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ABSTRACT
Wikipedia tables represent an important resource, where infor-

mation is organized w.r.t table schemas consisting of columns. In

turn each column, may contain instance values that point to other

Wikipedia articles or primitive values (e.g. numbers, strings etc.).

In this work, we focus on the problem of interlinking Wikipedia

tables for two types of table relations: equivalent and subPartOf.
Through such relations, we can further harness semantically related

information by accessing related tables or facts therein. Determin-

ing the relation type of a table pair is not trivial, as it is dependent

on the schemas, the values therein, and the semantic overlap of the

cell values in the corresponding tables.

We propose TableNet, an approach that constructs a knowledge

graph of interlinked tables with subPartOf and equivalent rela-
tions. TableNet consists of two main steps: (i) for any source table
we provide an efficient algorithm to find all candidate related tables

with high coverage, and (ii) a neural based approach, which takes

into account the table schemas, and the corresponding table data,

we determine with high accuracy the table relation for a table pair.

We perform an extensive experimental evaluation on the entire

Wikipedia with more than 3.2 million tables. We show that with

more than 88% we retain relevant candidate tables pairs for align-

ment. Consequentially, with an accuracy of 90% we are able to align

tables with subPartOf or equivalent relations. Comparisons with

existing competitors show that TableNet has superior performance

in terms of coverage and alignment accuracy.
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1 INTRODUCTION
Wikipedia has emerged as one of the most reputable sources on the

internet for a wide range of tasks, from question answering [8] or

relation extraction [19]. One of the most notable uses of Wikipedia

is on knowledge base construction.
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Well known knowledge bases like DBpedia [2] or YAGO [28] are

almost exclusively built with information coming fromWikipedia’s

infoboxes. Infoboxes have several advantages as they adhere to

pre-defined templates and contain factual information (e.g. bornIn
facts). However, they are sparse and the information they cover is

very narrow. For most of the application use cases of Wikipedia,

availability of factual information is a fundamental requirement.

Wikipedia tables on the other hand are in abundance. The cur-

rent snapshot of Wikipedia contains more than 3.23M tables from

more than 520k Wikipedia articles. Tables are rich with factual

information for a wide range of topics. Thus far, their use has been

limited, despite them covering a broad domain of factual infor-

mation that can be used to answer complex queries. For instance,

for complex queries like “Award winning movies of horror Genre?”
the answer can be found from facts contained in multiple tables in
Wikipedia. However, question answering systems [1] built upon

knowledge base facts, in most cases they will not be able to provide

an answer or will provide an incomplete answer.
The sparsity or lack of factual information from infoboxes can

easily be remedied by additionally considering facts that come from

Wikipedia tables. A rough estimate reveals that we can generate

more than hundreds of millions of additional facts that can be con-

verted into knowledge base triples [20]. This amount in reality

is much higher, if we allow for tables to be aligned. That is, cur-

rently, tables are seen in isolation, and semantically related tables

are not interlinked (i.e. equivalent table relations). Table align-

ments would allow to access tables fulfilling a specific criteria (e.g.

“List of All Movies” by different Producers). Additionally, relations
that can semantically describe tables as supersets or subsets (i.e.
subPartOf relations) in terms of classic database projection or selec-
tion functions are missing (cf. Figure 1), which would enable queries

to access semantically dependent tables (i.e., “List of Award-Winning
Movies” and “List of All Movies” from a Producer). The presence
of such fine-grained relations opens up for opportunities that can

be used in question answering, knowledge base construction, and

inferences of other facts from the facts that reside in equivalent
or subPartOf aligned tables.

Determining the fine-grained table relations is not a trivial task.

Table relations are dependent on the semantics of the columns (e.g.

a column containing instance values of type Country), the context
in which the column appears (e.g. “Name” can be an ambiguous

column and it can only be disambiguated through other columns

in a table schema), cell values etc. Furthermore, not all columns

are important for determining the relation between two tables [27].

Finally, to be able to establish relations amongst all relevant table

pairs, requires for efficient approaches that avoid exhaustive com-

putations between all table pairs that can be cumbersome given the

extent of tables in Wikipedia.
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In this aspect, related work has focused mainly on table retrieval

scenarios. The Google Fusion project [7, 27] retrieves top–k tables,

where the query is a table and the notion of relatedness is in terms

of table schemata (specifically subject columns). Recent work [30]

focuses on ad-hoc table retrieval from keyword search. There are

two main issues that are not addressed by related work: (i) top–k
retrieval does not provide guarantees in terms of coverage, and (ii)

the notion of relevance is in terms of keyword queries, and there

is no distinction between the different relation types, specifically
equivalent and subPartOf relations.

We propose TableNet, an approach with the goal of aligning

tables with equivalent and subPartOf fine-grained relations. Our
goal is to ensure that for any table, with high coverage we can find

candidate tables for alignment, and with high accuracy determine

the relation type for a table pair. We distinguish between two main

steps: (i) efficient and high coverage table candidate generation

for alignment, and (ii) relation type prediction by leveraging table

schemas and values therein.

We perform an extensive evaluation of TableNet on the entire

English Wikipedia with more than 3.2 million tables. Through our

proposed approach we are able to retain table pairs that have a

relation with a high coverage of 88%, and correspondingly predict

the type of the relation with an accuracy of 90%.

We make the following contributions in constructing TableNet:

• we formally define the problem of fine-grained table alignment;

• wemodel tables with fine-grained information relying on column

descriptions, instance values, and types and additionally take

into account the context in which the columns appear for table

alignment;

• a large ground-truth for table alignment with coverage guaran-

tees with more than 17k table pairs;

• a large scale knowledge graph of aligned tables with more than

3.2 million tables.

2 RELATEDWORK
In this section, we review related work, which we differentiate

between three main categories that we describe in the following.

Wikipedia Tables. Bhagavatula et al. [4] propose an approach

for finding relevant columns from target tables for a given source

table, based on which the table pair can be joined. Similarly, in our

table candidate generation process we employ graph relatedness

measures in order to generate relevant table pairs for alignments.

