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Epidemics and their mathemaࢢcal modelling

In this first contribuࢢon focusing on the mathemaࢢcal modelling of epidemics, we will review some history, look
at basic epidemiological models, and their parameters and what kind of informaࢢon we can infer from them.

The current pandemic of Coronavirus SARS-CoV-2 has inflicted a severe blow to our society and it has shown
how vulnerable we are. It will be interesࢢng to see what changes will take place in our modern society a[er this
pandemic. Today, it is important to understand the physical, chemical and biological properࢢes of this virus and
how it is transmi�ed. The ulࢢmate goal of themodern epidemiologists is not only to predict the course of a disease
(at the present meࢢ the infecࢢon Covid-19 produced by SARS-CoV-2) but also developing methods to control it.
Right now, many people are wondering how effecࢢve the current measures taken by different countries are in
order to "fla�en the curve". The answer of this quesࢢon is not easy, we need more data (and .(!meࢢ

1 Some history on epidemology

Humanity has always been affected by different pandemics. "Black Death" was arguably the worst pandemic,
devastaࢢng Europe in the XIVth century, reaching its peak between 1346 and 1353. This disease originated in
central Asia and was spread by fleas carried by rodents traveling in ships to Europe. There is a general consensus
that the Black Death was indeed the bubonic plague, caused by the bacteria Yersinia pesࢡs. Nonetheless, there
are several authors who believe that this disease was a different kind of epidemic (see for example, the arࢢcle [4]).
It is calculated that between 30% and 40% of the whole populaࢢon of Europe died because of this disease. The
consequences of this pandemic were dramaࢢc changes not only in the hierarchical and economic structure of the
medieval society but also at intellectual level, giving rise to the Renaissance. The Black Death recurred regularly
in Europe for almost 300 years. Nowadays, this disease (bubonic pest) can be cured with usual anࢢbioࢢcs.

You might be surprised to know that the first mathemaࢢcal modelling of a disease was carried out by the Swiss
mathemaࢢcian and physicist Daniel Bernoulli in 1760 and published later in the arࢢcle [3], where he studied the
variolaࢢon against smallpox. Variolaࢢon was one of the first efforts to "vaccinate" people by inoculaࢢng a mild
strand. This work was unfortunately be�er known in the actuarial literature than in the epidemiological one [1].
In the XIXth century, the physicians John Snow and William Budd studied the temporal and spaࢢal pa�erns of
cholera and typhoid, respecࢢvely. Their analysis brought light into understanding the transmission of these two
diseases.
Later on, one the landmark works in epidemiology was published: Kermack andMcKendrick proposed in 1927 [6],
the first compartmental model. A[er this paper, they conࢢnued the study of these models in a series of arࢢcles.
A slight variaࢢon of their proposed model will be briefly described in the next secࢢon.

2 Compartmental models

Simple epidemiological models split the populaࢢon into different groups or compartments; it is also assumed
that the individuals within each group possess the same characterisࢢcs. These models are called compartmental
models.
The first compartmental model described by Kermack andMcKendrick splits the total populaࢢonN into 3 groups:
suscepࢢble (S), infected (I) and recovered (R). You will find in the literature many papers dealing with such SIR
models. Each of the groups changes according to ,meࢢ or in other words, all of them can be considered as a
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funcࢢon of the variable meࢢ t. They proposed a system of differenࢢal equaࢢons describing the rate of change of
each group as follows:

d

dt
S(t) = −τI(t)S(t) (1)

d

dt
I(t) = τI(t)S(t)− (β1 + β2)I(t) (2)

d

dt
R(t) = (β1 + β2)I(t) (3)

with certain iniࢢal condiࢢons that are clear S(0) > 0, I(0) > 0,R(0) ≥ 0 (we assume that at the beginning there
exist indeed infected and suscepࢢble individuals). In this case, τ is the transmission rate, β1 the removal rate of
actually reported infected individuals, and the coefficient β2 is the removal rate of infected individuals occurring
for other unreported causes such as mortality or other reasons. We will not enter into the details about how to
obtain the soluࢢons of these equaࢢons or how these soluࢢons qualitaࢢvely behave. Most of the meࢢ researchers
approximate the soluࢢons using mathemaࢢcal so[ware. Usually neither I(0) nor S(0) are known and therefore
simulaࢢon algorithms are used to calculate those values. One of the big challenges for the determinaࢢon of the
parameters τ, β1, β2 is how to idenࢢfy unreported cases [7].

We now define the most import quanࢢty in mathemaࢢcal epidemiology, a threshold called basic reproducࢡon
number and that is (almost) everywhere denoted asR0. The quanࢢtyR0 is defined asR0 :=

τS(0)
β1+β2

, which trans-
lated towords is the expected number of new infecࢢon cases generated by one single person. As youmay imagine,
the coefficients τ , β1 and β2 (therefore also R0) are determined from the data provided by the health systems.
Themain idea is that there is an epidemic outbreak wheneverR0 > 1. The basic reproducࢢon number will change
in the course of the epidemic and when this value decreases below 1, the epidemic will disappear.
There are several types of compartmental models, of course. Another very interesࢢng model is SIS: suscepࢢble,
infected, suscepࢢble. Here, it is assumed that the individuals recovering from the infecࢢon do not have immunity
against the infecࢢous agent. These models are be�er suited to describe infecࢢons by helminths and most of the
sexually transmi�ed diseases.

3 Stochasࢢc models

There are serious limitaࢢons with basic compartmental models such as those described by Kermack and McK-
endrick. These models assume that the sizes of the groups are big enough so that the mixing of members is
homogeneous. However, in reality this is not the case since at the beginning of an outbreak there is only a re-
duced number of infected individuals, and the transmission of the disease is an stochasࢢc event depending on the
network of contacts of those infected persons.
Such stochasࢢc events are well described by the so-called Galton-Watson processes. The network of contacts can
be described by what we call a graph. In this graph, the members of the populaࢢon are represented by verࢢces
and the contacts between individuals are represented by edges. The number of edges at one vertex is what we call
the degree of the vertex. We are interested especially in those verࢢces having a lot of edges, since the individuals
in these verࢢces can potenࢢally infect many people.
The next graph shows how we represent such networks.
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In these models we assume that all contacts between an infecࢢve and a suscepࢢble individual result in a new
infecࢢon, however this assumpࢢon can be relaxed. It is also assumed that infecࢢve individuals make contacts
independently of one another. The quanࢢty pℓ denote the probability that the number of contacts by a randomly
chosen individual is exactly ℓ, with the technical condiࢢon

∑
pℓ = 1. For this model, the epidemic outbreak begins

when an infecࢢve transmits the infecࢢon to all of the individuals with whom he or she is in contact. This branching
process outbreak is explained in more detail in [5].
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There are different variants of this model, where the assumpࢢons on the transmission and the funcࢢons that
generate the model are slightly different.

If you want to dive more deeply into these interesࢢng topics you can consult the book [2].
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