual pairwise distances of all data points to those implied by the hier-

archical clustering. The closer the value is to 1, the better the clustering preserves the

original distances. The method average consistently produced higher values of Cophenetic

Correlation Coe�cient across the datasets, which made it our preferred method.

Besides clustering in 2D space after the dimension reduction, we experimented with

clustering in the original 300-dimensional document space as well. The resulting structures

were not preserved well during the dimension reduction. The clusters were not clearly

divided, which means it was impossible to draw a clear boundary between clusters. This led

to problems with placing cluster labels as described in subsubsection 5.2.1.2. We therefore

prefer clustering data in the same space where it is visualized. This is due to a compromise

that has to be made between representing the structures in the original high-dimensional

space accurately and keeping the end result su�ciently simple for human cognition and

therefore interpretable.

An example of a resulting dendrogram is shown in Figure 5.4. We manually chose three

levels of detail for each dataset according to consistent principles. We refer to the levels of

detail in terms of large, medium and small clusters.

• The number of large clusters should be between 3 and 7 depending on the structure

of the dataset. At this level the most general topics in the dataset should be visible.

• The number of medium clusters should be between 10 and 20, so that every large

cluster is divided into approximately 3 to 4 smaller topics.

• The number of small clusters should be between 40 and 70, so that every medium

cluster is divided into 3 to 4 parts. This �nest level of detail is aimed at summing up

patent families and very closely related inventions.
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5.1. Implementation of the data processing

Figure 5.4.: Dendrogram computed on the contact lens dataset. The cuto� values for three

detail levels are shown in black.

An example separation of a dataset into large clusters is presented in Figure 5.5.

To make the similarities between patents within a cluster explicit for the user, we sum-

marize key terms from documents within the cluster to a list of cluster key terms. As

described in subsubsection 5.2.1.1 “Labels”, patent documents are characterized by a list

of the 10 most relevant key terms as computed by TF-IDF. Across the cluster, we count

the occurrences of each term within those 10 document terms. The 15 most frequently

occurring key terms are considered most relevant for the given cluster. This approach

results in more general and common key terms for large clusters, with the speci�city

growing with each level of detail.

As described in subsubsection 5.2.1.2, we augment cluster key terms with similar words

to put them into context and avoid ambiguity. For that, we extract the 10 most similar

words from the word2vec model used previously as candidates. Most similar in this case

means that the cosine similarities between word embedding vectors are maximal. This

is the most computationally expensive step in the pipeline since the similarity has to be

computed for every single word in the model’s vocabulary and for every cluster key term.

If a candidate appears in more than 10% of documents in a cluster, it is considered an

adequate enhancement for the given cluster key term. Since the word2vec model we use

only takes single words into account and does not contain embeddings for multi-word

units, bigrams cannot be augmented this way.
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Figure 5.5.: The most abstract detail level (large clusters) of a clustering on the contact lens

dataset. Each cluster has its own color. The circles represent cluster centroids

and their radius corresponds to the number of documents within the cluster.
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Figure 5.6.: Proportions of rows and columns in the dynamic layout.

The interviews with the patent experts showed that during a patent search, they describe

the concept they search for in di�erent levels of abstractness, e. g. umbrella terms and

narrower terms (see subsection 3.2.2 and subsection 3.2.4). To aid the user’s understanding

of key terms we attempted to produce generalizations of cluster key terms which are called

hypernyms. For example, chair is a kind of furniture, so furniture is a hypernym for chair.
These kinds of relationships between words in the English language have been manually

captured in the WordNet database [4]. Our attempt resulted in very similar hypernyms

for all clusters that were too general to be useful, for example speed, base, length, element,
metal, gas, velocity, constant, concentration. For this reason, we did not pursue this research

direction further.

5.2. Implementation of the user interface

In this section, we describe each component of the proposed visualization layout separately.

We examine how the dimensions of data are mapped to visual attributes. We then describe

how the views are coordinated through the way they react to user interactions.

A schematic representation of the visualization layout is shown in Figure 4.1. The layout

consists of two columns and each of them is split into two rows as shown in Figure 5.6.

The �rst column takes 75% of the screen’s width and contains the scatter plot (80% of

the total height) and the histogram (20% of the total height). The second column �lls the

remaining 25% of the total width and contains the sunburst with breadcrumbs in the top

two-thirds and the detail view in the bottom third. In the early versions of the prototype,

the width and height of the layout’s elements were �xed. Later, we switched to relative

sizes to become independent of the exact screen dimensions. Nevertheless, the prototype

is best viewed within a range of resolutions from 1600x900 to 1920x1080 pixels on a screen

diagonal from 14 to 24 inches. The main restriction to arbitrary scalability are the font

sizes used in the user interface. With resolutions smaller than mentioned above the overlap

between text elements is likely to harm readability. With larger resolutions text and point

elements will be too small, but it can be alleviated by magnifying the whole web page.

55



5. Implementation

5.2.1. Scatter plot

The scatter plot is the main area of the visualization and is complemented by all other

elements: histogram, sunburst + breadcrumbs and detail view. It represents each patent as

a point with coordinates that correspond to its position after dimension reduction with

t-SNE. Additionally, points are grouped into clusters, each of which is indicated by its key

terms. In this subsection we discuss the depiction of single patents �rst. We then proceed

to describe cluster representations.

5.2.1.1. Points

Each data point possesses multiple visual dimensions: position, size, color. In the following

paragraphs we describe how they are mapped to dimensions of the data. As mentioned

before, the position corresponds to the coordinates in the semantic document space reduced

to two dimensions. Size and color are also utilized (see “Size”, “Color and glyphs”). They

are complemented by connections between patents (see “Connections”). Lastly, each point

is labeled with the top key terms of the corresponding patent.

Size
The size of a point depends on the number of forward and backward citations the patent

has, all summed up. The radius of the circle varies between 3 and 9 pixels when no zoom

is applied. The exact scale used in this mapping is dynamic and dependent on the dataset.

The minimum size always corresponds to the lowest number of citations found per patent

in the dataset and the maximum size to the highest number. The interpolation between

the two values is linear. It is not uncommon for a patent to list hundreds of citations. With

this relative scale, we make sure that the size di�erence is always obvious to the user,

regardless of whether the maximum number of citations per patent in the current dataset

is 20 or 900.

Color and glyphs
Color of the points is a dynamic variable which is de�ned by the current state of the

sunburst’s hierarchy. Speci�cally, whenever the user navigates to a di�erent sunburst

node, colors are newly assigned for its child nodes. Patents that are outside of the scope

of the current node are then completely hidden. The remaining points in the scatter plot

obtain their color depending on their value of the corresponding metadata attribute.

Earlier iterations of the prototype did not include a solution for displaying patents with

multiple values of the given attribute. Instead, they were assigned to the color of the least

frequent attribute value. The intuition behind this solution was to provide visibility to a

group that otherwise would be less noticeable, especially if those least frequent values

only occur in combination with others.

Eventually, we implemented glyphs as a solution for the issue of multiple attribute values.

“A glyph is a graphical object designed to convey multiple data values” [108]. Usually,
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glyphs possess multiple visual attributes such as color, position or length, which are

mapped to di�erent dimensions of the data. In our case, however, they are restricted to

depict only one dimension of the data, which can acquire one or more values.

Our proposed glyphs are depicted in the form of pie charts with a number of slices

corresponding to the number of attribute values. The slices are equally sized since all

values of a given attribute are equally meaningful. Since we wanted to keep the patent

representations uniformly shaped, a circular multi-colored pie chart was an obvious

enhancement of a single-colored circle. The idea was also partially inspired by [34], where

pie glyphs show the distribution of topics within a document.

Naturally, the question about legibility of pie charts arose. If they were to contain too many

slices, they would be impossible to decipher. To check this, we computed the distribution

of how many di�erent values patents included for assignees and IPC classes (see Figure 5.7).

The values presented were computed on the contact lens dataset which is described in

subsection 5.1.1, but they do not vary greatly between datasets.

On average, there are 1.56 assignees per patent, with an overwhelming majority of patents

having only one assignee. IPC classes on the �rst glance look unsuitable for a pie chart

with an average of 4.92 IPC classes per document and a non-negligible amount of patents

with more than 20 IPC classes. However, these numbers refer to unique IPC classes

throughout the whole IPC hierarchy. In reality, only one IPC level is visible at one time, so

we examined distributions after the �rst subdivision and before the last one to see how

many classes truly have to be shown simultaneously. On the subdivision level with single

IPC letters (e.g. A or B) there is an average of 1.87 values per patent, and on the group level

(e.g. A21B1 vs. A21C3) it is 3.34, respectively. This shows that in total, there is relatively

little branching throughout the IPC hierarchy with most of it happening on the last level.

This means that the number of slices in a pie chart on each speci�c IPC level is not too

high for intelligibility.

Using glyphs results in continuous areas with the same glyph appearance (see Figure 5.8),

which allows the users to make generalized assumptions about the content of those areas.

We evaluate how well glyphs ful�ll their purpose in subsubsection 6.2.1.2. For simplicity,

we refer to glyphs as points whenever the multiple attribute values are not essential to the

current discussion.

Connections
Three kinds of possible connections between any pair of patents exist (see Figure 5.9).

As described in subsubsection 2.1.3.2, patent families describe the same invention. Being

the same family is the strongest indication of a semantic similarity, which is why families

mostly are represented by close-knit groups of points in our semantic approach. We show

connections to other family members with black solid lines.

Citations are another kind of possible connection between patents. As opposed to family

connections, they do have a direction. Conventionally directed connections are shown

with arrows, which is inapplicable in our case. A single patent might have tens to hundreds

of citations, which would result in a very cluttered representation if arrows were used.

57



5. Implementation

(a) Assignee (b) IPC class

(c) First letter of IPC class (section) (d) IPC class on group level (4-6 characters)

Figure 5.7.: The distribution of the number of values per patent for assignee and IPC class.

Figure 5.8.: Areas consisting of same kinds of glyphs on the contact lens dataset.
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Figure 5.9.: Various kinds of connections between patents.

Moreover, it is useful to be able to see at a glance the areas where the majority of citations

come from and go to. As described subsubsection 2.1.3.3, if a new patent application

cites an existing patent, it means the inventors are aware of the prior invention and see

the novelty in their invention with regards to the prior invention. This is called forward
citation, which we show with a yellow dashed line. The opposite situation, i. e. from the

point of view of an older patent, is a backward citation shown with a blue dashed line.

We chose complementary colors (blue and yellow) because they signify exactly opposite

things - opposite directions of citation. Yellow is more of an “active” color, which signi�es

that currently selected patent explicitly mentions the citation. Blue has a more “passive”

role, which in our case corresponds to the fact that backward citations are not directly

contained in the data, but are instead computed by reversing the connections. Notably,

yellow and blue both can be easily seen on black background. It so happens that some

patents are listed as both family members and citations, so dashed lines are designed to

overlay the black lines and still be clearly distinguishable. Additionally, a dashed line

is usually perceived as less important than a solid line, which correctly represents the

domain knowledge in this case.

Connections appear while the user is hovering over a patent with a mouse. The user can

also choose to select a patent by clicking on it. In this case, the connections persist until

the user switches their selection to another patent or resets the selection completely by

clicking on the background area of the scatter plot. The selection mode allows the user to

highlight a patent of choice and examine its citations and family by hovering the mouse

over them. This interaction implements the principles of focus plus context (explained

in subsubsection 2.1.1.2) and details on demand (explained in subsubsection 2.1.1.1). The

chosen patent is in focus and its citations and family provide a more detailed representation

and also show some context, i. e. what prior art the patent refers to.

Labels
Each patent has a corresponding label that shows up to three top key terms as extracted by

the TF-IDF algorithm (see subsection 5.1.5 for details). Information density is an essential

characteristic of any user interface that directly impacts usability. To avoid cluttering the

visualization space, we use use a heuristic to determine exactly what labels are shown and

how many top key terms they include.

Our experiments showed that about 250 labels (consisting of one key term) for points can

be shown simultaneously and remain mostly readable. So we decided to limit the labels

to a maximum of 250. This means that some points are shown unlabeled until the user
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restricted the area they are interested in to under 250 patents. After each operation, such

as �ltering, panning or zooming, we count the points that are currently situated within

the viewport. We then divide that amount by 250. If the resulting quotient q is over 1,

we round it up to the next integer to get n. In this case, every nth point is labeled with

its top key term. For example, if 980 patents are currently visible, every 4th of them gets

labeled, and three-fourths of patents are shown with just a point without a label. If q is

between 0.7 and 1, every patent in view is labeled with its top key term. Usually, this

happens during the examination of small clusters (see subsection 5.1.7 for explanation of

three cluster sizes), when the user’s attention shifts to a single document. For values of q
between 0.3 and 0.7, there is su�cient space for top two key terms and for values under

0.3 for three top key terms for every patent.

The above-mentioned value intervals are chosen to maintain a visual balance between

points and their labels and to minimize overlapping text. If the user wishes to examine

further key terms beside the top three ones, they have the possibility to inspect them in

the detail view (described in subsection 5.2.4) along with complete information about the

patent. We provide the possibility for the user to comprehend the distribution of points

and their colors without distraction before starting with the detailed analysis. To support

this, we make all point labels invisible when the zoom level is less than 1.15.

The varying number and length of patent key terms result in a dynamic level of detail.

It is one of our multiple embodiments of the semantic zooming mechanism (explained in

subsubsection 2.1.1.4). The evaluation (see subsubsection 6.2.1.5) showed that our heuristic

resulted in a readable representation for multiple levels of detail.

Zooming
Zooming causes a multiplicator to be applied to the point size. The multiplicator value

varies from 1x to 1.7x and is interpolated linearly depending on the exact zoom level. The

maximal possible zoom level is 10, but after it reaches 3, points and text in the scatter

plot stop increasing in size, so further magni�cation only increases the distance between

the points. Thus, we intentionally increase the amount of white space to allow the user

to focus their attention on speci�c patents. Also, at this detail level, the documents are

accompanied by a list of key terms which need to be readable. Improved readability is also

a reason for the additional white space.