Nonetheless, our objectives are on finding tables for alignment

that are semantically similar. As such our criteria for alignment

does not adhere to their join definition where the objective is to

construct a new table as a result of the joined tables. Additionally,

for our task of fine-grained alignment, we argue that relying only

in specific columns is not sufficient for alignment. The semantics of

a table cannot always be defined from a single column, but rather

the context in which the column occurs.

Web Tables. The work carried in the project Google Fusion Ta-
bles [7, 10, 27, 29] represents one of the most significant efforts

in providing additional semantics over tables, and to the best of

our knowledge, only some of the works carried in this project are

most related to our work, against which we provide an optimal

comparison [27].

Carafella et al. [7] propose an approach for table extraction

from Web pages and additionally provide a ranking mechanism for

table retrieval. An additional aspect they consider is the schema

auto-completion for some input column, where they recommend

other columns that would fit contextually to generate a “complete”

schema. Our aim is different here, while we aim at providing more

fine-grained representations of columns in a table schema, our goal

is to use such information for the task of table alignment.

Das Sarma et al. [27] propose an approach for finding related

tables, where as relatedness they consider two cases: (i) entity com-
plement and (ii) schema complement. For (i), the task is to align

tables that have the same table schemas, however, with comple-

mentary instances. This case can be seen as applying a selection
over some table that has the union of instances from both tables.

In (ii), the columns of a target table can be used to complement the

schema of a source table, with the precondition that the instances

(from subject columns) are the same in both tables. This case is seen

as a projections operation over some table with the same selection
criteria, thus, resulting in the same set of instances.

Our work is related to the case of entity complement, where
the authors compute the schema similarity between two tables in

order to decide if a table can be considered for complementing

the instances in another table. The similarity of the schemas is

considered as a max-weight bipartite matching approach, with

weighted established between the column in the disparate schemas,

and edge weight being the string similarity between columns and

jaccard similarity between the column types (established from the

values in a column through the WebIsA database).

Despite the fact that this approach is unsupervised, we adapt it

such that we find the best threshold of the max-weight matching

score between two schemas, and consider tables to be either aligned
or not-aligned. We show that our approach outperforms the most

closely related work from Google Fusion.

The aforementioned works rely on a structured table representa-

tion based on work by Venetis et al. [29]. The columns in a table are

labelled based on a isA database, which consists of instances and

the associated labels mined from a large Web corpus (e.g. capital
cities for a column containing Paris, Berlin, etc.). In our case, we deal
with Wikipedia tables in which instances are linked to Wikipedia

articles, thus, we opt for using the Wikipedia category taxonomy

and the additional information coming from knowledge bases for

inferring a structured representation of a table schema, respectively

for the individual columns in a table. Wikipedia categories are much

richer than the isA database used in [29], which is flat, contrary to

the categories which represent a taxonomy, thus, allowing us to

leverage from coarse to fine grained information about columns.

Table Annotation. Work on table annotation [5, 16] focus

specifically on linking cell values with entities, and columns with

entity types that best describe the values in a column. We see these

works as complementary, in which case we can employ them to

further enrich tables where the cell values are not already linked to

existing Wikipedia entities.

Another line of work is proposed by Munõz et al.[20]. In this

work, Wikipedia tables, specifically table rows are used as an in-

put for generating RDF triples, where the relations between two

columns correspond to properties extracted from a target knowl-

edge base like DBpedia. Slightly related to [20] is the work by Ritze



et al. [25], where the authors propose a system called T2K Match.
T2K matches Web tables into a target knowledge base, that is, the

columns are described in terms of classes from the target KB. The

works in [20, 25] can be seen as complementary and they could be

used as additional information for the table alignment task.

Schema Matching. In the database community, there has been

extensive research in schema matching [13, 14, 21, 23]. However,

works in schema matching tackle the problem of mapping individ-

ual columns from two database table schemas, whereas, in our case,

the column alignments from two table schemas are only intermedi-

ary input into determining the actual fine-grained relation between

two tables.

3 PRELIMINARIES AND OVERVIEW
3.1 Terminology
We consider Wikipedia articles A = {a1, . . . ,an }; each arti-

cle a is associated with a set of Wikipedia categories Ψa =
{ψ1, . . . ,ψn }. From all the categories we induce the category graph

Ψ, which consists of parent and child relations between categories

ψi childOf ψp . The parent/child relations allow us to establish a

hierarchical graph in Ψ. The level of a category is denoted by λψ .
Next, we define the tables from an article a as Ta = {t1, . . . , tn }.

A table t consists of a table schema (or column header) that we define
as C(t) = {c1, . . . cn }. Each column consists of a textual description
and the set of all values ci = ⟨desc, {v1i , . . . ,v

n
i }⟩ assigned to the

corresponding column cells in the table rows ti (r ) = {r1i , . . . , r
n
i }.

More specifically, the cell value that is attributed to a specific row
and column is indicated by vki , where k is the row rk and i is the
column ci . Cell values can point to existing articles in Wikipedia,

that is vki = ⟨ak ⟩, which we will refer to as instance values, or
primitive values in cases of text, numbers, dates etc.

From the extracted tables T = {t1, . . . , tn } from A, we define

two fine-grained types of relations between a table pair ⟨ti , tj ⟩: (i)
ti ⊨ tj where tj is considered to be semantically a subPartOf of ti ,
and (ii) ti ≡ tj where ti and tj are semantically equivalent. We

indicate the presence of relation with r (ti , tj ) , ∅, and in the next

section we precisely define the table relations.

3.2 Table Alignment Task Definition
In this section, we define the task of table alignment, and provide

the definition for the fine-grained table relations.

Table Alignment. From the generated table pairs in the previ-

ous step, the task is to determine the relation type between any table
pair r (ti , tj ) from the article pair ⟨ai ,aj ⟩. The relation types can be

either subPartOf, equivalent or none (in case r (ti , tj ) = ∅).

Definition 1 (subPartOf). For a table pair r (ti , tj ) =

{subPartOf} holds if the schema C(ti ) can subsume either at the
data value (i.e. cell-value) or semantically the columns fromC(tj )
(cf. Figure 1), that is, C(ti ) ⊇ C(tj ).

