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Abstract. Materials are either enabler or bottleneck for the vast major-
ity of technological innovations e.g., fighting climate change or resource
scarcity. Efforts for digitizing materials and processes have recently be-
come mainstream. However, open challenges in the digitization of Ma-
terials Science and Engineering (MSE) involve the multidisciplinarity
of the field, the nonlinear multi-scale structure-properties relations, and
the spatial inhomogeneity of the material in a component. For address-
ing these challenges the scientific community has recently been mobilized
to create material digital representations and models which are able to
describe materials changes (e.g., physical), and at the same time allow to
reconstruct all structural levels of the materials. A common standard for-
malization for materials knowledge in the form of taxonomies, ontologies
or knowledge graphs has not yet been achieved. This paper sketches the
process-structure-property dependencies for a simplified use-case of ten-
sile testing and the evaluation of the mechanical properties of elements
from a cast component. It describes first steps towards designing a do-
main ontology and the ontology design challenges posed by the domain
of Materials Science.
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1 Introduction

The discipline Materials Science and Engineering (MSE) promises solutions to
modern societal challenges, including climate change and resource scarcity. How-
ever, the complexity of materials’ life cycles and their diversity pose a challenge
in the field of MSE. Aims, such as accelerated materials development, flexible
production as well as efficient component use in future applications will require
a change in how we manage knowledge about materials.

Many experiments are conducted to study materials’ behavior, generating a
huge amount of data that describes the variation of their properties throughout
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specific processing chains. For example, a heat treatment can be described as a
sequence of the sub-processes annealing, quenching and aging. Each of these sub-
processes has an effect on the material’s inner structure and thus its properties,
which can be described on different granularity levels:

– The continuum level, which includes the entire geometry consisting of a
specific material,

– the mesoscopic level, including multiple grains,

– the microscopic level, looking at single grains,

– the nano level, involving individual features like dislocations,

– and the atomistic level, referring to the atomic structure of the constitutional
matter.

Modelling this data with formal semantics is still an open challenge within
the field of MSE. In datail, one must consider numerous facets such as multi-
disciplinarity or spatial inhomogeneity, which make it difficult to come up with
standardized models. In addition, challenges arise in the representation of dy-
namic events that occur when materials change their state due to manufactur-
ing processes. Existing models usually include analytical equations, numerical
models or are implemented into data driven material models. However, efforts
which have been undertaken to introduce digital representations are typically
non-standard, and often rely on single implementations, which are difficult to
maintain and reuse over time. More precisely, a common standard representa-
tion for material knowledge in the form of taxonomies, knowledge graphs, or in
well defined and formal data structures has not been achieved yet. Currently, the
literature provides MSE knowledge exclusively without a defined and clear struc-
ture, and thus takes a certain human effort for its employment within modern
technological infrastructures. Resulting information given by plain text is hardly
processable by machines since it is not stored in a structured way and presents
issues related to the ambiguity of the natural language. In a world with ever
growing masses of knowledge, a standardized way for its explicit representation
is hence highly necessary.

Representing knowledge by means of formal symbolic representations (e.g.
ontologies) allows structured digitized information, which may be made avail-
able for queries by experts, enabling the sharing and reuse of knowledge about
material transformations within manufacturing processes. For example, a query
can be a request of material information at any desired position of the compo-
nent linked to process parameters including the entire workflow and covering all
available material properties. The basic purpose of a formal representation in
MSE is therefore to provide comprehensive material data at varying positions
of a component and link this data to the process history, which the material
has experienced at this particular position. Perspectively, the resulting compre-
hensive data querying provides a chance to feed increasingly more sophisticated
statistical applications, such as machine-learning, for deriving completely novel
scientific insights [7].
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In this paper, we introduce our first efforts within the project Platform Ma-
terialDigital5 (PMD). We aim to design and implement an ontology for MSE,
which regards processes and their effects on different materials granularity levels
in order to model and make structured data about materials and experimental
results through semantic technologies available. More precisely, in this work, our
goal is to model the semantics behind a specific use case of the multidimensional
interaction between material-changing processes and material properties. Fur-
thermore, this paper reports the experience between ontology and MSE experts
to even learn how to jointly enable the creation of such a formalized structure
in the most effective and appropriate way.

To sum up, the contribution of this paper is twofold:

– We describe our methodology to model the workflow of the manufacturing
process of a component and the subsequent specimen extraction for a tensile
test by semantic technologies.

– We discuss open issues and possible solutions for modelling materials and
processes with ontologies.