The lines representing families and citations also change subtly with the zoom level. Their

width changes from 2 to 3 pixels to stay in proportion with the point size.

To allow users to quickly go back to the overview of the dataset, we added a “Reset zoom”

button in the latest iteration of the concept. This way, the users are able to go set the

zoom level back to 1 with one click instead of turning the mouse wheel two to seven

times depending on the size of the dataset. We would like to mention that navigating to

the maximum zoom level is rarely, if ever, continuous. The user pauses to analyze the

currently presented information to steer their further examination. Therefore zooming

into the dataset is not as cumbersome as zooming out without using the reset button

would be.
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5.2.1.2. Clusters

As described in subsection 5.1.7, we cluster patents hierarchically based on their distance

in the 2D space, i. e. their proximity in the scatter plot. From the computed agglomerative

clustering we pick three speci�c cluster con�gurations, which provides us with three

levels of detail. We refer to them as large, medium and small cluster sizes.

Clusters are represented in the visualization by their key terms. Since we are essentially

generating a themescape, we considered a solution from the domain of map drawing. On

a map, labels for areas such as forests, deserts or lakes are often not straight but bent to

match the shape of the area. We tried to replicate this behavior by approximating the

points in the cluster by a polynomial curve. The cluster text was supposed to stretch and

follow the curve to make the shape of the cluster visible. The result of our attempts is

presented in Figure 5.10.

At that stage, we were computing the whole clustering based on distances in the high-

dimensional document space. With this approach, dimension reduction to 2D resulted in

elongated cluster shapes which, as we initially hoped, would be easy to approximate. At

the same time, elongated clusters were not separated clearly and often overlapped, which

signi�cantly reduced the quality of the approximating curves and the readability of text

placed on them. It was also di�cult to adjust how the text should stretch depending on

the length of the key terms and the length of the curve. For these reasons, we decided not

to pursue this direction of research further. Notably, [98] uses the professional Geographic

Information System (GIS) software ArcGIS extended by the Maplex labelling engine

to place labels on their themescapes with great success (see Figure 2.2 for an example

themescape). This speaks strongly for the potential of applying map drawing methods for

non-geographical data.

In the current embodiment of our approach, each cluster is represented by its top three

key terms situated exactly in the middle of the cluster. To place them in a compact way,

we show the most relevant term in the middle and complement it by the second and

third terms above and below it. The font size of the top term is bigger by three pixels

to emphasize its importance according to principles of visual hierarchy. Moreover, both

visibility and font size di�er between large, medium and small cluster labels depending on

the current zoom level (see Table 5.1).

Cluster level Font size, pixels Visible at zoom level

large 23 to 28 <1.6

medium 18 to 22 1.5 to 2.1

small 14 to 18 2.0 to 3

Table 5.1.: Font sizes for di�erent cluster sizes

As the user zooms into the scatter plot, bigger clusters are replaced by smaller ones. This

continues until the zoom level of 3, when the cluster labels disappear completely allowing

the user to examine speci�c patents e�ciently. Notably, the visibility intervals overlap
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(a) Black text with white contour (b) Gray text without contour

(c) Gray text with white contour

Figure 5.11.: Font color and contour increase readability of cluster labels.

slightly. This means that brie�y, both large and medium or both medium and small cluster

labels are seen. The idea here is to make the transition between di�erent levels of detail

smoother. The font size of cluster labels increases slightly while zooming in. As mentioned

before, points themselves and connections between points also increase in size. This

behavior is implemented in a consistent way throughout the scatter plot to support the

feeling of “moving into” the dataset.

To optically balance out the increasing line thickness as the clusters labels become larger,

we vary the font color slightly. Labels for single patents are black, so we made little

cluster labels a few shades lighter, which yields a dark gray. By analogy, medium and large

clusters were also assigned gray color slightly lighter than at the corresponding previous

level. A comparison of black and our lighter alternative for large cluster labels can be

seen on �gures 5.11(a) and 5.11(c). Additionally, the distinction between cluster terms and

patent terms is accentuated by using unequal colors. To strengthen the e�ect and increase

readability on a colorful background, we draw a thin white contour around the cluster

labels (compare �gures 5.11(b) and 5.11(c)).

Some of the cluster key terms are assigned a list of augmenting words which provide

context for occasionally unclear or ambiguous terms (see subsection 5.1.7 for details on

augmentation). This information is not of a high-priority, thus we only display it on

demand. A tooltip with a list of augmenting words appears when and only when the

user hovers over the corresponding term with the mouse. No tooltip is shown when the
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Figure 5.12.: Tooltip with augmenting words below and tooltip with all cluster terms above

given term possesses no augmenting words. Naturally, there has to be a clear indication

of what term out of three possible presented is enhanced with a tooltip. There was no

easy technical possibility to show the tooltip on the side of the corresponding term, so we

placed it underneath the cluster label. We make the current state of the interface explicit

by highlighting in wine red color the term which the tooltip currently corresponds to as

shown in Figure 5.12.

Since we actually computed the top 15 key terms per cluster but had only been showing 3

of them so far, we decided to display the remaining 12, too. For that purpose, in the latest

iteration of the prototype we added another tooltip, this time above the three terms, with

distinctly di�erent appearance to avoid any confusion. The interaction follows the same

pattern as with the �rst tooltip, i. e. it is displayed on mouse hover.

5.2.2. Histogram

The histogram view shows the number of submitted patent applications per year in the

form of a bar chart (see Figure 5.13). It is, in fact, a histogram in which the bin size equals

one year. It allows the user to involve the temporal dimension into their perception of

the data. With a brushing interaction, the user can �lter out the data outside the selected

interval. The selected window can be moved or expanded with the help of the handles on

either side. With a click on the background of the histogram the selection can be reset. On

the X-axis, only every second year is labeled to avoid overcrowding. To compensate for

that, the years of a current selection are shown in the upper-left corner. It helps eliminate

the need for mental computations as the user chooses a time interval of interest.

The values in the histogram are computed based on the current top node in the sunburst.

Initially, the top node corresponds to the whole dataset, and then switches to its speci�c

portions as the user focuses their attention on speci�c metadata attribute values. The

scale of the Y-axis of the histogram is adjusted dynamically as its maximum value changes.

Additionally, the histogram is directly involved in other forms of interactions between

views that are described in subsection 5.2.5.
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Figure 5.13.: Histogram view as seen on diesel engine dataset. The time interval from 2002

to 2004 is selected.

5.2.3. Sunburst and breadcrumbs

5.2.3.1. Sunburst

Our implementation of sunburst is based on interactive demos from [8] and [106]. The angle

taken by nodes is linearly dependent on the number of patents that have the corresponding

attribute value. The nodes are sorted by their value in the descending order. When there is

enough space available, node names are displayed in the center of a node. The text follows

the node’s arc and is surrounded by a white contour for a better readability. The title of

the node and an absolute number of patents belonging to it are also shown as a tooltip

when the user hovers over the node.

The color of nodes on the �rst sunburst level is based on a cyclical rainbow color palette.

Basically, the angles within the interval [0, 360] are mapped to a corresponding position

from [0, 1] on the color scale. A node’s angle for the purpose of this calculation starts at

0°and ends in the middle of the node’s arch where its title is. Because the color scale is

cyclical, nodes nearing 360°have similar colors to those near 0°. Child nodes expanding

from the �rst sunburst level are assigned a spectrum of shades from darker than parent to

lighter than parent. This emphasizes that they belong to the parent.

When patents possess multiple values of the same attribute, for example, assignee or IPC

class, occurrences of each single value are bound to exceed the number of patents when

summed up. To represent that overlap correctly, we normalize the values so that they add

up to a total of 100%. For example, assume there are two assignees A and B in a dataset,

80% of patents have A as their assignee and 40% have B. This means that 20% of patents

have been submitted by A and B together. To correctly represent the relative distribution,

we would draw node A as
80

80+40=120
= 67% of the sunburst and node B as

40

120
= 33%.

It is possible to navigate to deeper hierarchy levels by clicking on the chosen node. To

go back one level, the user needs to click on the circle in the middle of the sunburst

which represents the current top node. The transitions between two states are animated

to emphasize the change in the system state: sunburst nodes fold and unfold like a fan.

Change in the state of the sunburst also directly a�ects the scatter plot: �rst, only points

belonging to the currently chosen node stay visible, second, their colors change to match

the new sunburst nodes. In addition to clicking, the user can also hover over a sunburst

node to see a preview of their choice. In this case, not related patents are hidden in the

same way as with clicking, but point colors stay as they are because the sunburst nodes
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Figure 5.14.: Di�erent kinds of breadcrumb design. Image source:[20]

have not yet changed their colors. Only the nodes on the path to the currently highlighted

node retain their color. Remaining nodes are shown with a lighter color to keep all focus

on the highlight. The highlight is reset after the user moves the mouse outside of the

sunburst’s circle.

5.2.3.2. Breadcrumbs

Visibility of system status and recognition over recall are two of usability expert Jakob

Nielsen’s ten heuristics for user interface design [77]. To take them into account, the �rst

change from the initial concept was adding breadcrumbs to the sunburst view.

Breadcrumbs are a metaphor most familiar to users from website navigation (see Figure 5.14

for examples). The name originates from the German fairy tale about Hansel and Gretel,

who left a trail of bread crumbs in the woods to be able to �nd their way back [63].

Breadcrumbs are applicable with hierarchically arranged navigation, i. e. when there

is only one possible path to every node in the navigation tree. According to [43], they

are usually used as an optional aid to navigation and should be less prominent than the

primary navigation element (which is the sunburst in our case).

With the �rst implementation of the sunburst, it soon became clear that some hierarchy

nodes were too narrow to include their title within. Moreover, the titles that could be

shown were placed at di�erent angles, which prevented a sequence of highlighted nodes

from being read easily. Breadcrumbs build a straight line, which increases readability.

Additionally, when a user switches to a deeper level of the sunburst hierarchy, the parent

nodes are no longer visible. In accordance with the recognition over recall principle, it

should not be expected of any user to remember what parent nodes came before. We

included breadcrumbs as a visual aid that clearly and consistently represents the status

of the system and reassures the users of the result of their actions, especially when they

interact with small sunburst nodes. The result can be seen in Figure 5.15. A percentage on

the right side of the breadcrumb trail represents the fraction of patents from the currently

highlighted hierarchy node with regard to the current root node. It is especially useful

when there is a signi�cant overlap between node values because it shows the true value of

the node independent of its normalized angle.

Short codes for IPC classes �t well into the width of the line allocated to them. To keep

the breadcrumbs view concise for assignees as well, we chose only to show the �rst nine
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Figure 5.15.: First version of breadcrumbs complementing the sunburst view.
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Figure 5.16.: Full-text titles of sunburst nodes added to breadcrumbs.

characters of a node’s title followed by an ellipsis mark. As assignee names can be over

30 characters long, the need to see full node titles remains. The idea proposed by patent

experts during a feedback meeting helped address this issue. The experts wished to see

full descriptions for IPC codes, for example, “optical elements, systems, or apparatus”

for class G02B (see [49] for full schema). This led us to complement the graphical brief

breadcrumbs with a full-text part as seen in Figure 5.16. Full assignee names could then be

shown completely along the IPC descriptions.
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Figure 5.17.: Detail view on an example patent from the contact lens dataset.

5.2.4. Detail view

The detail view follows the principle of details on demand (see subsubsection 2.1.1.1 for

details). It allows the user to examine all of the available metadata per patent. The

information is organized in a tabular manner for compactness (see Figure 5.17). Included

are (left to right, top to bottom) publication number, title, application date, a list of assignees,

forward and backward citations, a list of IPC classes, a list of the top 15 relevant key terms

and the abstract.

If the user would like to study the patent text thoroughly, they can double-click anywhere

in the detail view. This causes an additional browser window to appear, which contains

the full text of the textual parts of the patent, i. e. abstract and claims (see Figure 5.18).

When the user double-clicks on another patent, the already opened window persists and

a new one is opened. This permits a detailed examination and comparison of multiple

patents.

5.2.5. Interactions between views

For a consistent behavior across all parts of the interface, we enable similar kinds of

interactions for the sunburst, the histogram and the scatter plot. We distinguish between

three kinds of interactions:

• hovering over an object for a preview of the changes - “Highlighting”

• clicking on an object to make the change persistent - “Selecting”
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Figure 5.18.: Window with full text (abstract and claims) of an example patent from the

contact lens dataset.
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Figure 5.19.: Diagram of interactions between views. The arrows point from the view

where the given interaction happens to the view where it takes e�ect.

• clicking on a background of the view to reset the selection.

An overview of how those interactions in�uence coordinated views is shown in Figure 5.19.

In this section we describe the possible user actions that had not yet been covered in the

previous sectionss.

On a histogram, the user can select a certain time interval by brushing. The histogram bars

for the years outside the selection become grayed out, so do the patents submitted outside

the selected interval. Then, the sunburst is generated anew based only on the patents

within the selection. The colors of the remaining points then adjust to match the new

state of the sunburst. See Figure 5.20 for a comparison of states before and after brushing.

In this example, one can see that patents submitted from 2007 to 2011 are concentrated in

one thematic area. Moreover, less of them are assigned the IPC class G - “Physics”, while

H - “Electricity” becomes more widespread. This might be an indication of a change in the

meaning of the IPC classes over time: the �rst version of IPC classi�cation was developed

in 1968 before the rapid development of information technology. The selection in the

histogram can be reset by clicking on its background.

When the user hovers over a sunburst node, this node’s contribution to the histogram is

displayed in the color corresponding to the sunburst node. In other words, the histogram

becomes a stacked bar chart in which the bottom part of the stack corresponds to the

highlighted sunburst node and the upper part of the stack includes all other patents. This

interaction allows the user to follow the temporal trends in the development of a single IPC

class, assignee or country. For example, Figure 5.21(a) shows that 3D printing technology

has started developing rapidly in China since 2015. If the user then clicks on China, it

moves to the center of the sunburst and its children take over the whole circle. The bars

corresponding to China that were blue on hover now constitute the whole histogram and

the Y-axis is scaled accordingly (see Figure 5.21(b)). Moreover, the points in the scatter

plot now match their colors to the child nodes of China.