Definition 2 (eqivalent). For a pair r (ti , tj ) = {equivalent}
holds if both table schemas have semantically similar column rep-
resentation (cf. Figure 1), that is, C(ti ) ≈ C(tj ).

With the notion of semantic similarity we refer to cell instance
values, whose similarity can be assessed at the Wikipedia category

level, e.g. the column c = ⟨“Country”, {Germany, USA, . . . }⟩ con-
tains values of type Location, thus c will be semantically similar

to any column whose values are topically similar, despite the fact

that at data level those values will not overlap. Similarly, is the case

for the column descriptions, where “Nation” and “Country” usually
refer to the same type of columns.

3.3 TableNet Overview
TableNet operates in a manner such that for any given source
Wikipedia article ai ∈ A, first, we generate article candidate pairs
⟨ai ,aj ⟩ (aj ∈ A andai , aj ) where the tables from the pair are likely

to have an alignment relation (i.e. r (ti , tj ) , ∅, where ti ∈ T (ai )
and tj ∈ T (aj )), which corresponds to the second step in TableNet.

In the following, we describe the two main steps of TableNet:

(1) Article candidate pair generation

(2) Table alignment

4 ARTICLE CANDIDATE PAIR GENERATION
In the article candidate generation step, we address the problem of

determining article pairs, whose tables will result in a table relation.

In this case, we require our article candidate generation process to

fulfill twomain properties. First, we need to minimize the amount of

irrelevant article pairs, whose tables do not result in a table relation.

Second, the filtering out of article pairs (from the first property)

should not affect the coverage in terms of retaining relevant article
pairs, whose tables result in a table relation.

Thus, we define a function as shown in Equation 1 which pro-

vides optimal coverage of relevant article pairs, and at the same

time minimizes the amount of irrelevant pairs.

A ×A → r (ti , tj ), where ti ∈ T (ai ) ∧ tj ∈ T (aj ), and ai , aj (1)

This step is necessary as naive approaches which would enu-

merate over all article pairs to ensure maximal coverage result in

a combinatorial explosion (n! where n is the number of articles).

Thus, in our candidate generation approach we circumvent this

issue by defining features that fulfill the following desiderata:

• For an article pair whose tables will result in a table alignment, we

expect the articles to be semantically or topically similar, which

can be captured through the article abstracts or their category

associations.

• For any two tables, whose parent articles fulfill the first criterion,

we expect to find notions of similarity in terms of their schemas,

such as column names

With these desiderata in mind, we define features that either

operate at the article pair level or table level, and use them in

two ways: (i) filter out irrelevant article pairs, and (ii) employ the

features in a supervised manner to further filter out such pairs.

4.1 Features
Table 1 provides an overview of all the similarity features for the

article candidate pair generation step.

Article Abstract. Wikipedia article abstracts contain a sum-

mary of the article, containing the most important information. For

a relevant article pair, we expect that the abstracts will overlap in

terms of abstract, specifically on keywords. For example, Ariane
Friedrich and Teddy Tamgho, whose tables are in equivalent



Rank Time Athlete Country Date
1
2

4

10.49
10.64

10.70

Florence G.-Joyner
Carmelita Jeter
Marion Jones

Shelly-Ann F.-Pryce 

United States
United States
United States

Jamaica

16.07.1988
20.09.2009
12.09.1998
29.06.2012

3 10.65

t2: All-time top 25 women

Rank Time Athlete Country Date

1

2

4

9.58

9.69

9.72

Usain Bolt

Tyson Gay
Yohan Blake
Asafa Powell

Jamaica

United States
Jamaica
Jamaica

16.08.2009

20.09.2009
23.08.2012
23.08.2012

t3: All-time top 25 menArea Men Women
Time Athlete Nation Time Athlete Nation

Africa 9.85 Olusoji Fasuba Nigeria 10.78 Murielle Ahoure Ivory Coast
Asia 9.91 Femi Ogunode Qatar 10.79 Li Xuemei China

Europe 9.86 Francis Obikwelu Portugal 10.73 Christine Arron France

South America 10.00 Robson da Silva Brazil 11.01 An Cláudia Lemos Brazil

t1: Continental records

t4: Top 10 Junior (under-20) men
age	 

restriction

top	men 
records

gender 
restriction

to
p	
wo
me
n 

re
co
rd
s

ge
nd
er
 

re
st
ri
ct
io
n

gender 
restriction

age 
restriction

Date:				Date	
Country:	Location	
Athlete:	Person	{F}

t2	schema:

Date:	Date	
Country:	Location
Athlete:	Person	{M,	age<20}

t4	schema:

Date:				Date	
Country:	Location	
Athlete:	Person	{M}

t3	schema:

Area/Nation:	Location	
Athlete:	Person	{M,	F}

t1	schema:

Table	Relations:

(t1,t4):	rel_1	=	genderRestriction(t1,t4)	
									rel_2	=	ageRestriction(t4,t1)				

(t1,t3):	rel_1	=	topMenRecords(t3,t1)	
									rel_2	=	genderRestriction(t1,t2)				

(t3,t4):	rel_1	=	ageRestriction(t4,t3)

(t1,t2):	rel_1	=	genderRestriction(t1,t2)	
									rel_2	=	topWomanRecords(t2,t1)				 Rank Time Athlete Country Date

1
2

9.97
10.00

Trayvon Bromell
Trentavis Friday

Darrel Brown
Jeff Demps

United States
United States

Trinidad and Tobago
Jamaica

13.06.2014
05.07.2014

24.08.2003
28.06.20083 10.01

Yoshiihide Kiryu Japan 29.0.4.2013

equivalent

(t2,t4):	rel_1	=	equivalentTopics(t2,t4)

Figure 1: Table alignment example with subPartOf (dashed line), and equivalent relations (full line). subPartOf can be ex-
plained in terms of age restriction or gender restriction, whereas equivalent relation represents topically similar information.

feature description group

f1 tfidf tfidf similarity between abstracts

abstractf2 d2v doc2vec similarity between abstracts

f3 w2v avg. word2vec abstract vectors similarity

f4 sim(Ψai ,Ψaj ) similarity in embedding space between Ψa
and Ψ

p
a categories for the article pair

Ψ & KBf5
⋂

a∈⟨ai ,aj ⟩
Ψa direct and parent categories overlap

f6 sim(ai ,aj ) embedding similarity of the article pair

f7 type type overlap

f8 sim(ψi ,ψj ) column title similarity (f l
8
) and column dis-

tance (f d
8
) between the schemas in a table

pair

tables

f9


γ (ψi ) − γ (ψj )

 category representation similarity γ

Table 1: Article candidate pair features.

relation, both contain snippets indicating that the corresponding

persons are athletes and jumpers. This topical similarity is in line

with the definitions of table relations in Section 3.