This paper is structured as follows: Section 2 gives an overview of existing
efforts towards a unified ontological description for the MSE discipline. Section
3 continues by thoroughly describing the aimed use case that we consider for de-
veloping an application ontology. Section 4 describes the modelling constraints
and system boundaries of this use case for representing the regarded MSE char-
acteristics. Section 5 closes and points to our future work.

2 Related Work

In the last years, there have been already attempts on the development of on-
tologies, taxonomies and metadata schemata for the Materials Science field. For
example, authors in [4] have developed the MatONTO ontology aiming at rep-
resenting materials, properties, structures, and processes stages involved in ma-
terials engineering. MatONTO is developed upon DOLCE [6] a top ontology en-
abling its reusability and cross-domain integration. Moreover, it leverages some
of the already existing domain ontologies [8] by extending it and combining its
concepts into a common semantic framework. In [9] the authors developed Ma-
tOWL ontology based on the MatML schema to enable a seamless data integra-
tion and sharing. In [2], the authors developed the Materials Ontology (MatOnt)
specific to material representation including the material and manufacturing pro-
cesses. The Tata Consultancy Services6 developed the Premap ontology [3] in
order to support the designing of manufacturing processes, and identification of
optimal design of parameters to ensure satisfaction of products specifications.
However, these efforts do not always comply with the scope of an ontology which
entails the adoption of standardized rules and logics, formalisms, common con-
ceptualization and strong classification and typing, posing a challenge in terms

5 https://www.material-digital.de/
6 https://www.tcs.com/
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of interoperability. This issue is currently being addressed by several commu-
nities including the European Materials Modelling Council7 (EMMC) and the
Research Data Alliance8 (RDA), which are making efforts towards a common
standardization in Materials Science. In particular, EMMC has developed the
European Materials & Modelling Ontology 9 (EMMO) that provides a common
semantic framework for describing materials, models and data with the possi-
bility of extension and adaptation to any other domain of interest. However,
the current version of EMMO focuses on high level properties of materials and
manufacturing processes, and novel ontologies or extensions to model specific
use cases are required. In particular, EMMO is not well suited to be employed
to query information systems in order to retrieve material information about
properties in relation to specific manufacturing processes parameters. It’s un-
derlying topdown design approach based on the Basic Formal Ontology (BFO)
as an upper ontology impedes query efficiency [1]. Therefore, in this introductory
work we present our bottom-up approach describing which are the challenges in
representing low level properties of materials and their changes when materials
undergo manufacturing processes.

3 Use Case Scenario

Our considered use case covers a chain of material-relevant processes starting
from a casted wrought material via the heat treatment up to a tensile test
conducted at a specimen extracted from a ready-to-use cylinder head of a car
engine. The component’s material is assumed to be the hardenable aluminum
alloy AlSi7Mg (EN AC-42000).

Figure 1(a) shows the facilitated model of the considered 4-cylinder double
overhead camshaft engine. The cylinder head is mounted on top of the engine
block and contains the intake and exhaust valves, which act as a sealing cap to
the cylinder during the combustion cycle. At the top of the cylinder head, two
camshafts are mounted which manage the timing of the valves. The camshafts
are not displayed, but their forces are modelled to the respective boreholes of
the camshaft mount. Accordingly, the maximum in-service stresses occur at so
called hotspots, which are located in the area near the camshaft mount and the
boreholes of the mounting bolts of the cylinder head to the engine block. They
are derived by a basic finite element simulation (see Figure 1(b)). Generally,
a tensile test is aiming to gather the material’s mechanical properties at these
hotspots to allow for an accurate fatigue assessment of the component.

In some cases it may be difficult or impossible to access the material proper-
ties at these hotspots due to the geometric requirements of the standard tensile
test specimen. Therefore, the mechanical properties can be derived by interpo-
lation or extrapolation of testing results at different positions of the component.
Due to the variation of locally experienced process parameters throughout the

7 https://emmc.info/
8 https://www.rd-alliance.org/
9 https://github.com/emmo-repo/EMMO
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(a) (b) (c)

Fig. 1. (a) Schematic model of a cylinder head of a common DOHC car engine. (b)
Simulated in-service stresses of the cylinder head model. (c) Exemplarily, temperature
field in the cross section of the cylinder head model during the heat treatment process.

component, the respective material properties are assumed to be heterogeneous.
Exemplarily, Figure 1(c) shows the temperature field of the component during
the heat treatment process, as indicated by the rainbow spectrum. The locally
experienced temperature history of the material diverges significantly not only
from the nominal temperature of the oven but also of the average temperature of
the component, which therefore leads to locally individual material properties.
This example illustrates the complexity of a comprehensive description of process
parameters and the according challenge of data gathering and distinction.