The scatter plot also implements the highlighting and selection with regard to single

patents. As long as the user hovers over a certain point, it is emphasized by a black contour

and its citations and family members become visible. The detail view then shows the

metadata of this particular point, but the information persists even when the mouse is
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(a) Before brushing

(b) After brushing

Figure 5.20.: The impact of a brushing action on a histogram on the scatter plot and

sunburst. Video codec dataset
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(a) While hovering

(b) After clicking

Figure 5.21.: The impact of hovering and clicking on a sunburst node on histogram and

scatter plot. 3D printer dataset
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taken away until some other patent is highlighted. Moreover, the year when the patent

was submitted is accented in bright yellow on the histogram (see Figure 5.21(b)). It gives

the user a quick impression about the age of the patent without the need to read this

information in textual form in the detail view. Clicking on a patent makes its connections

permanently visible. The user is then able to examine related patents by hovering over

them. The detail view is reset to the details of the selected point when no other point is

hovered over. A click on a background of the scatter plot resets its selected point.

All above-mentioned interactions between linked views taken together allow the user

to focus their attention on any desired aspects of the data, be it the temporal aspect or

speci�c metadata values. The display can be restricted to a region of interest by various

�lters. We made an e�ort to enable interactions on both micro- and macrolevel (for single

patents and for groups of various sizes). Users’ understanding of the interplay between

views is evaluated in subsubsection 6.2.1.4.
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The objective of our work is to provide a solution for the problem of exploration of large

document collections. To examine how well our proposed visualization meets the goal, an

empirical evaluation is necessary. This we achieve by conducting a summative user study,

which is a part of the case study described in chapter 3. The purpose of this stage and the

procedures for data collection have been decided upon as described in subsection 3.1.2. In

this chapter we describe the execution of the summative study and discuss its results.

6.1. Procedure

Four patent experts agreed to take part in the summative study. Three of them had already

participated in the formative study described in section 3.2.

Being asked to perform tasks while being recorded might be stressful for the participants

and therefore might in�uence the results negatively. It is therefore recommended to

preserve the context of the participants’ usual workday routine as much as possible [82].

For this reason, the study took place in a meeting room at the participants’ workplace.

The participants were invited to solve tasks and talk about their experience while using

the prototype in a one-on-one conversation.

Each individual appointment started with an explanation of the plan of the study: �rst a

short introduction, then the �rst part focused on evaluating the usability of the prototype

as a whole, followed by a second part focused on comparing the proposed approach with

the baseline. The participants were encouraged to talk while they solved the tasks to

describe what they were doing. The full plan of the study can be found in section A.4.

As a preparation for the actual study, two test rounds were conducted with volunteers with

backgrounds outside the patent domain. This experience allowed us to experimentally

detect ine�ciencies and inconsistencies in the study plan and improve it before the proper

study began. The examiner had to multitask during the study:

• acknowledge the participants’ statements and encourage them to think aloud

• make sure that not too much time is spent on one task

• look out for technical problems

• guide the participants through the study procedure

For this reason, the practice rounds were immensely helpful to rehearse following the

procedure of study plan exactly.
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All four experts familiarized themselves with the ideas behind the visualization approach

and with the prototype itself. This took place during the feedback meeting where the �rst

proof-of-concept prototype was presented and also during the mid-term presentation for

the thesis. It allowed us to keep the introduction part short and to establish the rapport

with the user quickly.

During the introduction, possible interactions with the prototype were explained and users

were encouraged to try them out themselves immediately. For that part, a dataset about

3D printers was used. This way, only the knowledge about how to control the prototype

was transferable to the following tasks.

After the �rst task-solving part, a SUS questionnaire was o�ered. Some participants vol-

untarily commented on their answers. Then a second task-solving part began. With the

study being in-subject, every participant evaluated both the semantic and the baseline ap-

proaches. To counter learning e�ects, half of the participants tested the baseline approach

�rst, then the semantic approach. The other half started with the semantic approach �rst

and �nished with the baseline approach.

After the subject �nished the tasks pertaining to one approach, a questionnaire was o�ered

to capture impressions about that approach. The participant was encouraged to speak about

why they answered in the way they did. The study ended with a brief general discussion

of the participants’ impressions, any perceived advantages and disadvantages of the

prototype. All relevant guidelines for the interviews already mentioned in subsection 3.2.1

were followed: intentional pauses to encourage participants to speak, open questions

instead of leading ones, etc.

Starting after the introduction, the study was recorded with the help of a screen capturing

software OBS Studio. The participants’ actions and their commentary were captured

and later transcribed for the evaluation. The resulting script is 23 pages long and is not

included in the thesis for brevity’s sake and for the protection of the participants’ privacy.

The transcription enabled us to make conclusions regarding the hypotheses we describe

in subsection 6.2.1.

6.2. Results

6.2.1. Think-aloud

We used the contact lens dataset described in subsection 5.1.1 for the evaluation. This

domain was chosen partly because of the participants’ background in chemistry and

medicine. Nevertheless, it is important to remember that the participants were not closely

familiar with the subject of contact lenses.

We put forth a number of hypotheses to evaluate di�erent aspects of the proposed approach.

The hypotheses from subsubsection 6.2.1.1 to subsubsection 6.2.1.5 pertain to usability

of the prototype. Evaluating them shows whether there is a match between the user

interface and users’ mental model of the patent landscaping task. The last two hypotheses
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in subsubsection 6.2.1.6 and subsubsection 6.2.1.7 have the speci�c goal of comparing the

baseline approach with the semantic approach.

6.2.1.1. Hypothesis 1: Color mapping of points depending on sunburst is understood and
helps identify clusters

Color is a pre-attentive visual attribute, which means di�erences in color are processed

e�ortlessly and in parallel without any attention being focused on the display [104].

Therefore, we expect that mapping categorical attributes, such as IPC class, to colors helps

experts identify coherent areas.

There were two tasks for evaluating this hypothesis:

• Task 1. What IPC classes (on the section level, one letter) appear together often?

• Task 11. Brie�y describe broad thematic areas in the dataset (big clusters). Evaluate

the positions of the clusters relative to each other.

During Task 1 the participants implicitly grouped same-colored points
Co-occurring IPC classes yielded continuous areas with the same color combinations

for both the semantic and the baseline approaches. Assuming that the IPC classes were

assigned consistently, this indicates that both approaches were able to capture thematic

groups within the domain. All four participants referred to said continuous areas as

opposed to single data points during their analysis for the task 1.

Task 11 indicates that cluster boundaries are better understood when they di�er in color
Task 11 needed to be solved twice per participant, once for each approach. The task 10

before task 11 required participants to switch to a single-colored representation. They

were asked to do so by choosing country as a sunburst hierarchy because there was only

one country present in the dataset. It was anticipated that participants wish to switch

back to the IPC hierarchy for the sunburst after completing the task. Notably, one of four

participants still stayed on a single-colored country hierarchy kind. It appears that they

did not understand where exactly the boundaries of a labeled area lie. They said “There

are areas not occupied with big key terms” while they were describing areas on the largest

cluster level. In fact, due to the nature of agglomerative clustering, every data point always

belongs to some cluster. The area that was “not labeled” according to the participant’s

perception would have been the same color as the points around the nearest “labeled” area.

Conceivably, it would have been easier for the participant to identify boundaries of the

cluster correctly if they had perceived one color within the cluster but di�erent colors

outside the cluster.

One participant had selected IPC classes as the sunburst hierarchy for both approaches.

While describing the areas, they circled with the mouse cursor around the boundaries of

the clusters in a fairly precise way. Other two participants had country activated for one

approach and IPC classes for another. One of them circled around cluster boundaries on a

colorful representation with IPC classes, but not on a single-colored representation. This
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might speak for the hypothesis. The other participant moved the cursor from cluster label

to cluster label, which is why it is impossible to estimate their perception of the cluster

limits.

We anticipated that the participants would make a connection between the content of

an IPC class and cluster labels. For example, one could expect reasoning analogous to

the following: “Areas with more blue points are overwhelmingly about chemistry, and

the cluster about contact lens containers includes a group of blue points, so that means

the containers are probably treated with or hold some chemical solution.“ Unfortunately,

no participant voiced any indication that they matched the labels of clusters with the

content of the IPC hierarchy. It is nevertheless possible that they would have made this

connection if they had been having the chance to work with the prototype for a longer

time. Participants themselves emphasized that they would normally spend signi�cantly

more time to familiarize themselves with the dataset, including the IPC classes that are

used within the data.

General observations
During the study, there were quite a few instances when colors within the scatter plot

changed depending on what node was currently selected in the sunburst. In every case,

the mapping between colors and metadata values was directly obvious to the participants.

We therefore conclude that the dynamic color assignment was understood.

Summary
Ultimately, it was con�rmed that the changing of the colors of the points depending on

the sunburst state is understood. As for whether it helps identify the clusters, this part of

the hypothesis is more likely to be con�rmed than refuted. Further experiments would be

necessary to collect more evidence.

6.2.1.2. Hypothesis 2: Glyphs as indication of co-occurrence of multiple values per
metadata attribute are understandable and clearly visible

There were two tasks for evaluating this hypothesis:

• Task 1. What IPC classes (on the section level, one letter) appear together often?

• Task 3. Choose one of three largest assignees. Does this institution collaborate a lot

with others? If yes, are they other institutions or individuals?

Co-occurence of IPC classes

Intended solution
Our intended way of solving task 1 was to hover over each letter, one after another on

the upper level of the IPC hierarchy. For each letter, the participants were supposed to

roughly estimate how often the corresponding color appears on its own and with other
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colors. One would also pay attention to the percentages in the breadcrumbs to support

the estimation. The expected conclusion would be that all patents belong to the class G

- “Physics”, while classes A, B and C are assigned to about a third of the patents each. A

majority of the patents belongs to two IPC classes and a smaller number to three classes.

The most popular combination of two classes is G+A (red+green) occurring in 31% of

patents.

Participants erroneously assume that choosingmultiple sunburst nodeswould show co-
occurrences Two participants wrongly assumed that it was necessary to select multiple

sunburst nodes simultaneously to display cooccurences. One participant glanced to the

keyboard which was intentionally placed out of reach. They searched for a way of selecting

multiple nodes, such as clicking on them while holding a control key. This erroneous

attempt stemmed from the experience with desktop software where such mode of selection

is popular, for example Windows Explorer or Microsoft Excel. One participant also used

the right-click hoping to �nd a suitable menu option in the context menu.

In web applications, right-clicking and using key combinations are not conventionally

used. From the above, we conclude that it was not immediately obvious to the participants

that the prototype is a web application. This conclusion is supported by the fact that

participants were slightly confused when asked to refresh the web page when technical

problems required a reset of the current state.

Expert’s perception of co-occurrence values was correct but occasionally incomplete
The �rst expert’s initial impression was that G (red) occurs most often and that G+A

(red+green) is the prevalent combination. Then the participant examined color combina-

tions by hovering the cursor over all one-letter IPC classes one after another. At the same

time, they read percentage values in the breadcrumbs which con�rmed their estimations.

They realized that 100% the of data points belonged to IPC class G and guessed the rea-

son for that correctly: “It was probably used in the query to produce the dataset”. The

impression that red+green appears most often was also con�rmed as the participant saw

the value of 31%. All in all, this solution matched our expectations completely.

In addition to the �rst expert, one more participant was able to discover that 100% of the

data points belonged to IPC class G - “Physics”. The remaining two experts nevertheless

mentioned that the color of this class (red) occurs most often. The total number of

participants who saw the percentage values for classes A, B and C is two. In the end, three

experts were able to provide at least a partial solution for task 1.

One participant navigated into section A on the �rst level of the IPC hierarchy and ex-

plained co-occurrences between subclasses of A, such as A61 and A45. They however were

unable to describe co-occurrences on the top level of the IPC hierarchy when prompted,

even though the course of action would be exactly the same and just the IPC selection

di�erent.

Colors in glyphsmix when seen from far away
In one case, the participant perceived purple color for glyphs composed of red and blue:
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“On the �rst glance I thought it was purple and I could not �nd purple on the sunburst”.

We assume that the colors merged the same way blue, green and red diodes together can

create a pixel of any color. The e�ect did not apply any longer after the participant had

zoomed in and glyphs had become slightly bigger, which supports our assumption.

Co-occurence of assignees

Intended solution
The expected procedure for solving this task would be to navigate into the chosen assignee

node by clicking on it. Then, the user would get an impression of how many points

have just one single color corresponding to the selected assignee. If there were many

multi-colored points that have multiple assignees, the participant would hover the mouse

cursor over them and read the assignee entries in the detail view. This way it would be

possible to say if collaborators were mostly institutions or individuals.

Experts’ solutions
One participant understood cooperation from the wording of the task not as co-occurrences

of assignees, but as organizations citing each other’s work. As described in subsubsec-

tion 2.1.3.3, this understanding is incorrect. A citation purely indicates that the inventors

are aware of existing inventions and still consider their patent novel.

All experts started the task by switching the sunburst hierarchy to assignees. Despite the

large number of assignees in the hierarchy, it was obvious to all users that assignees were

ordered in the descending order by the number of applications. One participant tried to

detect co-occurrences by hovering over the tree top assignees in turn. They were looking

for points that stay visible after switching to another assignee. In the end, all except one

participant clicked the chosen assignee node, which happened to be Novartis AG in all

cases, probably because it was the largest assignee. Then they hovered over multi-colored

points and read the assignee information in the detail view for a number of patents.

One expert, however, did not realize that it was the intended way to solve the task: “I can

hover here and I get the assignee information, but it surely wasn’t meant like this.” They

wished for a list of all assignees the chosen assignee has ever cooperated with. According

to them, only with such a list would they be able to see if the cooperations were mostly

with organizations or individuals.

One more participant wished an alternative representation of assignee co-occurrences.