The features in Table 1 in the abstract group capture exactly such
topical similarities. Feature f2 computes a doc2vec [15] embedding

for each article and measures the cosine similarity between those

embeddings. Doc2Vec embeddings have the advantage that they

take into account a broader context when compared to standard

word2vec [17]. Additionally in f3, we compute an average embed-
ding from word2vec embeddings from the tokens in the abstract. We

use GloVe pre-trained embeddings Wikipedia [22]. Finally, since

none of the embedding can account for the salience of tokens in an

abstract, we additionally compute the cosine similarity of the tf-idf
(feature f1) vectors from the article abstracts.

Categories & Knowledge Bases. Wikipedia categories are in-

dicators that two articles are semantically similar in either temporal,
geographical, or topical dimension (categories are created to indi-

cate either temporal or geographical grouping, or topical similarity).

Since articles are associated manually to categories, this association

is prone to noise. As we show later in our evaluation, if we consider

as pairs only articles assigned to the same categories, the resulting

coverage will be low.

To circumvent this problem, we compute graph embeddings for
Wikipedia categories based on the category graph Ψ. We use differ-

ent embedding approaches like RDF2Vec [24] and Node2Vec [11].

This allows us to elevate the category comparisons from the link

based structure in Ψ to the embedding space, and consider as can-

didates articles whose categories are close in the embedding space.

As features we consider the cosine similarity between the directly
associated categories for an article pair, and additionally their parent
categories. We also consider the similarity of articles in the same

embedding space (Equation 2), and the jaccard similarity in terms

of types in DBpedia.

sim(ai , aj ) =
emb(ai ) · emb(aj )

emb(ai )





emb(aj )


 (2)

Tables. The article pair features capture a coarse grained simi-

larity for the tables in the articles themselves. We compute a set of

light-weight features between the tables schemas for tables ti ∈ ai
and tj ∈ aj from an article pair. The similarity corresponds to the

average word embedding of the column description for two columns

in the schemasC(ti ) andC(tj ). We consider only the highest match-

ing column as measured in Equation 3. In addition to the similarity,

we capture also the positional index difference between the highest

matching columns, and the maximal matching in terms of a column
representation which we explain below.

max

cl ∈C(tj )
sim(ck , cl ), (3)

where sim(ck , cl ) is computed similarly as in Equation 2.

Column-Representation. In case a column ci consists of

instance-values, we compute a representation for ci based on

the attributes associated with the instances {vi } (where an in-

stance points to a Wikipedia article), e.g.v1i =“George Lucas’ bornIn
“Modesto, California, U.S.”. More specifically, since there may be

multiple instances |vi | > 1, we find the lowest common ancestor ψL
category from {vi } by following the article-category associations in
Ψ. This provides an abstraction over the values and is seen as a type
of instances in {vi }. By considering ψL instead of the individual

{vi }, we can summarize the column representation in terms of the

most discriminative attributes in overall forψL . In this way, for a



table pair, we compare the column representations, and in cases of

a high match we assume the columns to be semantically similar.

The representation of ci is computed as in Equation 4. We weigh

the importance of attributes based on how discriminative they are

forψL , e.g. an attribute associated with articles directly belonging

to category ψL are exclusive for ψL , and thus are weighted high.

For an attribute p, the weight forψL is computed as following:

γ (p, ψL ) =
λψL

max λψ
∗
(
− log

|⋃o | : ∀⟨a, p, o ⟩ ∧ a ∈ ψL
|o | : ∀⟨a, p, o ⟩ ∧ a ∈ ψL

)
(4)

where, the first part of the fraction weighs p by taking into account

the level of λψL and the deepest category where p is present in a

target KB max λψ . |
⋃
o | represents the number of distinct values

assigned to attribute p from a ∈ ψL , whereas |o | is the total number

of assignments of p inψL .
Through γ (ψL) we capture the most important and descriptive

attributes for a column ci . For two columns in two table schemas, a

high similarity



γ (ψi ) − γ (ψj )

 is an indicator that the columns are

semantically similar, which we use as a table feature.

4.2 Filtering & Classification
We use the features in Table 1 in two ways: (i) filter out article pairs

that are unlikely to yield a table relation, and (ii) train a supervised

model and classify article pairs as either relevant or irrelevant.

Filtering. We consider a conjunction of filtering criteria based

on empirically evaluated thresholds for the individual features. Our

main goal is to retain a high coverage of relevant article pairs, and
at the same time filter out drastically irrelevant pairs. For thresholds
we consider themean value of a particular feature. This ensures that
for a pair, if the score is below the mean value, that is an indicator

that the pair is unlikely to yield any table relation. In Section 7 we

show that we are able to drastically reduce the number of pairs by

simply applying such thresholds.

Classification. From the remaining pairs we train a classifica-

tion model and classify pairs as being either relevant or irrelevant.
We consider as positive instances all table pairs from the article pair

⟨ai ,aj ⟩ which have at least one table relation, i.e, r (ti , tj ) , none,
where ∃(ti ∈ ai ∧ tj ∈ aj ).

For classification we use Random Forests (RF) [6]. RFs allow to

setminimal amount of samples that are allowed for a node in the tree
to be split. This has direct implications in the accuracy of a classifier,

however, this allows us to retain high coverage. Setting this number

high makes the leafs of the different trees to be impure containing

relevant and irrelevant article pairs. Our classifier will classify such

impure leafs as relevant, at the cost of accuracy, however, in this

way we retain a high recall. Section 7 shows that we can maintain

high coverage of relevant pairs and at the same drastically reduce

the amount of irrelevant pairs.

