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The SARS epidemic

In this second contribution, we will focus on the epidemic of Severe Acute Respiratory Syndrome (SARS)
caused by the Coronavirus SARS-CoV. This epidemic started on November 2002. We will review antecedents of
this disease, look at two epidemiological models and discuss some of the measures taken during that period of
time. 

1 Summary

• In the first case, a model of SARS containing five different classes of individuals was considered. The
model was fitted to the existing data at that moment in order to study the influence of patient isolation
and diagnostic rate. The effect of quarantine was not explored. The differences observed in the dynamics
of different regions are attributed to a good diagnostic rate and an efficient isolation of patients. This
model is most sensitive to two parameters: the effectiveness in the isolation and the diagnostic rate. The
lack of a large amount of data and the high sensitivity of these parameters make difficult for this model
to predict the long-term impact of SARS.

• The second model of SARS was developed some years after the epidemic. It studies the impact of
quarantine  and isolation strategies. The numerical simulations performed here show that isolation
strategies are very critical at an early stage of the epidemic. Suboptimal strategies provide similar results
as the optimal (more restrictive and somehow less practical) strategies.

• Models are simplifications and partial descriptions of reality. They contain assumptions that imply certain
idealization and approximation of phenomena. The language of mathematics allow us to formulate the
behavior of an epidemic in a precise and concise way. The robustness of a model is a measure of how
well the assumptions of the model correspond to reality. We evaluate the robustness of the predictions
by studying different models.

2 Some antecedents on SARS

According to estimates of the World Health Organization (WHO) around 8,096 individuals were infected with
SARS and 774 deaths were registered due to SARS in 55 countries [5]. The symptoms of SARS are very similar
to those caused by many common respiratory pathogens (influenza viruses, Mycoplasma pneumoniae, Coxiella
burnetii, etc.). In order to achieve an accurate diagnosis, the following symptoms were considered as clinical
evidence of SARS [5]: documented fever  ≥ 38 ◦C,  one or more symptoms of lower respiratory tract illness
(cough,  difficulty  breathing, shortness of breath), radiographic evidence of lung infiltrates consistent with
pneumonia, and the fact that no other alternative diagnosis can fully explain the disease. The diagnosis of SARS
in the laboratory was mainly achieved by reverse transcription polymerase chain reaction  (RT-PCR)  from at
least two different samples. This same method is used at the present time for testing the virus SARS-CoV-2.
Serological tests were also developed and performed for SARS.

It is believed that the SARS-CoV virus is an animal virus that crossed to humans, when more contact between
animals and persons took place, allowing the exposure to the virus to increase, and the virus to adapt [ 1]. The
natural reservoir of SARS-CoV has not been identified yet but a number of wildlife species have been shown to
be infected with a related coronavirus.

The first case of SARS occurred in November 2002 in the Chinese province of Guangdong. It was at the end of
February 2004 that the SARS spread worldwide when a doctor of Guangdong infected several individuals at a



hotel  in Kowloon, Hong Kong. Later, the disease spread by air travel. It is also known that short visits to
epidemic regions resulted in infections. The outbreak of SARS was taken under control at the end of 2003, the
last reported human chain of infection was broken in July 2003. However, separate outbreaks of SARS appeared
later  in  Singapore,  Taiwan and China. Three of these outbreaks were attributed to breaches in laboratory
biosafety [5]. SARS posed a serious threat to the medical community because of the high number of infected
health-care workers. This disease had also a severe adverse economic effect in some regions of East Asia; it was
actually worse than the previous disruptions caused by the avian influenza [4].

3 A SEIJR compartmental model for SARS

Many papers studying SARS appeared in 2003, many of them in Chinese journals, which were poorly available to
international researchers. Most of the research of the virus took place in China, where the SARS epidemic hit
the hardest.
In the last contribution we considered a model with susceptible, infected and recovered individuals. We will
now explore a more complicated model with susceptible, exposed, infected, diagnosed, and recovered classes
of individuals, which in the literature is known as "SEIJR". This particular model was developed by Chowell et al
[2] based on data from Toronto, Hong Kong and Singapore. It was observed that the epidemic dynamics for
Hong Kong and Singapore appeared to be different from the dynamics in Toronto, Ontario. The difference
could be attributed to variations in contact rates, age-dependent susceptibility or unknown "genetic" (or other)
factors. To handle this situation the  authors  introduce  two  different  susceptible  classes:  S1 the  most
susceptible  and  S2 the  less  susceptible,  which  reflects  more the reality since human populations are
heterogeneous. People are more susceptible because of preexisting health conditions or because they live in
an epidemic zone. The compartmental model they proposed is given by  a  system  of  ordinary  differential
equations:

The total of the population is N = S1 + S2 + I + J + R. At the beginning, S1 = ρN and S2 = (1 −ρ)N ,
where ρ is the proportion of the population that is at higher risk of getting infected. Parameter p is a measure
of reduced susceptibility to the infection in class S2. β is the transmission rate per day. Class E denotes the
"exposed"  individuals, asymptomatic but possibly infected. The possibility of transmission from class E  is
included with a parameter q. Class I represents the symptomatic, infected and undiagnosed individuals. The I-
individuals evolve into class J of diagnosed persons at the rate α. The individuals recover at the rate γ1 for
class I and γ2 for class J . The class of recovered individuals R keeps track of the number of diagnosed and
recovered  individuals. Parameter δ indicates the SARS-induced mortality. The model also assumes that the
individuals are carefully treated and diagnosed, therefore they are not as infectious as those who are not
diagnosed. Finally parameter ℓ is a measure of the reduced impact of those individuals who are diagnosed,
a small value of ℓ indicates that effective measures were taken in order to isolate diagnosed cases.

The following flow diagram summarizes the evolution of classes in this model. Note that not all exposed
individuals have to evolve to class I of infected persons. Only a proportion of them will be infected.



Quantity  CJ is  included  only  for  comparison  with  epidemiological  statistics.  It  tracks  the total  number  of
diagnosed cases. The values of p and q are fixed arbitrarily, since they are not known in advance, while
parameters  α  and  ℓ  are varied to fit the existing data from Hong Kong,  Toronto  and Singapore. The other
parameters were roughly estimated from literature. In this model, the effect of isolating diagnosed individuals
is explored through these parameters.

The authors found estimates of the basic reproduction number  R0 ranging between 1.1 and 1.2. They also
conclude that the changes introduced after the identification of the first case result in a dramatic reduction in
the number of cases and mortality in Toronto. According to their model, local outbreaks should follow similar
pat-  terns (even in the presence of superspreaders). Their model is quite sensitive to the parameters ℓ
(effectiveness of isolation) and α (diagnostic rate).

4 A SEQIJR model of SARS

The previous model we looked at was developed at the moment that the epidemic was taking place with the
data available at that moment, and the model was fitted to those data. A  few years later several papers on
SARS appeared, and among them paper [6] that considered a SEQIJR model. The population is split into six
classes: susceptible, asymptomatic, quarantined, symptomatic, isolated, and recovered individuals. This model
was originally proposed in [3]. A system of differential equations describes this epidemic model:

In this model, the total of the population N = S +E +I +Q+J +R. It assumes a natural death rate µ > 0 in
each group of the subpopulations and a constant recruitment rate Λ. This includes the inflow of asymptomatic
persons into the region at rate p per time unit: new births, immigration and emigration. The transmission
coefficients for  the four classes of infected individuals  are  β,  εE β,  εQβ,  εJ β,  respectively. An asymptotic
person flows into the symptomatic class at a rate k1, and a quarantine individual into the isolated class at a rate
k2. The parameters d1 and d2 are per-capita disease induced death rates for the symptomatic and isolated
persons, respectively. Likewise, the parameters σ1 and σ2 are per-capita recovery rates for the symptomatic
and isolated individuals, respectively. The control variable u1(t) is the rate of quarantining of individuals who
have been in contact with an infected person, while u2(t) represents the rate of isolating of symptomatic
individuals by an isolation program.

The mathematical problem for this model consists in minimizing a certain cost function

subject to the  system  (1) and certain boundary conditions. The coefficients,  B1,  B2,  B3,  B4,  C1 and  C2,  are
balancing cost factors and tf is the final time. The main idea is to find an optimal control pair of functions u∗

1, u∗
2

such that

where Ω is a certain space of functions. The so-called Pontryagin's maximum principle provides necessary
conditions for finding solutions to optimal control problems. With this result, the problem is transformed into
minimizing a Hamiltonian system H, with respect to u1 and u2. Through numerical simulation based on a



genetic algorithm, the authors obtain a suboptimal solution, that means a solution where the functions u∗
1,

u∗
2  are not the global  minimum, for the optimal quarantine and isolation control to the problem (3). They

compute likewise an optimal solution. The comparison between the suboptimal and the optimal solution is
very interesting since both provide very similar performance for reducing the number of infected individuals. In
general, for practical implementations it is easier to use suboptimal solutions, since they are less restrictive and
the results are similar.
The next figure was taken from [6] (Figure 4). Here, we can see that the curves corresponding to the optimal
and the suboptimal solutions are practically indistinguishable. Both strategies result in the same reduction of
the number of infected individuals.
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