They imagined a visualization in matrix form, possibly because they were familiar with

such representation from the STN AnaVist software. They also imagined a sunburst

hierarchy assignee - assignee in which the co-occurrences of assignees would be shown

on the second level. The idea would not be applicable to IPC classes since it is not

possible to display co-occurrences on di�erent levels of IPC hierarchy clearly in a way

that is consistent with current interaction techniques for switching between levels. Most

importantly, in the current implementation of the sunburst child nodes indicate subgroups
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and not co-occurrences, which means that one would be introducing contradictions into

the mental model of the sunburst control.

Ultimately, three experts were able to complete the task and answer the question. Their

conclusion was that Novartis AG does not cooperate much with other institutions. When

they do, it is mostly with individuals. According to the experts, a characteristic feature of

the US patent law is to enter the names of the inventors working for a company into the

patent application as an assignee along with the the company itself. Two experts explained

that those individual assignees are most probably inventors working for Novartis AG.

Summary
Over the course of the two tasks, it has been con�rmed that glyphs allow users to easily

distinguish data points with one value of a categorical attribute from the points with

multiple values. When the goal is to provide a �rst impression about the distribution of

values of metadata attributes, glyphs �t the purpose. For a more detailed quantitative

analysis of co-occurrences other representation forms are more suitable, for example, a

co-occurrence matrix or a bar chart.

Furthermore, not using glyphs would mean that each data point would only be assigned

one color. Choosing to display only one value of a metadata attributes from a list of

values would skew the perceived distribution of values because many values would not be

displayed. Considering all of the above, we consider the hypothesis con�rmed. Glyphs as

they are used in our approach are an understandable indication of co-occurrence. However,

they are not su�cient for a detailed co-occurrence analysis.

6.2.1.3. Hypothesis 3: The sunburst is suitable not only for hierarchical attributes, such as
IPC classes, but also for arbitrary sets of categorical attributes

The task for evaluating this hypothesis was Task 5: “Compare in what IPC areas Novartis
AG and Johnson & Johnson Vision Care are active”.

Intended solution
For this task, participants were expected to switch the sunburst hierarchy to assignees -
IPC codes. Then the anticipated course of action would be to navigate into the assignee

node by clicking on it, examine the distribution of the IPC classes, go back to the root of

the hierarchy and do the same with the other assignee.

Switching the sunburst hierarchy kind
The previous task left the sunburst hierarchy set to assignees and all participants understood

the need to switch hierarchy kind. This was the �rst time the participants needed to use

two metadata attributes simultaneously in the sunburst. One participant �rst navigated to

Novartis AG on the assignee level, then attempted to change the hierarchy to IPC classes,
which brought invalid results due to a technical problem. Apparently, they expected that

the currently selected hierarchy node persists after switching to another kind of hierarchy.
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After they realized their misconception, they were able to choose the expected hierarchy

kind successfully.

Navigation was problematic because of performance issues
Participants had a reliable grasp on navigation between the levels of the sunburst. All of

them realized the need to navigate into a node if its child nodes are currently too small for

convenient interaction.

The assignees mentioned in the task are ones in the top three according to the total number

of patent applications. This is intentional because of the large number of assignees in the

dataset (about 1100). Measures were taken to merge assignees with di�erent spellings into

one entry as described in subsection 5.1.3 “Parsing of metadata attributes”. However, the

resulting view still permitted working comfortably with approximately top 20 assignees

only. The rest of the assignees occupied a sector of the circle too small to be selected

reliably with the mouse.

As is, using assignees as the �rst level of the sunburst hierarchy resulted in a suboptimal

experience for the participants because of performance problems. For some participants,

it took time to learn to wait until the hover or click interactions were completely rendered

by the prototype. When they did not immediately see the result of their actions, they

moved the mouse cursor around and accidentally hovered over small assignees they did

not recognize. After participants learned what response times to expect, all of them were

able to successfully navigate to an assignee of choice and back to the root of the hierarchy.

One expert said: “I thought you could type it in here somewhere” referring to the choice

of an assignee.

Summary
All experts were able to describe the di�erences in the distribution of IPC classes for

two chosen assignees. They compared the size of the same sunburst nodes not only on

section level (e. g. G), but on the class level (e. g. G02) as well. One expert stated that the

di�erences “can be seen well”.

One conceivable solution to the challenge of showing many nodes on the same hierarchy

level would be to enlarge the sunburst control to �t the whole screen. For hover inter-

actions to be possible while still seeing the data points, one would move the enlarged

sunburst control to a second monitor. An alternative solution would be to only distinguish

between the top 10 to 20 assignees and aggregate the rest into the category “Others”. The

disadvantage of this approach is that it would be di�cult to perceive the distribution of

assignees by the number of applications, i. e. whether the technology domain is dominated

by a few powerful companies or many smaller ones.

Until a solution is implemented, we would discourage from using the sunburst chart for

metadata attributes with tens of di�erent values. For the patent landscaping scenario,

country and IPC class are attributes that result in a clear usable representation in a sunburst,

while assignee is not suitable. The hypothesis is therefore considered partly con�rmed.
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6.2.1.4. Hypothesis 4: The interaction of all parts of the interface is understood

There were two tasks that could only be solved if the interaction between the sunburst

view and the histogram view was clearly understood by the participant:

• Task 2. During what timespan does the IPC area G02C13 (Assembling; Repairing;

Cleaning) actively develop?

• Task 4. Compare the timelines of applications for the assignees Johnson & Johnson
Vision Care and Bausch & Lomb.

Furthermore, no view in the interface is so independent from the others that it could

provide full bene�ts if taken alone. This means the remaining tasks also signi�cantly

contributed to the testing of this hypothesis.

Trends in development of an IPC class

Intended solution
This task was intended to be completed as following. First, the sunburst hierarchy has to

be switched to “IPC classes”. Second, one needs to interact with the node that represents

G02C13 either by hovering over it or by clicking on it. In case of hovering, the number of

applications for this subclass will be overlaid over the histogram view in the matching

color. In case of clicking, only applications in this subclass will be shown in the histogram

view. The participant would then be able to detect application peaks, time intervals with a

signi�cant number of applications and with little to no applications.

Interaction between sunburst and histogram is clear
All four participants preferred clicking on G02C13 instead of hovering over it. We sup-

pose that clicking is a more widespread and intuitive interaction form than hovering and

therefore participants were more comfortable with clicking. Importantly, every expert

connected the change in the values of the histogram to their previous action of selecting

the subclass. Accordingly, all four were able to describe the trend of G02C13’s develop-

ment. The years they named as a period of active development were consistent between

participants.

Trends in development of an assignee

Participants’ solutions
The solution of task 4 was very similar to the one of task 2, except the participants should

change the sunburst hierarchy kind to assignee.

As described in the previous paragraph, during task 2 no participant has intentionally

used the hover interaction on a sunburst node to see the number of applications per year

for that node. Notably, by task 4 two of the participants became accustomed to the hover

interaction and successfully used it to solve the task.
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One participant navigated into the required assignee node, then back up and to the second

assignee. While doing so, they expressed some frustration about not being able to see the

timelines for both assignees at the same time: “One cannot remember all of this”. They

intended to perform a thorough year-per-year comparison, which is more e�ort than the

task actually required.

In fact, this is where the advantage of the hover interaction becomes apparent as compared

to clicking into the assignee node. Going one level back to switch to another assignee

requires a change of context. A hover interaction, however, takes place at the root level of

the sunburst hierarchy and does not require switching back and forth. It also takes less

time so it is easier to keep the values of the time-series in short-term memory. Nevertheless,

we agree that for detailed quantitative comparison it is necessary to display both time

series simultaneously.

Interaction between sunburst and histogram is clear and adds value
In the end, all experts were able to complete the task. After they saw no new applications

for Bausch & Lomb since 2009, one participant was able to put this fact in the context of

their domain knowledge: “it stops then because the company does not exist anymore”.

One participant said that “it is often interesting to see this” referring to the evolution of

the domain through the years. Another participant agreed that it was “by all means” useful

to be able to examine the time dimension.

Tasks 2 and 4 allow us to con�rm that the interdependence between the sunburst nodes

and the time series values in histogram view was indeed clear to the participants. Our

visualization approach is thus considered suitable for the trend analysis usage scenario.

Interactions between the sunburst itself and the breadcrumbs
It is impossible to say exactly how the breadcrumbs view was utilized without a camera or

an eye-tracking system which we did not use. Nevertheless, reading can be recognized

when the person whispers the words or says them aloud, or when the person moves the

mouse to the text they are reading. It is especially interesting to know whether the experts

took advantage of the full descriptions for the IPC classes and unshortened assignee names.

We can say con�dently that the changes in the breadcrumbs view depending on the the

actions in the sunburst were clear to all participants. For example, if they navigated into a

sunburst node, they were reassured of the result of their action because the navigation path

was shown with the breadcrumbs. Notably, for tasks involving IPC classes, the participants

often read the descriptions for the upper level of the IPC hierarchy, but seldom for deeper

levels. We attribute this to the fact that the experts were not familiar with the domain of

contact lenses. They probably did not see the point in getting acquainted with the IPC

classes from this domain, especially considering the short-term nature of the tasks in the

study.

Providing the descriptions for IPC classes implements the principle of recognition instead
of recall as described in subsubsection 5.2.3.2. The experts can easily browse through the

nodes in the sunburst and recognize the thematic areas they search for. This feature was
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also requested by the experts during the feedback meeting when the �rst iteration of the

prototype was presented. Therefore, textual content along with the graphic breadcrumb

nodes provides added value. For the above-mentioned reasons, we are convinced that the

visual metaphor for the breadcrumbs view is chosen appropriately.

Interactions involving scatter plot and detail view
Task 3 (assignee co-occurrences, see subsubsection 6.2.1.2) and all tasks from part 2 of

the evaluation relied on information only visible in the detail view. Except for cases of

overlapping points (see subsubsection 6.2.1.5) or points obscured by cluster labels, the

participants were able to retrieve detailed information for a chosen point con�dently.

As with hover vs. click interaction on the sunburst (see the beginning of this subsection),

some participants were initially more comfortable with clicking, even when they did not

need the information in the detail view to persist (e. g. for comparison).

Summary
Summing it up, the participants grasped the interplay between sunburst and histogram,

sunburst and scatter plot (see subsubsection 6.2.1.1), scatter plot and detail view (see

above). Notably, the training in the beginning of the study only took 10 minutes. After the

training the experts were able to reliably control the visualization. We therefore consider

the hypothesis con�rmed.

6.2.1.5. Hypothesis 5: Dynamic density of labels for points and clusters results in a readable
and informative presentation

Intended for evaluating this hypothesis was task 6: “Navigate into the dataset with panning,

zooming in and back out and assess the readability of labels in di�erent levels of detail”.

The task is self-explanatory.

One participant asked why a point had no label while they were on a middle detail level. As

described in subsubsection 5.2.1.1 “Zooming”, adaptive density of labels was implemented

for readability reasons. This fact, however, was not included into the introduction to the

study for brevity’s sake.

Participants described the point labels as well-readable with just one exception. When

the scatter plot was zoomed in to the maximal detail level (zoom factor 10), the top three

relevant terms were shown per patent. In some cases the points were situated close

enough for the labels to overlap and become unreadable. This happens when points are

approximately at the same position horizontally and the labels are long. According to one

expert, if two points are so close that they overlap, “it is even more important to know

what the di�erences [between them] are”. The expert hoped to comprehend the di�erence

based on the top three key terms.

The participants asked for the overlapping problem to be solved and suggested solutions

themselves. For example, they suggested automatically moving overlapping points away

from each other at the maximal zoom level. One participant asked if they could “play
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around” with overlapping points, with the intention to pull them apart. Allowing users

to manually move points would be a simple alternative to an automatic overlap removal

algorithm. Another simple solution that takes almost no implementation e�ort would be

just increasing the maximal allowed zoom level so that points stand further apart. One

more alternative suggested by an expert is to bring a point into foreground when it is

hovered over. For this idea to work as intended, a contrast background has to be added

behind the active point to separate it from its neighbors and make the label readable.

Summary
No participants perceived that there were too many or too few labeled points, which is

exactly the result we were aiming for with the heuristic for a proportion of shown labels.

Our observation did not reveal any readability problems except the mentioned overlapping

issue. The hypothesis is considered con�rmed.

6.2.1.6. Hypothesis 6: Cluster labels computed based on word2vec-based embeddings
correspond to human understanding in a better way than those in TF-IDF-based
embeddings

The task speci�cally aimed at evaluating this hypothesis was Task 11: “Brie�y describe

broad thematic areas in the dataset (big clusters). Evaluate the positions of the clusters

relative to each other”. This task is very reliant on the signi�cance of cluster labels. Most

importantly, all tasks from part two of the study implicitly assess this hypothesis.