5 TABLE ALIGNMENT
TableNet is a bidirectional recurrent neural network (RNN), which

for any table pair r (ti , tj ) learns to classify them into one of the

relations equivalent, subPartOf, or none. For a model to accu-

rately align table, the order of columns in their schemas needs to be

taken into account. Additionally, the matching columns in the two

schemas need to fulfill two main criteria: (i) the context in which the

columns occur needs to be semantically similar, and (ii) the positions
in which the columns appear needs to be comparably similar [27].

Figure 2 shows an overview of the proposed alignment model.

In the following we describe in details the means of representing

tables, and the proposed architecture for the alignment task.
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Figure 2: TableNet uses BiLSTMs to encode the tables as a
sequence of columns. Each column can be represented in
terms of its description, instance values, and its column-type
(indicated by the different colors). The column-by-column
captures soft-alignments between columns in the corre-
sponding table schemas. (better viewed in color)

5.1 Table Representation
How we represent columns is key towards an accurate alignment

model. A column in table schema consists of the following infor-

mation ci = ⟨desc, {v1i , . . .v
n
1
}⟩ (see Section 3).

Column Description. For a column c its description is a strong

indicator of the cell-valuesvi . We represent the column description

tokens based on their word embeddings, specifically we use pre-

trained Glove word embeddings [22]. In the case of multiple tokens,

we average the respective word embeddings.

One disadvantagewith this representation is that column descrip-

tions can be ambiguous. For instance, “Title” can refer to various

different values, e.g. Movies, Books etc. Thus, relying solely on

column titles is not optimal for the table alignment process.

Instance–Values. In case ci contains instance values, we repre-
sent ci through the average embeddings of the individual cell-values

vi based on pre-computed graph embeddings. In our experimental

evaluation, we used node2vec embeddings [11], which we trained

on the Wikipedia anchor graph1.
The combination of column description and instance values im-

proves the representation of a column and reduces its ambiguity.

This can be mostly attributed to the cases where ci consists of more

than one single instance, whereby by averaging the embeddings

we establish the context in which such values can appear.

Column–Type. Representing the columns based solely on in-

stance values poses a risk of biasing the column representation

towards articles that are often linked together in the Wikipedia

anchor graph, and thus it may ignore the topic information that is

present in such articles based on their category associations.

Hence, for columns that contain instance values, we addition-

ally represent it through its type or category. That is, for all the
1
The anchor graph consists of nodes (Wikipedia articles and categories), while the

edges correspond to the anchor text and the category-article associations.



instance values in vi for ci , we extract their lowest common ances-

tor category from Ψ. A similar idea was employed by Das Sarma et

al. [27], where the columns are represented by the topics they are

most often associated with, an information extracted from Google’s

query logs (e.g. India Asian country). Similar as for instance-value
representation, here too, we represent the LCA category through

graph embeddings. As we will see later in our experimental setup

(see Section 6), since we we only ensure that Ψ is a consistent hi-

erarchical graph, in cases where the LCA categories can be more

than one, then we average their corresponding representations.

5.2 Table Alignment Architecture
In our model, we differentiate the input from the different tables

through a delimiter. The model is an adoption of the one proposed

by Rocktäschel [26] in the task of textual entailment. For a table

pair r (ti , tj ) the model predicts the relation r ∈ { equivalent,
subPartOf, none }.

The alignment model corresponds to an RNN with LSTM

cells[12], in that we read the sequence of columns for the table

pair in both directions. Additionally, on top of the output layer

from the RNN model, we compute a column-by-column attention,

which helps us generate soft-alignments between columns in the

table schemas, and thus further improve the alignment accuracy. In

the following we describe the encoding of the column tables, and

the intuition behind the attention mechanism.

Table Encoding. Since we have two separate tables, a precon-
dition for accurate alignment is the encoding of the sequence of

columns. Our model provides a conditional encoding, in that it first

reads the columns fromC(ti ), then the cell state cd , which is initial-

ized with the last state of ti (in this case cin ) is used to conditionally
encode the sequence of columns in C(tj ).

The advantage of the conditional encoding is that by encoding

table tj with initial cell state that corresponds to the last column cell

state of ti , we bias the model to learn encodings that are optimal

for the task of table alignment. That is instead of trying to encode

all columns, it will learn to encode the columns of tj such that it

can best predict the relation for the table pair. Since we have a

bidirectional LSTM, we encode in a similar fashion the table ti by
conditioning it on the last state of tj .

AttentionMechanism. In our case, for a table pair r (ti , tj ) to be
aligned with either equivalent or subPartOf relation, we expect

that the most important columns in each of the tables to have their

corresponding matches in the respective schemas. This follows the

intuition that not all columns in a table are equally important [27].

In this case, if we use the last cell state of the encoded table pair

for classification, we enforce the model to weigh equally all the

columns for determining the relation type for the table pair. Further-

more, for larger tables, the last cell state is expected to capture the

information from all the previous states. A common workaround

in such cases is to consider RNNs with attention mechanism [3]. In

such cases the models are able to attend over all sequences with a

specific attention weight. This has the advantage in that classifica-

tion task is not carried solely based on the last state in a sequence,

but instead the sequences are weighed based on their importance.

Column-by-Column Attention. In TableNet, we employ a

more sophisticated attention mechanism, which addresses sev-

eral disadvantages from the global attention mechanism [3]. The

column-by-column attention mechanism works as following. After

having encoded the last column from ti , we process the columns in

tj individually and generate the attention weights w.r.t the columns

in ti . As a consequence, for each column in tj we generate soft align-
ments to highest matching columns in tj . After having processed
all the columns in tj and computing the corresponding attention

weights (the upper part in Figure 2), for classification of the table

pair r (ti , tj ) we will use a non-linear combination of the weighted

representation of the last column c
j
n in tj . We use softmax classifi-

cation function for determining the label for r (ti , tj ).
The advantages of the column-by-column attention, is that it

allows to encode all the desired table relation semantics, and addi-

tionally not enforce for two tables to have the same set of columns,

given that not all columns are important for alignment. Thus, the

alignment model in TableNet has the following properties:

• we can distinguish between columns from the different table

schemas C(ti ) and C(tj ),
• for each column in C(tj ) we can compute alignment weights to

the column in C(ti ) which function as soft alignments between
columns in the respective schemas, and

6 EXPERIMENTAL SETUP
Here we describe the experimental setup for evaluating TableNet.
First, we introduce the evaluation datasets, and then describe the

setup for: (i) candidate generation, and (ii) table alignment.