Tensile tests are a frequent and well understood materials testing and char-
acterization method. A specimen of defined material and standardized geometry
is elongated up to its rupture. The history of the reaction force and the elon-
gation during the tensile test are the basis for the resulting stress-strain curve.
The stress-strain curve, as shown exemplarily in Figure 2, gives access to rele-
vant information about the material’s mechanical properties such as its Young’s
modulus, yield strength or ultimate tensile strength, which are important for
component manufacturers and designers of any industrial background. When
interpreting the mechanical properties determined by the tensile test, previous
workflow steps of the component’s lifetime must be considered. Variations within
the component’s manufacturing process lead to varying material properties.

Overview of considered process and system boundaries: For the cylinder
head’s manufacturing, we consider the material to be in a post-casted state and
disregard any variations in commodity sourcing, which may also have an influ-
ence on the materials properties . The specimen’s workflow involves the following
processes (semantic concepts to be included in the ontology are exemplarily given
in cursive):

– Heat treatment of the component is supposed to optimize the material’s
structure and thus its properties (for example to increase the tensile strength
by precipitation hardening). A heat treatment consists of further sub-processes:
• solution annealing, alloying elements are dissolved at high temperature.
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Fig. 2. Example of a stress-strain curve.

• quenching, fast cooldown to room temperature, generally by water.
• aging, storage at room temperature or at moderate higher temperature

to enable segregation processes.
– Specimen extraction from the ready-to-use component and its processing to a

standardised geometry of a tensile test specimen, including the subprocesses:
• extraction of a block of material from the component at a desired position
• turning process according to the geometric requirements of a standard

specimen
• grinding process (optionally) to reach the required surface quality (rough-

ness).
– Tensile test

At each of these steps, the material experiences a set of factual process pa-
rameters, which variously affect its properties. The extent of these effects de-
pends on the parameters’ particular values as well as on the material state and
properties of the material’s previous stage. The result of the entire process chain
can be accessed by the tensile test at the end of the workflow. This disregards
other characterization methods that could be applied to derive the material’s
properties, e.g. hardness testing or microscopy.

4 Materials Science Perspectives for Ontology Design

As for any digital representation of physical phenomena, one has to define the
model’s system boundaries. The project aims to define an ontology that repre-
sents the workflow described above including the consideration of MSE knowl-
edge. Generally, we consider our workflow to be an alternating chain of objects
and processes of which the latter lead to changes in the status of the object (ma-
terial properties and structure) according to the individual process parameters
(Figure 3).
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Fig. 3. Alternating chain of manipulated objects and processes within the system
boundary.

Every process comes with its own parameters that represent all the regarded
variables, under which a specific process can be distinguished. The decision,
which parameters to regard, is up to the ontologist and should theoretically
incorporate all relevant factors as known by domain experts. Furthermore, pa-
rameters must be well distinguished between the nominal (“desired” by engineer-
ing design), the environmental and the factual (“experienced”) parameters. The
factual parameters are the result of the composition of the nominal, technologi-
cal and the environmental parameters. For example a heat treatment might be
supposed to be conducted under a certain nominal temperature. However, due
to the oven’s poor calibration and additional environmental effects the locally
experienced temperature history generally diverges from the control input.

We proceed by disregarding time as its own continuous dimension and replace
it with the workflow, which is the chain of processes happening at discrete time
points10. Generally, an object leaving one process is therefore assumed to be
identical to the one entering the next process. This leads to further assumptions
since everything not explicitly represented in the workflow chain is disregarded.
However, for example storage times under specific weather conditions, rough
transport conditions or further thinkable scenarios that the practical world en-
counters do have an influence on a material. Theoretically, one would thus have
to incorporate these scenarios as additional processes along the workflow or add
them to one of the others. The workflow-representing part of our ontology starts
after the completion of the casting process with a wrought material component
at room temperature. An expansion of this framework to include the casting pro-
cess or the chemical composition of the material and its variation by sourcing
parameters is possible.