Table 6.1.: Comparison of cluster key terms for both approaches. Contact lens dataset

№

Top 15 key terms per approach

Experts’ description
Semantic Baseline

1 enzyme, cleaning, dis-
infecting, polyionic,

polyionic material, salt,
peroxide, surfactant,
composition, hydrogen

peroxide, polyoxyethy-
lene, deposits, antimicro-
bial, polyanionic, aqueous

medium

cleaning, polyionic,

enzyme, surfactant,
disinfecting, polyionic
material, medical de-

vice, polyanionic, medical,

composition, salt, antimi-
crobial, polyoxyethylene,

peroxide, deposits

-Cleaning

-Enzymes, cleaning, hy-

giene, disinfection

-Cleaning, disinfection

-Enzymes for cleaning of

lenses

-Cleaning systems

Continued on next page
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Table 6.1.: Comparison of cluster key terms for both approaches. Contact lens dataset

№

Top 15 key terms per approach

Experts’ description
Semantic Baseline

2 prepolymer, divalent
radical, methylene pyrroli-

done, macromonomer,

divalent, crosslinkable,

vinylic, crosslinker,
alk, meth, parts weight,

hydrocarbon, denotes,
compound, polymerizable

composition

crosslinkable, prepoly-
mer, compound, divalent
radical, divalent, alk,

binder, radical carbon,

hydrocarbon, denotes,
vinylic, vinylic monomer,

ink, binder polymer,

crosslinker

-Materials the lens

consists of, they are

polymers

-Materials

-What the lens consists

of

-Substances, polymers

the lens consists of

-How the materials are

produced

3 medical device, dye, medi-

cal, ink, article, precursor,
polymeric material, reac-

tive, hybrid, ophthalmic

lens, cellulose, hybrid con-
tact, polymerizable com-
position, anti, printing

hybrid, polymerizable
composition, hybrid
contact, polymeric mate-
rial, precursor, siloxane

monomer, collagen, core,

aromatic, aromatic based,

extracted, polymeric lens,

macromer, rigid, composite

-Materials the lens con-

sists of

-Materials

-Lens itself, its shape

-Colorants

-Products

4 central zone, aberration,

meridian, optical zone,

vertical meridian, re-
fractive power, central
optical, model, inferior,
spherical aberration,

optic zone, segment,
stabilization, lens design,

transition zone

central zone, aberration,

meridian, optical zone,

refractive power, verti-
cal meridian, central op-
tical, model, optic zone,

inferior, multifocal contact,

spherical aberration, seg-
ment, lens design, stabi-
lization

-Optical power. When

someone has astig-

matism, how the lens

should be bent, its form

-Abberation is how you

see

-Vision corrections as

known from an optician

5 container, chamber,
package, housing, clean-
ing, lens package, reser-
voir, holder, cap, lens
holder, cup, lens clean-
ing, shaft, insert, carrier

container, chamber,
package, housing, clean-
ing, lens package, holder,
cap, reservoir, mold part,

lens holder, station, lens
cleaning, cup, male

-Containers

-Packaging

-Where the lenses are

stored

-How packaging is, how

lenses are stored, reser-

voirs etc.

Continued on next page
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Table 6.1.: Comparison of cluster key terms for both approaches. Contact lens dataset

№

Top 15 key terms per approach

Experts’ description
Semantic Baseline

6 iris section, iris, shade,

color, limbal ring, star-
burst, limbal, colored,

dots, cosmetic, colorant,
white, ophthalmic lens,

beam, colored contact

iris, iris section, shade,

colorant, pattern, colored,

cosmetic, limbal ring,

color, starburst, limbal,
colored contact, dots, dot,

indicator

-Colored lenses

-How the iris is built

-The eye, the iris as an or-

gan

7 substrate, signal, sensing,

information, antenna, cir-

cuit, sensors, circuitry, data,

wireless, disposed substrate,

energy, reader, electrodes,

ophthalmic device

ophthalmic device, sub-
strate, energy, signal, dy-

namic, beam, ophthalmic

lens, data, information,

sensing, insert, �lter, dis-

play, antenna, re�ected

-Not clear

-Some physical methods

-Antennas, circuits, sen-

sors. Those are devices

that measure properties

of lenses

-Sensors, measuring de-

vices

-The end product (de-

vice), but also electroni-

cal properties, energy

For both semantic and baseline (TF-IDF-based) approaches, the top level of hierarchical

clustering consisted of 7 clusters. Table 6.1 shows cluster terms for both approaches and

the way the experts described the content of the corresponding area (see subsection 5.1.7

for details on key term extraction). For 5 out of those 7 clusters (clusters №1, №2, №4, №5,

№6), the key terms were very similar between the approaches. In fact, at least two of the

top three terms were exactly the same for both approaches. In case of clusters №4, №5

and №6 even all three terms were the same.

Experts were o�en able to consistently identify same areas between di�erent approaches
Predictably, after the participants identi�ed and described large thematic areas for one

approach, they were able to instantly recognize comparable areas for another approach.

The experts’ descriptions of those areas were consistent:

• Cluster №1 is about cleaning of contact lenses with enzymes.

• Cluster №2 contains materials contact lenses are made of.

• Cluster №4 is about optical properties of the lenses and how they assist vision

correction.

• Cluster №5 describes the storage of lenses in suitable containers.
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• Cluster №6 is about colored contact lenses, according to three experts. One expert

was led astray by the term “iris” as they assumed it could only refer to the organ.

Human body parts, however, are not patentable by themselves. In this case, the iris

is discussed in the context of a colored contact lens. An arti�cial pattern on the lens

covers the iris and sometimes tries to replicate the aesthetics of a real iris.

In contrast to the abovementioned �ve clusters, the two remaining ones (clusters №3, №7)

lead to most incoherent descriptions. Cluster №3 includes fairly inhomogenious topics,

which resulted in the top three terms being completely di�erent between the approaches

(medical device, dye, medical vs. hybrid, polymerizable composition, hybrid contact).

“Medical” is, in context of contact lenses, a very general term that did not contribute much

to the understanding of the domain. The participants struggled with its interpretation

during the evaluation of the semantic approach. By contrast, chemical terms from the

baseline approach were speci�c enough for a better understanding. For both approaches,

the cluster №2 labeled by additional chemical terminology (crosslinkable, prepolymer,

compound) was very close to the cluster №3 and partly merged with it. Because of that,

for the baseline approach some participants described both clusters №2 and №3 together

as containing materials for producing contact lenses.

Experts appeared to have di�culties describing cluster №7 because they were not very

familiar with the domain of electronics, in particular wearables. The term “substrate” in

this case refers to the material the electronic circuits are placed upon . Most participants

have a background in chemistry, where substrate refers to the chemical of interest that is

being modi�ed [70]. It is possible that the discrepancy in the understanding of this term

led to some confusion. In the end, no expert described this area su�ciently well.

Relative importance of top key terms
The participants’ ideas about the content of the clusters seemed to be in�uenced greatly

by the top three terms per cluster that are always visible. After an initial assumption about

the topic of the cluster was made, the remaining 12 of 15 top terms (shown on mouseover)

seemed not to alter the �rst idea. This might be explained by the perceptual principles of

the visual hierarchy.

Objectively speaking, the fourth top term does not di�er much in relevance compared to

the third top term. In fact, all 15 top terms enhance each other well and provide meaning

for the user when considered together. However, the fourth and further key terms are only

visible on demand, and are shown in a much smaller font size. Those are the trade-o�s that

we chose to make for the sake of readability. It is likely that because of that, the perceived

relevance of the fourth and further top terms is much lower, and they are not taken into

account by the experts as much.

If we were to increase the font size of the on-demand terms to match the top three, we

would have to distribute them around the cluster to avoid overlaps and visual clutter.

Depending on the length, some terms might even land outside the cluster boundaries. All

of this would suggest to the users that the exact position of the terms inside a cluster

matters, which is not the case here. A better solution remains to be found.
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Experts’ perceptions of key terms
Regarding the key terms themselves the experts had varied opinions. One participant

struggled to see the added value in the extracted terms. According to them, there were

many irrelevant terms among the ones extracted for clusters and single patents. They

explained that, for example, “pharmaceutical composition” is a very common phrase in

the domain of medicine, and “bottom portion” or “side walls” are used ubiquitously when

describing devices of any kind.

We agree that such phrases have little explanatory power, but only in the case of a

homogeneous dataset where every patent is about medicine or about devices, accordingly.

In our case, however, the contact lens dataset contained a diverse range of topics. The

example phrases mentioned by the expert really can make the di�erence between di�erent

thematic areas visible. It is quite possible that for a less diverse dataset, such terms

would not be considered “relevant” by the TF-IDF algorithm. Since they appear in the

most patents within the corpus, the IDF would lower their computed relevance. A more

extensive stopword list can nevertheless be of great help for the quality of extracted terms.

Notably, we used TF-IDF as a baseline approach for the key term extraction for single

patents (the approach for clusters is described in subsection 5.1.7). We experimented

with the algorithm’s parameters, but the potential for improvement is not exhausted yet.

Moreover, a number of more advanced algorithms based on TF-IDF exist [66] [56]. So

do key term extraction methods not based on TF-IDF like Rapid Automated Keyword

Extraction (RAKE) [88] and TextRank [71]. It might be bene�cial to test the above-

mentioned algorithms on patent texts.

The expert mentioned above was also wondering about the di�erences between adjacent

points with disparate key terms: “To really analyze this, I need to know why those two are

so close, and why are the extracted terms then so di�erent?” We strongly agree with the

requirement for explainability. In this case, however, the interpretation is made di�cult by

the fact that we are observing a space after the dimensionality reduction. One conceivable

reason for dissimilar terms for supposedly semantically close documents might be a lot of

shared vocabulary, which nevertheless does not show up in extracted terms as it is too

widespread within the document corpus. This leaves the most narrowly used terms to be

extracted as relevant.

Overall, the experts’ perception was that the key terms are more useful for bigger clusters,

where they also describe more general concepts: “On the higher levels the terminology is

more helpful, so that you can associate it with something”. The key terms become less

helpful as one focuses on the speci�cs of a small group of documents. Nevertheless, one

expert found multiple levels of detail for hierarchical clustering a helpful feature: “it has

the generated terminology on two [sic] di�erent levels, this is good”.

Suggestions for improvements
The above-mentioned participant was also happy to see the areas labeled at all because “in

other software you have to write the titles yourself”. To give users the ability to compose

their own captions for arbitrary areas is a feature that was already mentioned by the

experts during the mid-term presentation of the thesis. It would be immensely helpful
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for a detailed analysis to be able to draw a boundary around an interesting area. This

would follow the principle of recognition over recall. It is a user interface design pattern

that requires signi�cantly less cognitive e�ort from the user when implemented. In this

case, it takes less mental e�ort for the user to process an area they labeled themselves

versus when they are forced to recollect their description of the area every time. Should

our prototype be developed further as a product, this is a functionality that might be worth

implementing.

All participants wished for a search functionality based on document terms when con-

fronted with tasks that required zooming into the landscape: “it is di�cult. I have this

information [from the task] and I can’t search, but can only zoom, hover and read”. They

would expect to see highlighted areas where the queried term appears often: “it would

show me where it [the requested term] is and jump there. Maybe one [document] will be

here and one there. It would say, here on the upper-left side there is a hotspot”.

One participant had an impression that the baseline approach resulted in better key terms

for the clusters, but could not elaborate on their vague feeling.

Cluster terms overlap significantly between approaches
To examine whether the similarity of cluster terms between both approaches is pertinent

only to the contact lens dataset, we compared the top 15 terms for other datasets used in

this thesis: 3d printers, video codecs, hair dryers and diesel engines. In the overwhelming

majority of the cases, we could determine a one-to-one correspondence between clusters

for both approaches based on common themes suggested by overlapping key terms. The

results can be seen in section A.5 with the identical terms emphasized in bold.

It can easily be seen that a greater part of cluster key terms are exactly the same. The hair

dryer dataset is the one where the corresponding clusters were most di�cult to de�ne. We

attribute this to a small sample size (ca. 350 documents), where in�uence of noise and of

individual properties of the algorithms is unlikely to be compensated. In fact, the number

of matching terms among the top 15 terms per cluster increases with the size of the dataset.

Clearly, matching terms can only be a result of a term extraction on approximately the

same subset of the data. This shows that both semantic and baseline approaches group

the same patents in a similar way, at least at the most general level.

Considering all of the above, with regard to key terms none of the compared approaches

provided a signi�cant advantage over the other. The hypothesis is therefore refuted.

6.2.1.7. Hypothesis 7: Distances between points in word2vec-based embeddings correspond
to human understanding in a better way than those in TF-IDF-based embeddings

In the same way as with subsubsection 6.2.1.6, all tasks from part 2 of the study are

applicable to evaluate this hypothesis:

• Task 7. Find the area/areas with patents about colored contact lenses.

• Task 8. Find the area/areas with patents about contact lenses with electronic compo-

nents (“smart” contact lenses)
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• Task 9. Find the area/areas with patents about cleaning of contact lenses.

• Task 10. Find the area/areas with patents about ordering systems for contact lenses.

They handle interaction with the client: diagnosis, ordering of lenses for example as

a subscription, adjusting the prescription, etc.

• Task 11. Brie�y describe broad thematic areas in the dataset (big clusters). Evaluate

the positions of the clusters relative to each other.

Searching for large areas
Tasks 7 and 9 were designed to be solved in a similar way for comparability, with one task

per approach. For those tasks, we wanted to evaluate the approaches independently of

the patent’s metadata, only based on the textual content. For that, the participants were

asked to choose “Country” as a hierarchy level for the sunburst. The dataset consisted

of only patents from the US patent o�ce, so �ltering and highlighting features were not

accessible for that single value.

Our examination of relative cluster placement
Both colored contact lenses and cleaning of contact lenses comprise their own large clusters

(see clusters №6 and №1 in Table 6.1). Additionally, there are signi�cant areas with related

patents within other clusters. in Figure 6.1, we highlight the main large cluster of interest,

the smaller relevant areas and the bigger cluster they are a part of.

For colored contact lenses, there exists an area focusing on ink for printing on colored

contact lenses. For the semantic approach (see Figure 6.1(a), it lies inside cluster №3, which

specializes on chemical substances for the production of lenses. The area about ink lies

between the “chemical” cluster №3 and the cluster №6 with colored contact lenses.

For the baseline approach, the cluster №3 (materials) and cluster №6 (colored contact

lenses) are situated further away from each other and do not touch directly (see Figure

6.1(a). Nevertheless, the area about ink is at the edge of cluster №3 that is closest to cluster

№6 .

For cleaning of contact lenses (cluster №1), a smaller related area is situated inside the

cluster №5 about packaging and storage of lenses. It is predictable because containers for

lenses often include a cleaning solution. Same as with task 7, the clusters produced by

semantic approach are closer to each other (see Figure 6.2(a). For the baseline approach,

the areas focused on cleaning and packaging are not adjacent (see Figure 6.2(b)). For both

approaches, the area about containers with cleaning solutions is on the edge of cluster №5

that is closest to cluster №1.