The evaluation datasets and the code developed for all stages of

TableNet are available for download
2
.

6.1 Datasets
Themain dataset in our experimental setup isWikipedia.We use the

entire set of Wikipedia articles from the snapshot of 20.10.2017,
with 5.5 million articles. Additionally, we use the Wikipedia cate-

gories, with nearly 1 million categories.

Wikipedia Tables. We extract tables from the HTML content of

Wikipedia articles. From the entire snapshot of Wikipedia, only

529,170 Wikipedia articles contain tables. This resulted in a total

of 3,238,201 Wikipedia tables. On average there are 6 tables per
article with an average of 6.6 columns, and with an average of

10 rows per table.
In more details, if we consider the composure of columns in the

table schemas, more than 20% of columns in total consist of cell-

values that are instances (see Section 3). Furthermore, if we consider

the number of tables that contain columns with instance values,

this number is significantly higher with 85%. This shows that in

the vast majority of cases, we can represent tables, specifically the

columns with highly rich semantic representations.

Wikipedia Categories. The category graph Ψ consists of nearly

1M distinct categories, organized in a parent-child graph. However,

there are two main issues with using Ψ as is. First, it contains cycles,

and second, categories are not depth-consistent, that is, the parents

of a category do not belong to the same depth in Ψ.

2
https://github.com/bfetahu/wiki_tables

https://github.com/bfetahu/wiki_tables


We resolve these two issues, by first breaking any cycle in Ψ, and
establish a depth-consistent graph s.t. for every Wikipedia category

we remove any edge to its parents (ψ childOf ψp ), where the

level of the parent category λψp < maxψ ′∈ψp λψ ′ , where with Ψp
we denote all the parent categories of ψ . Removing such edges

does not incur any loss in terms of parent-child relations between

categories, as such categories can be reached through intermediate

categories in Ψ. This process is performed iteratively from the root

category until we have reached the leafs of Ψ.

6.2 Table Alignment Ground-Truth
We are the first to generate a large scale ground-truth for table

alignment. Additionally, we are the first to distinguish between

fine-grained relations, and additionally provide coverage guarantees
for any given table in terms of its relations.

Our ground-truth consists of a sample of 50 source Wikipedia

articles from which we construct article candidate pairs. Since the

naive approach would generate 26.5M pairs, we apply a set of filter-
ing keywords to filter out irrelevant article pairs. We filter articles

by checking if a keyword appears anywhere in the article’s content.

The filtering keywords are chosen to fulfill two main criteria:

• keywords are generic, in order not to filter out relevant pairs,
• topical keywords are broad s.t they can capture both coarse/fine
grained topics (e.g. “athletics” vs. “jumper”).
We manually inspect a random sample of pairs that are filtered

out, and assess if we remove pairs that should be considered rele-

vant, and consequentially refine the keywords. For article pair that

remain after filtering, we check if they can be seen as false positives
and similarly refine our filtering keywords to remove such cases.

We iteratively apply the refine and filtering steps, until we are left

with an initial set of article pairs that we deploy for evaluation

through crowdsourcing. For the remainder of article pairs, we con-

struct all table pairs and rely on crowdsourcing to assess the table

relations. Table 2 shows the stats for the three filtering iterations

w.r.t the 50 source articles.

From the resulting 3.7k pairs, we have a set of 17k table pairs

which we evaluate by means of crowdsourcing.

all pairs iter-1 iter-2 iter-3

26.5M 416506 (▼63×) 10701 (▼38×) 3702 (▼2.9×)
Table 2: For 50 random source articles we applied three iter-
ations of refine and filtering steps based on manual inspec-
tion. The reduction shows the factorwithwhich the filtering
reduces the pairs between each consecutive step is w.r.t the
previous step. The final set of article pairs, whose table pairs
we evaluate through crowdsourcing is 3.7k article pairs.

6.2.1 Evaluation Protocol. The table alignment can be of three

categories: (i) equivalent, (ii) subPartOf, and (iii) none. To get

reliable judgments, we provide detailed instructions and examples

to the crowdworkers on how to determine the correct alignment

relation. We guide the crowdworkers through the steps below:

(1) Find important columns that can be interpreted in isolation

from the remaining columns in a table schema (such columns

are known also as subject columns).

(2) Find matching columns in the two tables (that can be consid-

ered abstractly as join keys), where a match is considered if

the columns contain topically similar information or the same
information, and that their column descriptions are matching

(e.g. Nation is equivalent to Country).
(3) If the previous two conditions are met, a table is considered

as equivalent if the two tables contain similar or the same

information, and where for the important columns in a table

there are corresponding columns in the candidate table.

(4) The alignment subPartOf holds if one of the tables is a super
set in the sense that it contains the information contained in the

other table, or if semantically it is the superset of the other table

(e.g. “List of All Movies” vs. “List of Award Winning Movies” for
the same movie director). Alternatively, this can be seen as a

table generated as a result of a selection over the superset table.

6.2.2 Evaluation Efforts. We ensure the quality of the labeling

process by using only the highest level workforce in FigureEight.

We follow guidelines on how to avoid unreliable workers by estab-

lishing a set of test questions that we generate manually [9]. Every

crowdworker needs to pass them successfully with an accuracy

of above 70%. Finally, if a crowdworker takes time less than an

estimated minimum amount of time for completing the task, we

discard their judgments.

On average, it took 2 mins for the crowdworkers to judge 5

table pairs. This resulted in a total of 1,162 hours of work for the

entire ground-truth, for which we payed crowdworkers according

to the minimum wage in Germany.