We consider process parameters to have various effects on the material, which
can be described on the different granularity levels. While basically all effects can
be comprehended on a material’s atomistic level, this representation does not
lend itself to the description of macroscopic behaviour. In fact, all the structural
granularity levels cover different features related to a material’s properties. This
relation between the structure of a material, which is affected by its experienced

10 However, regarding time is possible via its consideration as an individual process
parameter, like e.g. the process duration.
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history (processing) and its interlinked properties and performance is the key
in incorporating domain knowledge of MSE. This interaction is illustrated in
Figure 4. A weak back coupling from the materials properties to the process is
possible. For example during cutting, the materials surface hardness can undergo
changes through plastic deformation increasing the required process energy to
cut the sample.

Fig. 4. Modelled interactions between processes, material structure and material prop-
erties according to materials science knowledge.

The solution to the problem of locally heterogeneous process parameters and
thus material properties throughout the component can be derived by separating
the component into a certain number of volumetric sub-areas, so called voxels.
Therefore, the voxel becomes the object of the ontology and describes the con-
ditions of the material with its individually experienced process parameters. If
the description of a larger volumetric area of the component or even of its entire
volume is desired, the ontology can be iterated over the relevant voxels regarding
their respective local factual parameters. The size of the voxels and thus the res-
olution of the diverse description of the volumetric area has to be set according
to the granularity level of the considered material properties. The technique to
divide a component into several volumetric areas is well known e.g., from finite
element (FE) modelling.

Additional to the implications of processes and their parameters on a voxel,
traditional materials science theory, including physics and engineering, provides
us with what we call intrinsic dependencies of different material properties. For
example, the size and orientation of the grains in the microstructure affects the
elastic behavior of the material. Many of these intrinsic dependencies are de-
scribed in the literature qualitatively and in some cases even quantitatively by
formulas. These dependencies allow to regard process effects on material proper-
ties indirectly via a well described process effect on a different structural granu-
larity level. Therefore, materials science knowledge can help us to get more out of
our mere measurements by consideration of the incorporated interdependencies.
We aim to integrate equations in the sense that we introduce an ontological rela-
tionship called X “influences” Y, initially adding formulas exclusively according
to their qualitative sense. Prospectively, numerical interdependencies shall be
integrated in the knowledge graph in a processual manner.
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5 Conclusions and Outlook

The setup to implement MSE into an ontology that represents a chain of techni-
cal processes has been discussed exemplarily. This was done according to the use
case of a manufacturing workflow of a cylinder head component and a subsequent
tensile test workflow of the component’s material. The basic aim is the structured
storage of all relevant knowledge including the dependency between material ef-
fects and process parameters as well as the consideration of the component’s
geometry. This aim led to the need for digitization of the relevant processes and
of all available material effects on the different granularity levels. To define our
system boundaries we distinguish between a workflow dimension and a material
structure and properties dimension. The workflow dimension includes all rele-
vant processes from an MSE point of view, ranging from the starting point of a
wrought cylinder head material via the heat treatment to the tensile test work-
flow with the extraction and generation of a standardized tensile test specimen.
The system boundaries in the material structure and properties dimension in-
clude the different granularity levels from the continuum to the atomistic level.
In the ontology, we consider the workflow to be an alternating chain of objects
that describe the material status on all granularity levels and processes, of which
the latter lead to changes in the status of the material and thus of the informa-
tion stored in the object. The component is separated into a certain number of
volumetric sub-areas, so called voxels, since the factual process parameters nat-
urally vary throughout the components volumetric area. Therefore, the object
introduced above gives information only for the single voxel of material defined
at a local position of the component. An iteration over several voxels enables a
description of a larger volumetric area of the component. To provide a practical
benefit, a capable MSE ontology needs to allow for comprehension of its various
relevant dimensions. Therefore, this approach discusses the numerous necessary
modelling considerations and enriches mere process and entity description with
available domain knowledge. The benefit of a knowledge-describing ontology in
MSE is to provide structured digitized information, which simplifies data access
via expert queries. Such a query is defined as a request of data covering all avail-
able material properties related to process parameters by considering the entire
workflow at any desired position of the component.

Perspectively, the structured data can be queried, for example within the
Platform MaterialDigital (PMD), by an individual expert, as well as by a soft-
ware agent, which might represent a digital twin of a component. The future
work based on this paper would be the realization of the introduced approach
for an ontology within the defined system boundaries. After the validation of
the ontology by the application of real data, it may be transferable to other use
cases. Combining observations with strongly supported scientific theory vastly
increases the variety of options to predict a system’s yet unobserved or entirely
unobservable parameters, for example by relying on grey-box models [5]. In turn,
this promises a strongly accelerated gain of new insights, while depending on
much smaller amounts of data than what current AI requires.
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