In other words, between tasks 7 and 9 the semantic and baseline approaches behaved in a

consistent way with regards to the relative placement of clusters. The semantic approach

seems to place areas with strong thematic connections closer to each other. Notably, no

other unrelated patents were situated between the two clusters of interest. The space

between them was either empty or occupied with patents related to both clusters. This

was not the case with the baseline approach, in which unrelated patents occupied the gap.
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(a) Semantic approach

(b) Baseline approach

Figure 6.1.: Areas relevant for task 7. Colored contact lenses (red), materials for making

lenses (blue), inks for printing on colored lenses (purple).
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(a) Semantic approach

(b) Baseline approach

Figure 6.2.: Areas relevant for task 9. Cleaning of contact lenses (red), storage of lenses

(blue), containers with cleaning solutions (purple).
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One possible explanation for this phenomenon might be that the semantic representations

result in more “continuous” areas where topics “�ow” into one another. TF-IDF-based

vectors, on the other hand, might produce more “interrupted” or “discrete” structures that

are more likely to be rearranged during the dimension reduction process.

Intended solution
We assumed that the large clusters would be found fairly quickly based on their key terms.

Then smaller related areas could be discovered by following the citation connections. The

user is supposed to brie�y hover over a number of patents within an area they consider

de�nitely relevant. If most citation lines lead to one particular area outside of the current

cluster, then it might be worthwhile to follow them and inspect the other area.

Summary
All participants found the requested large clusters for both tasks fairly quickly by reading

the key terms for the large clusters. They then con�rmed their assumptions by zooming

into the selected cluster and reading terms, or in some cases, titles and abstracts of the

patents situated there.

Two experts came up with the idea of using citations to �nd related areas. One of them

even realized that many connections led to the same spot, but could not interpret this

information further: “Even though with all those lines going to here and there I can see

the other areas on the landscape, I still �nd it di�cult to generate knowledge from that”.

This participant by chance examined only cited patents that were not directly thematically

related to the region of interest. It is completely understandable that they could not see

a direct connection. Ultimately, no expert could successfully identify the smaller related

areas supplementary to the noticeable large clusters.

Searching for small areas
Same as with tasks 7 and 9, task 8 and task 10 were intended to be solved in a similar way

for comparability. Here, using the �ltering controls was allowed and encouraged.

Intended solution
For contact lenses with electronic components, one could safely assume that those patent

applications are fairly recent. After restricting the timeline to the years after 2000, one

can observe that the IPC class “H - electricity” grew in proportion from almost invisible

1.5% to 2.2%. Electricity is a plausible IPC section, so after selecting that “H” node, there

are virtually no documents left except one densely populated spot (see Figures 6.3(a) and

6.3(b)). It approximately matches the cluster №7 with terms substrate, signal, sensing (for

semantic approach) or ophthalmic device, substrate, energy (for baseline approach). The

user could then try lifting the �lters and checking whether the patents inside the area of

interest, but from outside of IPC class “H” and those �led before 2000 are relevant, too.

Upon further inspection, with the semantic approach it should become clear that approxi-

mately one-fourth of cluster №7’s area is mostly dedicated to various industrial automation
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(a) Semantic approach

(b) Baseline approach

Figure 6.3.: The landscape as seen after the proposed sequence of actions for solving task

8. The landscape is restricted to years after 2000 and IPC class H - “electricity”.
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systems. Those systems de�nitely include electronic components, while the lenses itself do

not. The fact that they were grouped together with smart contact lenses was foreseeable

and meaningful because of the shared vocabulary. The remaining three-fourths of the area

comprise the intended answer to task 8 (see Figure 6.4(a)). For the baseline approach, the

separation between patents pertaining to automation systems and patents about smart

contact lenses is less clear (see Figure 6.4(b)). The patents irrelevant for this task intersperse

cluster №7. This is evidence of the superiority of the semantic approach for this particular

case.

Experts’ solutions
The study showed that the intended sequence of steps for solving the task was too com-

plicated, at least for our experimental setting. None of the participants chose to use any

�ltering options. Moreover, the sunburst hierarchy was switched to country after the

previous task, which resulted in a monochrome view. No participant wished to switch

back to IPC class for a colorful display. This might mean that for this task, the participants

concentrated exclusively on reading cluster and document terms and did not see a need to

involve other controls. Another explanation is also plausible: as the participants saw a

single-colored representation, it did not occur to them to change it because they brie�y

forgot that it is possible. Maybe if they had a sunburst hierarchy unsuitable for this task

already selected (i. e. assignee), they would have noticed the mismatch and would have

tried to �x it.

The participants expressed the wish for a search feature because they would rather use

it for such kind of task than browse around hoping to stumble upon the right area: “it’s

fairly di�cult to �nd the right area if it [what you’re looking for] is not labeled in the big

regions”.

Ultimately, three experts were able to identify cluster №7 as the relevant area. Unfor-

tunately, they did not examine the area thoroughly enough to discover the irrelevant

quarter of the documents. One expert started their search in the “chemical” area as they

argued that polymers are the basis onto which the electronic components are placed:

“the electronic components should be included in polymer materials somewhere”. The

participant browsed around until they stumbled upon the medium-sized cluster with the

terms “signal, substrate, sensing”, which they recognized as the area of interest.

Two other participants were steered to the correct answer by terms such as “signal,

substrate, sensing” and “energy”. They then con�rmed their guess by reading some patent

titles. The one expert who did �nd a wrong solution to the task was distracted by the

plausible, but irrelevant term “medical device” in cluster №3. Our examination revealed

that the term “device” in the above-mentioned area is not used to mean “appliance”, but

refers to the lens itself as a product for medical purposes.

Relative positions of clusters
For the semantic approach, one participant said “there are distinctly separated areas, it

can be clearly seen”. Another expert noted that “areas are separated more clearly” in

the semantic approach, and that it looked “less noisy and more focused”. Both of them
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(a) Semantic approach

(b) Baseline approach

Figure 6.4.: Cluster №7 as seen in both approaches. The area relevant for task 8 is shown in

red, the area about industrial automation systems is shown in blue, the cluster

boundaries are shown in gray
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also remarked that the clusters related to the chemical composition of contact lenses (see

clusters №2 and №3 from Table 6.1) are supposed to be situated close to each other: “I

think those two belong together”. One participant also noticed a di�erence in this area

between the two approaches: “the polymer stu� was in two areas before and now it is in

only one” (in this case, “before” refers to the baseline approach and “now” to the semantic

approach).

Summary
Ultimately, the semantic approach seemed to re�ect the structure of the domain in a better

way. This, however, did not in�uence the experts’ strategy much, as the overall structure

of the clusters was comparable. The proposed visualization approach itself mattered more

than the method for placing the data points. When it comes to the speci�c tasks we o�ered,

the hypothesis is likely to be con�rmed.

Limitations of qualitative evaluation
It is important to note that the tasks created for the study cannot possibly evaluate the

distances between the documents as a whole. When it comes to subjective perception, we

can only witness the experts’ mental processes and their opinions. We can merely capture

a small sample due to the limited number of tasks. A quantitative evaluation would be

necessary to evaluate the placement of documents as a whole.

6.2.2. SUS

A German translation [85] of a SUS questionnaire was used after the �rst part of the study.

The prototype received an average SUS score of 68.12 points, with a negligible di�erence of

only one point between two tested approaches. It is important to remember that the SUS

score is not a percentage, so it is necessary to consider the percentile when interpreting

the value. According to [11], an application is considered “acceptable” at around 68-70

SUS points, which is also the average.

When participants explained their answers, they mostly named the technical imperfections

of the prototype as reasons for lower scores. The performance on the contact lens dataset

with about 2500 data points was not optimal and resulted in processing delays of up to

two seconds, especially when hovering and clicking on the sunburst. It was important

for us to provide an extensive dataset with su�cient thematic variation, so we willingly

accepted the delays for that reason. The performance of the prototype was mentioned by

the users: “I would use it, assuming it runs faster”, “The operation is not cumbersome, but

di�cult because of the delay. Because it is so simple, it should run smoothly”.

The experts con�rmed that the prototype was easy to use: “It is easy because there are not

in�nitely many options to click on”, “I didn’t �nd it excessively di�cult to use”, “It would

not take long to train someone to use it”. They also missed features that one would expect

from a �nished piece of software: “What is implemented is coherent and conclusive, you

could extend it nicely”, “It does not exploit all possibilities”.
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While we are not proposing a commercially viable software product, we are conscious

of the fact that it is di�cult for users to evaluate prototypes with a limited number of

features. Users are usually confronted with commercial software and therefore expect a

comparable amount of development e�ort from every piece of software they encounter.

Considering all of the above, we view the “average” SUS score as a success.

6.2.3. Questionnaire for comparing the approaches and the following
mini-interview

If we consider di�erences in the answers between two approaches, they comprised 31% on

average. 69% of the answers were identical for the same participant.

One participant felt that the baseline approach was “a bit better”, but was not able to

explain why. Other participants did not see a signi�cant di�erence between the two

approaches: “I am unable to say whether one or the other is better”, “maybe I contradict

myself [in the answers] compared to the other one, they are not that di�erent”.

All participants saw value in the proposed visualization approach as a whole, independently

of the kind of document embeddings which is used. They emphasized that it is an easy

way to get a general idea about the domain one is dealing with: “It is a fast possibility to

be able to say what areas you are working with”, “the topics are prepared how one would

expect them to be”. The expert compared the visual approach to patent landscaping with

existing commercial solutions: “In other tools you can do an IPC analysis. This here is

another approach with the same goal”. They emphasized that with our proposed approach

one must not heavily rely on knowledge of IPC classes.

One expert stated that “you can discover connections [with the prototype]”. They expect

that the prototype “can provide bene�ts in industry and research”.

6.3. Discussion

6.3.1. The visualization approach and interactionmetaphors

The prototype received an average SUS score which is considered acceptable, even though

it lacked some features the participants expected or wished for. Their wishes were undoubt-

edly at least partly shaped by the participants’ prior exposure to the patent landscaping

tool STN Anavist, which is a commercial product and therefore cannot constitute a fair

comparison to our proof-of-concept prototype. Overall, the participants’ impression of

the prototype was positive and they con�rmed the need for such a tool.

Several relatively minor usability problems had been uncovered during the evaluation.

First, panning and zooming start to noticeably lag when working with over 2000 patents,

which resulted in performance problems. This was an inconvenience to the experts and

a�ected their understanding of the current state of the sunburst. Another usability issue
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that the participants remarked on were data points situated close to each other so that the

labels overlap making the terms per patent unreadable.

Overall, the chosen visualization metaphors �t the task and were understood by the

participants. The heuristic for the dynamic label density successfully provides a balance

between text and whitespace. The dynamic mapping of colors depending on the state

of the sunburst and glyphs as indicators of co-occurrence were quickly grasped by the

participants. Just as well did the participants understand how the interconnected views

a�ect each other’s states. Considering the very short training the participants received,

our visualization approach proved to be intuitive.

Thinking back to the research questions de�ned in the case study, we successfully found

interactions techniques that are able to combine metadata of various types and seman-

tic dimensions. The semantic space adds a dimension where one can �nd patterns via

distributions of values of metadata attributes. For example, colors of the points likely

contributed to the participants’ perceptions of clusters.

The proposed visualization approach provides added value for various patent landscaping

scenarios such as technology trend analysis. At the same time, there are no restrictions that

would speak against the use of our approach for any kind of text documents characterized

by metadata, for example, scienti�c publications.

The bene�ts of our proposed approach are especially evident when a brief overview of

various thematic areas in the dataset is necessary. Detailed queries are better ful�lled

using conventional tools such as textual search, bar charts and co-occurrence matrices.

6.3.2. Semantic embeddings versus TF-IDF embeddings

The think-aloud study resulted in inconclusive data with regards to the comparison of the

two approaches. It has been shown that the approach itself only played a minor role in

the evaluation process. The task-solving process was signi�cantly more in�uenced by the

interface of the visualization and its features.

According to some participants, the semantic embeddings resulted in a more intuitive

relative placement of clusters. The clusters in the semantic approach were also separated

in a better way according to our own examination and participants’ perceptions. This

might be attributed to the fact that semantic embeddings are dependent on the context of

a word and therefore better capture similarities for synonyms, hypernyms, words used

often in similar sentences, etc. However, the tasks we designed for the study could only

possibly evaluate a subset of the documents with regard to their relative placement. Only

a quantitative approach would be able to assess the positions of patents in visualization

space as a whole. It is therefore impossible to draw a de�nitive conclusion at this point.

101





7. Conclusion

7.1. Summary

In this work, we investigated how to visually explore large document collections by

employing semantics obtained from word embeddings of the document’s textual content.

We studied the problem for the task of patent landscaping as a case study. For that, with

help of patent experts we studied the particularities of patent landscaping domain. We

then proposed an interactive visualization approach that takes them into account.

We implemented a proof-of-concept interactive prototype. Similarities between documents

are expressed through averaging weighted word embeddings of words in a document.

The visualization makes the semantic space visible by reducing it to two dimensions with

t-SNE. Additionally, multiple levels of detail are implemented via hierarchical clustering

followed by a key term extraction. This helps make the local and global structures in the

data visible, thereby supporting explainability of the semantic space.

Moreover, we incorporated metadata attributes of various types, for example, temporal,

categorical and hierarchical, into the display through use of coordinated views. A zoomable

scatter plot displays documents, while a sunburst and a histogram aggregate metadata

values and serve to highlight and �lter corresponding areas in the scatter plot. A detail view

contributes to the exploration by providing maximal level of detail on demand. Taken as a

whole, the user interface provided a way to discern patterns arising from the combination

of semantically related clusters and the distributions of metadata values.

As a �nishing part of the case study, we evaluated the prototype in a usability study with

patent experts. We compared the word2vec-based document embeddings to TF-IDF vectors

as sparse document representations.

7.2. Key results

The chosen interaction techniques proved to be consistent and intuitive. The study

showed that the user interface of the prototype in�uenced the participants’ perceptions

signi�cantly, while the way patents are situated and clustered did not play a major role.