6.2.3 Ground-Truth Statistics. From 17,047 table pairs, after
labeling our ground-truth consists of 52% table pairs marked with

noalignment relation, 24% marked with as having equivalent
alignment, and the remaining 23% with subPartOf relation. The

47% portion of table pairs with a relation, result from 876 article
pairs, which presents a further ▼4.2× reduction of article pairs

from our initial filtering step.

The average agreement rate amongst crowdworkers for table

pairs is 0.91, which is measured as a combination of the worker’s

confidence score and the agreement rate.

6.3 Baselines and TableNet setup
We compare TableNet in twomain aspects: (i) efficiency in candidate

pair generation, and (ii) table alignment.

6.3.1 Candidate Generation Baselines. In the candidate genera-

tion phase we first look for article pairs whose tables are likely to

yield an alignment r (ti , tj ) , ∅.
Greedy – G. For each article we consider as pairs all other articles

containing a table. It has maximal coverage, however the amount

of irrelevant pairs is extremely high.

Direct Categories – C1. We consider as pairs articles that are

associated with the same directly connected categories. Due to the

noisy article-category associations, there is no guarantee that we

will have maximal coverage of relevant pairs.

Deepest Category – C2. Wikipedia articles are associated with

categories that belong to different levels in the category hierarchy.



As pairs we consider all articles that belong to the deepest category
in the hierarchy in C .
Parent Categories – PC. To increase the coverage of relevant

pairs, we consider as pairs, articles that have the same parent cate-
gories based on their directly associated categories.

Milne-Witten – MW. In MW we consider as pairs all articles that

are related (for some threshold τ ) based on the Milne and Witten

relatedness score [18]. We compute the relatedness score on the

Wikipedia anchor graph.

6.3.2 Table Alignment Baselines. We consider the following

baselines for the table alignment step.

Google Fusion. The work in [27] finds related tables for a given

table by computing a set relatedness scores against all possible table

candidates. Two tables are related if their schemas are related based

on max-weight bipartite graph matching score (see Section 2 for a

detailed discussion). Google Fusion is unsupervised, thus, we use a

threshold τ (we fine tune τ s.t we find the best F1 score) to classify

table pairs as either having a relation or not.

TableNetLR . Here, we consider as a competitor a standard su-

pervised model based a logistic regression model, which we train

using the features in Table 1. Here, our aim is to show the necessity

of using more computationally heavy approaches like RNNs.

LSTM and BiLSTM.We use standard long-term short-memory

networks to train a strong baseline for table alignment. Similarly,

as in TableNet, here too, we will use the different column represen-

tations introduced in Section 5. Similarly, we use a bidirectional

LSTM as a baseline.

Setup: LSTM, BiLSTM & TableNet. We set the number of dimen-

sions for the hidden layer to be 100. We train the models for 50

epochs and use 60% of the data for training, 10% for validation, and

the remaining 30% for testing.

We represent columns based on three main representations,

which we explained in Section 5. The simplest representation is

based on the column description which wemark with TableNet
desc

,

and then incrementally add the instance-value representationwhich

we denote with TableNet
+val

, and finally add the type representa-
tion denoted with TableNet

+type
. In the cases where we represent

a column through more than one representation, we simply add up

the different representations. Similarly are represented the baselines

LSTM and BiLSTM.

For classification we use the softmax function, and optimize the

models to minimize the categorical cross-entropy loss.

6.4 Evaluation Metrics
We distinguish between two sets of evaluation metrics, aimed at

measuring the performance of the candidate generation process,

and the table alignment.

Candidate Generation. The main aim is to minimize the

amount of irrelevant article pairs ⟨ai ,aj ⟩ = ∅, and at the same

time retain pairs whose tables have an alignment. We compute ∆
as the metric measuring the amount of reduction we achieve w.r.t

the greedy approach in generating article pairs.

∆ = 1 −
⟨ai ,aj ⟩
k ∗ |A| where ai , aj ∧ ai ,aj ∈ A (5)

where, k is the number of source articles.

Coverage we measure through micro and macro recall indicated
with Rµ and R, respectively. Rµ represents the recall in terms of

all table pairs from all the source articles, whereas macro recall

measures the average recall scores from all source articles.

Table Alignment.We rely on standard evaluation metrics, such

as precision (P), recall (R), and F1 score (F1).

7 EVALUATION RESULTS
In this section, we present in details the evaluation results for

TableNet and our competitors in terms of candidate generation

efficiency and coverage, and the performance in table alignment.

7.1 Candidate Generation
Here we discuss the evaluation results in terms of efficiency in

generating relevant article candidate pairs, and compare w.r.t ∆
against greedy approach. Additionally we show the recall scores in

retaining relevant article pairs.

Baselines. Table 3 shows the efficiency and coverage results for

the baseline strategies. From the baselines we notice that the use of

the Wikipedia category graph Ψ reduces the amount of irrelevant

pairs drastically. In terms of recall, baseline PC maintains high

recall with R = 0.83, and at the same time reduces by ∆ = 87%

the amount of irrelevant pairs when compared to greedy approach.

MW and C2 achieve the highest reduction rate ∆. However, for
MW the coverage of relevant article pairs is very low with R = 0.49.

The results in Table 3 show that despite the high reduction rates

for the different baselines, we still face the issue of either having a

highly imbalanced ratio of relevant and irrelevant pairs, or in some

cases like C2 where the reduction rate is the highest, the recall is

low R = 0.49. Thus, the balance between coverage and efficiency is

not maintained. We show that we can improve the deficiencies of

the baseline approaches through our feature set in Table 1.

|⟨ai ,aj ⟩| ∆ rel. pairs R

G 26,500,000 - 876 1.0

PC 3,486,031 0.87 724 0.83

C1 792,701 0.97 571 0.65

MW 33,890 0.99 429 0.49

C2 6,738 0.99 440 0.50

Table 3: Reduction rate for baselines. Higher ∆ means that
there are less irrelevant pairs for the table alignment step.

TableNet: Filtering & Classification. We first filter out article pairs

whose tables are unlikely to yield a relation and then classify the

remaining pairs to further filter out irrelevant pairs.