This is partly due to the fact that both approaches resulted in very similar extracted cluster

key terms. The proportion of overlapping cluster key terms between both approaches

increased with the size of a dataset. This can possibly be attributed to the greater in�uence

of noise among local structures within the data for smaller datasets.
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The semantic approach produced clusters that were better separated and placed more intu-

itively with regard to each other. The reason for this might be that semantic embeddings

take the context of a given word, its synonyms, more speci�c or abstract words, etc. into

account. This possibly results in a high-dimensional structure that is more cohesive and

continuous as compared to the sparse TF-IDF-based representation.

The study results indicated that the combination of the semantic representations of docu-

ments’ textual content and their metadata was understood by the participants and was

likely helpful for �nding clusters. Nevertheless, further research would be necessary to

examine the mental processes involved in such exploration as it is a cognitively complex

task.

The proposed visualization approach provides added value to the task of patent landscaping

and can be applied to other document exploration tasks.

7.3. Future work

In this section we provide an outlook on the possible improvements of our approach, both

general and restricted to the domain of patent landscaping.

7.3.1. Improvements independent of the patent domain

Patent landscaping depends heavily on the input dataset. [3] proposes a neural-network-

based approach that expands the given seed dataset by following its citations outwards.
The model they developed then prunes the patents that are not directly relevant to the

seed’s topic. This results in a more complete dataset because it now contains related and

relevant documents that would have been omitted otherwise. Their approach would be

extremely useful as a part of the data acquisition phase before our data processing pipeline.

The data processing for our visualization at the moment involves one manual step that

is very in�uential for the result. It is the selection of suitable cut-o� values for the three

detail levels of hierarchical clustering. A single optimal clustering does not exist due to

the subjective human perception. This means a heuristic must be introduced that would

help �nd advantageous number and size of the clusters and possibly even the number of

levels of detail depending on the size of the dataset.

Our approach addresses the challenge of visual scalability as it allows the users to explore

hundreds to thousands of documents simultaneously. However, the computing power

available to us was not su�cient for a smooth operation when showing ca. 2600 documents

simultaneously. For large document collections, it would be immensely advantageous to

allow a graceful degradation of the functionality for a �uid performance. A balance must

be found between preserving the functionality and preserving an adequate response time.

Composing a document embedding out of word2vec embeddings is no longer state-of-

the art. There has been a number of promising approaches for context-sensitive word

embeddings or document embeddings such as paragraph2vec [61], ELMo [81], BERT [32]
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etc. We chose word2vec as a simple standard approach which proved to be successful.

Moreover, developing a new embedding method or training a model speci�cally for the

patent domain based on an existing approach was not in the scope of this work. However,

it might be worthwhile to compare di�erent word and document embedding methods.

Moreover, embedding di�erent parts of the text document separately (in our case, patent’s

claims and sections of description) might provide interesting insights.

Considering the key term extraction for single documents, a number of advanced algo-

rithms based on TF-IDF exist [66] [56]. Moreover, there are key term extraction methods

not based on TF-IDF, such as RAKE [88] and TextRank [71]. It might be worthwhile to

compare those algorithms to each other and to our straightforward implementation of

TF-IDF.

Our experiments showed that t-SNE is the most suitable dimension reduction method

at the moment. Its result, however, is dependent on the parameters of the algorithm,

especially the perplexity. With a change in perplexity local structures within the data

change their shape. It might prove valuable to let the user dynamically vary the perplexity

to see how the cluster shapes change. It would, however, require a waiting process because

the clusters and their key terms have to be generated anew.

We brie�y attempted to derive general key terms from speci�c ones with unsatisfactory

results. If one were to determine the exact meaning of a key term out of a multitude of its

contextual meanings (synset detection), it would open a possibility to reliably augment

cluster terms with hypernyms.

7.3.2. Patent-specific improvements

It came to our attention during the interviews with patent experts that added value patent

databases exist. Patent texts in them are rewritten in a concise way by trained professionals.

We assume that a semantic approach such as ours would perform signi�cantly better on

the data derived from such added value databases.

Inventors usually play a smaller role in the patent landscape than institutions. It could

be useful to automatically detect private persons and companies and possibly hide single

inventors for a less cluttered overview. A special case would be when a patent belongs

only to physical persons without association with any institution. One should not hide all

inventors to avoid showing patents without any single assignee. Alternatively, one could

aggregate such inventors into one group called “Miscellaneous” or “Others”.

There are certain patent properties that we did not take into account. One example is the

kind code which distinguishes between application, grant, search report, correction, etc.

and is build di�erently for each country. Citations can also be of di�erent types. It might

be pro�table for patent experts to be able to explore this information in addition to the

information we have already present.
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A. Appendix

A.1. Semi-structured interview questionnaire

Begrüßung - 3 Min

• Sick für die Zeit bedanken

• Vorstellung meiner Arbeit: Ich untersuche, wie man die Patent-Landscaping-Aufgabe

unterstützen kann. Ich werde eine Lösung zu der Datenverarbeitung, die hinter den

Kulissen passiert, anbieten, aber vor allem zu der Visualisierung. Mein Fokus liegt

auf der Interaktion - wie genau man das Wichtigste aus den Daten rausholen kann.

• Ziels des Gesprächs erklären: Ich möchte verstehen, wie man mit den Daten inter-

agiert. Nicht der Benutzer wird getestet, sondern das System. Es gibt keine richtigen

und falschen Antworten.

• Ich möchte gerne unser Gespräch aufnehmen - mit einem Mikrofon, aber ohne eine

Kamera. Das ist dazu da, dass wir frei reden können und ich nicht die ganze Zeit

nur am Notizenmachen bin. Die Aufnahme kann nach Wunsch jederzeit gestoppt

werden, genauso wie das ganze Interview. Dadurch entstehen dem Teilnehmer keine

Nachteile.

• Darlegen, wie die Daten benutzt werden: Ich werde anhand von der Aufnahme unser

Gespräch transkribieren und danach die Aufnahme löschen. Selbstverständlich

werden die Daten nicht an Dritte weitergegeben. Ich werde sie nur im Kontext

der Masterarbeit benutzen und möchte gerne das, was Sie sagen, in meiner Arbeit

zitieren.

• Haben Sie Fragen zur Organisation?

• Einverständniserklärung unterschreiben lassen

• Aufnahme starten

Aufwärmfragen - 5 Min

• Stellen Sie sich bitte vor.

• Was ist Ihr beru�icher Hintergrund (in welchen Branchen haben Sie gearbeitet, wie

lange)?

• Wie sieht Ihr typischer Arbeitsalltag aus?
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• Wie ist Ihr Verhältnis zur Technologie allgemein? Wie vertraut sind Sie mit Tech-

nologie?

• Wie lange beschäftigen Sie sich schon mit Patentenanalyse?

Hauptteil - 45 Min

• Welche Programme benutzen Sie normalerweise in der Arbeit? (zusätzlich zu STN

AnaVist)

• Wie ist die Aufteilung zwischen allen Tools (Zeit, Aufwand)?

• Können Sie mir bitte von ihrem letzten erstellten Landscape erzählen?

– In welcher Form kommt die Aufgabenstellung für ein Landscape?

– Welche Bedürfnisse haben die Kunden, die Landscapes beantragen?

– Wie lange dauert es, einen Patent Landscape Bericht zu erstellen?

– Wie viele Berichte haben Sie ca. schon erstellt?

– Wie umfangreich ist das Ergebnis?

– Welche Gra�ken (Typ, Achsen) kommen normalerweise in einem Bericht vor?

– Wie �nden Sie die passenden Suchanfragen?

∗ Wie lang und komplex sind die Anfragen?

∗ Wie viele Tre�er ergibt die Suche?

∗ Relevanz der Ergebnisse?

– Wie aussagekräftig sind die Beschriftungen der Cluster im Themescape?

– Gibt es mehrere Abstraktionsebenen bei der Suche? Wenn ja, wie unterscheiden

sie sich? (Sublandscapes)

– Worauf achten Sie bei der Aufgabe?

∗ Was für eine Bedeutung haben die Verbindungen zwischen einzelnen

Patenten (Zitierung, Patentfamilie, gemeinsamer Autor oder Assignee)?

∗ Was für eine Bedeutung hat die zeitliche Entwicklung?

∗ Was für eine Bedeutung hat die hierarchische Klassi�kation?

∗ Welchen Ein�uss hat Concept Frequency?

• Gibt es etwas, was Sie persönlich am existierendem System stört?

• Wie unterscheidet sich die Patentsuche für verschiedene Themengebiete? Gab es

Fälle, wo es besonders gut oder besonders schlecht funktioniert hat?

• Gibt es etwas, was Sie gelernt haben nach einigen erstellten Landscapes?

• Gibt es interessante Geschichten/Anekdoten, die sie teilen wollen?

• Haben Sie sich mit Menschen ausgetauscht, die andere Tools verwenden? Wie waren

ihre Erfahrungen?
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Ausblick für die Zukun� - 3 Min

• Was wäre ein perfektes System für Patent Landscaping?

• Abschluss - 3 Min

• Gibt es sonst etwas, was Sie mir mitteilen wollen?

• Haben Sie Fragen an mich?

• Bedanken und verabschieden

• Aufnahme stoppen

• Hauptgedanken notieren

A.2. SQL query for the 3D printer dataset

SELECT DISTINCT p.publication_number

FROM

‘patents-public-data.patents.publications‘ p

LEFT JOIN UNNEST(p.cpc) AS cpc_code,

UNNEST(p.title_localized) AS title,

UNNEST(p.abstract_localized) AS abstract,

UNNEST(p.ipc) AS ipc_code

WHERE

title.language = ’en’ AND abstract.language = ’en’

AND

(

REGEXP_CONTAINS(abstract.text, r’3D’) OR REGEXP_CONTAINS(title.text, r’3D’)

OR REGEXP_CONTAINS(abstract.text, r’3-D’) OR REGEXP_CONTAINS(title.text, r’3D’)

OR REGEXP_CONTAINS(abstract.text, r’3-dimension’)

OR REGEXP_CONTAINS(title.text, r’3-dimension’)

OR REGEXP_CONTAINS(abstract.text, r’3 dimension’)

OR REGEXP_CONTAINS(title.text, r’3 dimension’)

OR REGEXP_CONTAINS(abstract.text, r’three dimension’)

OR REGEXP_CONTAINS(title.text, r’three dimension’)

)

AND

(

REGEXP_CONTAINS(abstract.text, r’desktop’)

OR REGEXP_CONTAINS(title.text, r’desktop’)

OR REGEXP_CONTAINS(abstract.text, r’additive’)

OR REGEXP_CONTAINS(title.text, r’additive’)

)

AND

(

REGEXP_CONTAINS(abstract.text, r’print’)
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OR REGEXP_CONTAINS(title.text, r’print’)

OR REGEXP_CONTAINS(abstract.text, r’fabricat’)

OR REGEXP_CONTAINS(title.text, r’fabricat’)

OR REGEXP_CONTAINS(abstract.text, r’manufactur’)

OR REGEXP_CONTAINS(title.text, r’manufactur’)

)

AND

(

(

REGEXP_CONTAINS(ipc_code.code, r’B29C’)

OR REGEXP_CONTAINS(ipc_code.code, r’H01L’)

OR REGEXP_CONTAINS(ipc_code.code, r’G06F’)

OR REGEXP_CONTAINS(ipc_code.code, r’G02B’)

OR REGEXP_CONTAINS(ipc_code.code, r’B32B’)

OR REGEXP_CONTAINS(ipc_code.code, r’H05K’)

OR REGEXP_CONTAINS(ipc_code.code, r’B41J’)

OR REGEXP_CONTAINS(ipc_code.code, r’B41M’)

OR REGEXP_CONTAINS(ipc_code.code, r’G06T’)

OR REGEXP_CONTAINS(ipc_code.code, r’B44C’)

OR REGEXP_CONTAINS(ipc_code.code, r’B22F’)

OR REGEXP_CONTAINS(ipc_code.code, r’H04L’)

OR REGEXP_CONTAINS(ipc_code.code, r’G03F’)

OR REGEXP_CONTAINS(ipc_code.code, r’H04N’)

OR REGEXP_CONTAINS(ipc_code.code, r’C04B’)

OR REGEXP_CONTAINS(ipc_code.code, r’G05B’)

OR REGEXP_CONTAINS(ipc_code.code, r’G03B35’)

OR REGEXP_CONTAINS(ipc_code.code, r’A61’)

)

OR REGEXP_CONTAINS(cpc_code.code, r’B44C’)

)

AND NOT

(

REGEXP_CONTAINS(abstract.text, r’stereoscopic’)

OR REGEXP_CONTAINS(title.text, r’stereoscopic’)

OR REGEXP_CONTAINS(abstract.text, r’oxidation product’)

OR REGEXP_CONTAINS(title.text, r’oxidation product’)

OR REGEXP_CONTAINS(abstract.text, r’streaming interactive’)

OR REGEXP_CONTAINS(title.text, r’streaming interactive’)

OR REGEXP_CONTAINS(abstract.text, r’nanoweb’)

OR REGEXP_CONTAINS(title.text, r’nanoweb’)

OR REGEXP_CONTAINS(abstract.text, r’nano web’)

OR REGEXP_CONTAINS(title.text, r’nano web’)

OR REGEXP_CONTAINS(abstract.text, r’nanofiber’)

OR REGEXP_CONTAINS(title.text, r’nanofiber’)

OR REGEXP_CONTAINS(abstract.text, r’nanofibre’)
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OR REGEXP_CONTAINS(title.text, r’nanofibre’)

OR REGEXP_CONTAINS(abstract.text, r’nano fiber’)

OR REGEXP_CONTAINS(title.text, r’nano fiber’)

OR REGEXP_CONTAINS(abstract.text, r’nano fibre’)

OR REGEXP_CONTAINS(title.text, r’nano fibre’)

OR REGEXP_CONTAINS(abstract.text, r’nanometer fiber’)

OR REGEXP_CONTAINS(title.text, r’nanometer fiber’)

OR REGEXP_CONTAINS(abstract.text, r’nanometer fibre’)

OR REGEXP_CONTAINS(title.text, r’nanometer fibre’)

OR REGEXP_CONTAINS(abstract.text, r’non halogen’)

OR REGEXP_CONTAINS(title.text, r’non halogen’)

OR REGEXP_CONTAINS(abstract.text, r’non-halogen’)

OR REGEXP_CONTAINS(title.text, r’non-halogen’)

OR

(

(

REGEXP_CONTAINS(abstract.text, r’food’)

OR REGEXP_CONTAINS(title.text, r’food’)

OR REGEXP_CONTAINS(abstract.text, r’feed’)

OR REGEXP_CONTAINS(title.text, r’feed’)

OR REGEXP_CONTAINS(abstract.text, r’liquid’)

OR REGEXP_CONTAINS(title.text, r’liquid’)

OR REGEXP_CONTAINS(abstract.text, r’rheolog’)

OR REGEXP_CONTAINS(title.text, r’rheolog’)

)

AND REGEXP_CONTAINS(abstract.text, r’additive’)

OR REGEXP_CONTAINS(title.text, r’additive’)

)

OR REGEXP_CONTAINS(abstract.text, r’seed culture’)

OR REGEXP_CONTAINS(title.text, r’seed culture’)

OR REGEXP_CONTAINS(abstract.text, r’nanometre fiber’)

OR REGEXP_CONTAINS(title.text, r’nanometre fiber’)

OR REGEXP_CONTAINS(abstract.text, r’nanometre fibre’)

OR REGEXP_CONTAINS(title.text, r’nanometre fibre’)

OR REGEXP_CONTAINS(abstract.text, r’antibacteria’)

OR REGEXP_CONTAINS(title.text, r’antibacteria’)

OR REGEXP_CONTAINS(abstract.text, r’media access control’)

OR REGEXP_CONTAINS(title.text, r’media access control’)

OR REGEXP_CONTAINS(abstract.text, r’multi-wafer 3D CAM cell’)

OR REGEXP_CONTAINS(title.text, r’multi-wafer 3D CAM cell’)

OR REGEXP_CONTAINS(abstract.text, r’3-sigma’)

OR REGEXP_CONTAINS(title.text, r’3-sigma’)

OR REGEXP_CONTAINS(abstract.text, r’three sigma’)

OR REGEXP_CONTAINS(title.text, r’three sigma’)

OR REGEXP_CONTAINS(abstract.text, r’vibration isolator’)
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OR REGEXP_CONTAINS(title.text, r’vibration isolator’)

)

GROUP BY p.publication_number, title.text, abstract.text;

A.3. SQL query for the contact lens dataset

SELECT DISTINCT

REGEXP_EXTRACT(LOWER(p.publication_number), r’\w+-(\w+)-\w+’) as pub_num

FROM

‘patents-public-data.patents.publications‘ p,

UNNEST(p.title_localized) AS title,

UNNEST(p.abstract_localized) AS abstract,

UNNEST(p.ipc) AS ipc_code

WHERE

title.language = ’en’

AND abstract.language = ’en’

AND (

REGEXP_CONTAINS(abstract.text, r’contact lens’)

OR REGEXP_CONTAINS(title.text, r’contact lens’)

)

AND (

ipc_code.code = ’G02C7/00’ OR ipc_code.code = ’G02C7/02’

OR ipc_code.code = ’G02C7/04’ OR ipc_code.code = ’G02C7/06’

OR ipc_code.code = ’G02C7/08’ OR ipc_code.code = ’G02C13/00’

)

AND p.country_code = ’US’

GROUP BY p.publication_number, title.text, abstract.text;

A.4. Plan for the summative study

1. Einführung - 10 Min.

2. Aufgabenteil 1 - 20 Min.

Lösen Sie bitte folgende Aufgaben. Versuchen Sie dabei laut zu denken und Ihre

Vorgänge zu beschreiben.

a) Welche IPC-Klassen (auf Section-Ebene, 1 Buchstabe) treten oft zusammen

auf?

b) In welchem Zeitintervall entwickelt sich der Bereich G02C13 (Zusammenbau,
Reparatur und Reinigung der Kontaktlinsen) aktiv?

c) Wählen Sie einen Assignee aus den 3 größten. Kooperiert diese Einrichtung viel

mit anderen? Wenn ja, sind es eher andere Einrichtungen oder Privatpersonen?
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d) Vergleichen Sie den zeitlichen Verlauf der Anmeldeaktivität von Johnson &
Johnson Vision Care und Bausch & Lomb.

e) Vergleichen Sie, in welchen IPC-Bereichen Novartis AG und Johnson & Johnson
Vision Care aktiv sind.

f) Navigieren Sie durch Verschieben und Reinzoomen in den Datensatz rein und

wieder raus und beurteilen Sie dabei die Lesbarkeit der Beschriftungen bei

unterschiedlichem Detaillierungsgrad.

Füllen Sie bitte den Fragebogen zur Benutzbarkeit aus.

3. Aufgabenteil 2 - 20 Min.

Lösen Sie bitte folgende Aufgaben. Versuchen Sie dabei laut zu denken und Ihre

Vorgänge zu beschreiben.

Ansatz 1

a) Für diese Teilaufgabe bitte Hierarchie oben links auf „Country” um-
schalten. Finden Sie den Bereich / die Bereiche mit Patenten über farbige

Kontaktlinsen

b) Finden Sie den Bereich / die Bereiche mit Patenten über Kontaktlinsen mit

elektronischen Komponenten (“Smart”e Kontaktlinsen)

c) Beschreiben Sie kurz die groben thematischen Bereiche im Datensatz (Große

Cluster) mit eigenen Worten. Beurteilen Sie die Platzierung der Bereiche

zueinander.

Füllen Sie bitte den Fragebogen zum Vergleich der Ansätze aus.

Schalten Sie bitte nun in der linken oberen Ecke den Ansatz um – wenn bis
jetzt A eingestellt wurde, dann auf B umschalten, und anders rum.

Ansatz 2

a) Für diese Teilaufgabe bitte Hierarchie oben links auf „Country” um-
schalten. Finden Sie den Bereich / die Bereiche mit Patenten über Reinigung

der Kontaktlinsen

b) Finden Sie den Bereich / die Bereiche mit Patenten über Bestellungssysteme

für Kontaktlinsen (es geht um die Interaktion mit dem Kunden, also Diagnose,

Bestellung z.B. als Abo, Anpassung des Rezepts etc.)

c) Beschreiben Sie kurz die groben thematischen Bereiche im Datensatz (Große

Cluster) mit eigenen Worten. Beurteilen Sie die Platzierung der Bereiche

zueinander.

Füllen Sie bitte den Fragebogen zum Vergleich der Ansätze aus.

4. Besprechung der Ergebnisse - 10 Min.
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A.5. Comparison of extracted terms for semantic and baseline
approaches

The tables are in the descending order sorted by size of the dataset. Matching terms are

emphasized in bold.

Table A.1.: Comparison of cluster key terms for both approaches. Diesel engines dataset

No

Top 15 key terms per approach

Semantic Baseline

1 electrode, tube, reactor, module, con-
duit, plasma, exchanger, heat ex-
changer, work vehicle, burner, ar-
rangement, egr, duct, cleaning, dosing

electrode, tube, burner, reactor, con-
duit, module, plasma, work vehicle,

exchanger, heat exchanger, cleaning,

duct, arrangement, electrodes, bracket

2 s_number_, exhaust puri�cation, pu-
ri�cation apparatus, forced regenera-
tion, control apparatus, abnormality,

mode, selective reduction, reduction

catalyst, particle �lter, diagnosis, judg-

ment, accumulation amount, injection con-

trol, purifying system

s_number_, puri�cation apparatus,
urea, reductant, exhaust puri�cation,

egr, urea water, control apparatus,
forced regeneration, abnormality,

selective reduction, purifying system,

dosing, particle �lter, mode

3 ceramic honeycomb, honeycomb
�lter, mat, article, plugging, plugged
honeycomb, honeycomb segment,
honeycomb structural, bonding, seg-
ments, structural, bonding material,
honeycomb structured, structured
body, porous body

ceramic honeycomb, mat, honey-
comb �lter, plugging, honeycomb
structural, plugged honeycomb, hon-
eycomb segment, structural, article,

bonding, segments, pollution control,

bonding material, structured body,

honeycomb structured

4 lubricating, lubricating oil, oil com-
position, catalyst composition, wash-
coat, puri�cation catalyst, compos-
ite oxide, zeolite, composite, compo-
sition, purifying catalyst, molecular
sieve, platinum group, support material,

zone

lubricating, lubricating oil, oil com-
position, catalyst composition, wash-
coat, zone, composite oxide, zeolite,

composite, composition, puri�cation
catalyst, molecular sieve, acid, purify-
ing catalyst, sieve

A.6. Figures
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Table A.2.: Comparison of cluster key terms for both approaches. Video codec dataset

No

Top 15 key terms per approach

Semantic Baseline

1 intra prediction, split, chroma,

luma, quantization parameter,
�ltering, depth, strength value, �lter
strength, coding units, prediction
mode, prediction modes, mpm,

scanning, block boundary

split, �ltering, depth, strength value,

coding units, �lter strength, maximum

coding, block boundary, pixels block,

strength, successive pixels, boundary, split

information, transformation unit, transfor-

mation

2 intra prediction, chroma, merge, candi-
date, luma, quantization parameter, tar-

get, merge candidate, predictionmode, pre-
dictionmodes, mpm, target block, samples,

motion information, pair

3 string, video picture, unequal,
header information, packets,
frames, code table, compressed,

referenceable, order value, event,

bidirectional, length code, image data,

identi�er

scanning, layer, unequal, string, header
information, video picture, compressed,

packets, context model, code table, model,

scanning pattern, referenceable, object,

frames

4 rounding, rounding information,
bilinear interpolation, bilinear,
prediction image, current frame,
coded information, synthesizing
prediction, synthesizing, encoded
bitstream, bitstream current, dct
coe�cients, dct, frame current,
values speci�es

rounding, rounding information, bi-
linear interpolation, bilinear, current
frame, prediction image, coded informa-
tion, synthesizing prediction, synthesiz-
ing, encoded bitstream, bitstream cur-
rent, dct coe�cients, dct, frame current,
values speci�es

5 located block, target, candidate,

reference frame, vector predictor,

merge, list, picture index, neighbor-
ing blocks, target block, weighting,

vector located, decoded picture,

merge candidate, layer

located block, reference frame, picture
index, vector located, weighting, predic-

tive block, picture list, list motion, frame pic-

ture, neighboring blocks, list, predictive

image, vector predictive, weighting factor, de-
coded picture
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Table A.3.: Comparison of cluster key terms for both approaches. 3D printer dataset

No

Top 15 key terms per approach

Our comments
Semantic Baseline

1 resin, ink, curable, pow-

der, precursor, composition,

reactive, water, monomer,
slurry, parts, particulate, arti-

cle, diluent , polymerizable

resin, ink, mold, cur-
able, precursor, sheet, re-
active, water, monomer,
slurry, molding, composi-
tion, cement, composite, ce-

ramic

Materials for printing, es-

pecially resin

2 �lament, build, mold, noz-
zle, cooling, powder, print,
sheet, dielectric, component,

cavity, module, print head,

head, channel

�lament, build, powder,
_number_d printer, nozzle,

print, cooling, build ma-

terial, dielectric, desktop,

head, print head, channel,

interconnect, printing de-

vice

Printing process and ma-

terials for printing, espe-

cially plastic �lament

3 implant, bone, dental, pa-

tient, teeth, anatomy, distal,

oral, digital model, custom,

mold, jaw, porous, denture,

graft

implant, pliim, pliim
based, planar laser, laser
illumination, image
detection, plib, image
formation, detection,

supportable, bone,

detection array, dental,
teeth, _number_d model

3D-printed dental

prosthetics and other

medical applications.

PLIIM stands for Planar

Laser Illumination and

Imaging which is used in

3D scanning

4 pliim, pliim based, planar
laser, laser illumination,

image detection, plib, im-
age formation, detection,

supportable, detection ar-
ray, _number_d object, virtual,

communications, simulation,

information
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Table A.4.: Comparison of cluster key terms for both approaches. Hair dryer dataset

No

Top 15 key terms per approach

Semantic Baseline

1 circuit, temperature, power, hot air,

appliance, generator, casing, current,
barrel, voltage, speed, cord,

channel, air�ow, sensor

circuit, power, temperature, �lter, cord,

speed, battery, sensor, blower, light, source,

system, current, power cord, blow dryer

2 barrel, generator, blow dryer, channel, ion,

blow, attachment, unit, air�ow, voltage,

bottom, holder, portable, stand, frame

3 assembly, head, blow, attachment, ap-

paratus, hood, blow dryer, bottom,

shell, arm, top, barrel, plate, holder,

con�guration

apparatus, assembly, hood, head, duct, ac-

cordance, shell, chamber, valve, conduit,

grip, arm, pivot, tubular, mounting

4 �uid, hairdryer, path, appliance,

duct, emitting, sleeve, liquid, ion, com-

ponents, water, �xed, combination, hol-

low, results

di�user, plate, duct, �uid, hot air, shell,

connector, attachment, external, hairdryer,
path, appliance, face, sheet, plastic

5 vanes, duct, impeller, casing, di�user,

ring, plate, outlet opening, tubular,

guide, hood, shaft, blow dryer, inlet

opening, barrel

casing, impeller, wire, chamber, vanes,
tube, longitudinal axis, longitudinally, port,

guide, extension, axial, part, duct, plate
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(a) Non-metric MDS (b) Metric MDS

(c) Isomap. Straight lines represent patent families. (d) PCA

Figure A.1.: A comparison of dimension reduction techniques applied to the video codec

dataset.
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(a) Non-weighted average

(b) Weighted average

Figure A.2.: A comparison of document vectors computed with and without IDF weighting.

Contact lens dataset.
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(a) Contact lens dataset

(b) Diesel dataset

Figure A.3.: Distributions of text length after stopword removal
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