Filtering. The filtering step uses the features in Table 1 to

remove irrelevant article pairs. Figure 3 shows the impact of the

different features in reducing the amount of article pairs w.r.t greedy
approach. For instance, the f2 feature, which computes the sim-

ilarity of article abstracts based on their doc2vec representation,
provides a high reduction with ∆ = 0.91. This feature follows our

intuition on generating the article pairs for the ground-truth (see



Section 6), where the topic and other semantic similarities for an

article pair can be extracted from the article’s content.

In terms of recall, we see that in majority of the cases the indi-

vidual features have R ≥ 0.80 coverage.

Since different features capture different notions of similarity,

we apply them in conjunction, resulting in very high reduction rate

of article pairs with ∆ > 0.99, and at the same time retaining a

relatively high coverage with R = 0.68. The reduction compared to

the greedy approach is more than ▼255 times less pairs.

We believe that this high reduction rate and at the same time

the relatively high recall of relevant pairs, when compared to the

baseline approaches can be attributed to the fact that we consider

the similarities of articles, and their corresponding categories and

articles’ content in the embedding space. This allows us to capture

implicit semantics that cannot be capture for instance through the

simple link-based structure in the category graph Ψ.
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Figure 3: Feature impact in terms of reducing the amount of
irrelevant pairs and the coverage of ⟨ai ,aj ⟩r pairs. On top of
each bar we show the corresponding number of article pairs
(for ∆) and the number of retained relevant pairs (for R).

With the precomputed features we train a classifier and further

filter out irrelevant pairs from the filtered articles in Figure 3.

Classification. Determining whether a pair of articles, specifi-

cally, if their corresponding tables will result in a alignment relation

is a difficult learning task.

From the previous filtering step, irrespective of the high reduc-

tion rate from 26M pairs to only 103k pairs, the amount of irrelevant

pairs is still too high for any supervised approach to be able to learn

models that predict with great accuracy the table relations. Thus,

based on the configured RF model for high coverage (see Section 6),

we train it on the feature set in Table 1 to further classify irrelevant

pairs and filter them out.

Figure 4 shows the evaluation results for varying confidence

thresholds of the RF model. With increasing threshold τ we can

predict with higher accuracy pairs into their respective classes,

whereas with lower thresholds we allow for more misclassifications.

The increase of the confidence τ is directly proportional with the

decrease in the amount of relevant pairs. This is intuitive as from

the 103k pairs, only 876 pairs are actually relevant. However, based

on the configuration of the RF (see Section 6), we are able to retrieve

relevant pairs with high coverage, by slightly allowing irrelevant

pairs to pass through.

We choose the confidence score to be τ = 0.5, as it shows the best

trade-off between the coverage of relevant pairs, and the amount

of irrelevant pairs that are passed onto the table alignment step.

We achieve a high reduction rate of ∆ = 0.982 leaving us with only

1.8k pairs, and with a recall of Rµ = 0.81.
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Figure 4: For varying classification confidence τ in the x-axis,
we show the scores for Rµ (turquoise line), and the precision
P (red line). For each confidence score τ we show the corre-
sponding amount of relevant pairs we retain in the case of
recall, whereas for precision we show the amount of total
pairs. We choose τ = 0.5 which results in Rµ = 0.81 and a
∆ = 0.982 w.r.t the 103k pairs from the filtering step.

Furthermore, if we compare this to the original amount of pairs

from the greedy approachwith 26M pairs, 103k from our pre-filtered

candidates, and finally this drops to only 1.8k pairs in total after the

classification step. Depending on the use case, one can use higher

thresholds and thus have a higher ratio of relevant pairs, which

makes the alignment task more efficient.

7.2 Table Alignment
In this section, we show the results for the table alignment step.

From the article pairs marked as relevant in the previous step, we

classify the corresponding tables into their corresponding align-

ment relation, r (ti , tj ) → {equivalent, subPartOf, none}.

Performance. Table 4 shows the alignment evaluation results

for TableNet and all the competitors. Apart from the Google Fusion
baseline, all the baselines are supervised models. In the case of

Google Fusion, we consider a table pair to be related if their matching

score is above some threshold that we determine empirically s.t we

have the highest F1 score.

Google Fusion. This baseline has a reasonably high accuracy

in determining whether a r (ti , tj ) , ∅. Here we cannot distinguish
between the different classes as the approach is unsupervised. In

terms of recall it has the lowest score. This is due to the fact that

the matching is performed by considering only the column type
and the column titlesimilarity. Additionally, the bipartite matching

algorithm cannot retain the order of the columns, which is highly

important for determining the alignment relation.

TableNetLR . In this baseline we trained a logistic regression
(LR) model with the feature set in Table 1, which classifies the

equivalent and subPartOf relations with F1 = 0.804 and F1 =
0.648, respectively. When compared to Google Fusion, it achieves

a 52% relative improvement in terms of F1 score for equivalent
class, whereas if we take the average of both classes equivalent
and subPartOf then the F1 improvement is 37%.



equivalent subPartOf noalignment

P R F1 P R F1 P R F1 Acc R F1

Google Fusion 0.809 0.405 0.540 - - - - - -

TableNetLR 0.824 0.790 0.804 0.612 0.688 0.648 0.754 0.730 0.742 0.730 0.723 0.731

LSTMdesc
0.851 0.926 0.887 0.696 0.816 0.751 0.870 0.770 0.817 0.806 0.837 0.818

LSTM+val 0.865 0.913 0.888 0.668 0.977 0.794 0.936 0.722 0.815 0.823 0.871 0.832

LSTM+type 0.839 0.935 0.884 0.547 0.976 0.701 0.933 0.564 0.703 0.773 0.825 0.763

BiLSTMdesc
0.883 0.891 0.887 0.684 0.960 0.799 0.918 0.752 0.827 0.828 0.868 0.838

BiLSTM+val 0.877 0.871 0.874 0.684 0.975 0.804 0.915 0.747 0.823 0.826 0.864 0.834

BiLSTM+type 0.854 0.908 0.880 0.690 0.957 0.802 0.925 0.741 0.823 0.823 0.869 0.835

TableNetdesc 0.888 0.884 0.886 0.686 0.947 0.796 0.909 0.759 0.827 0.828 0.863 0.836

TableNet+val 0.856 0.926 0.890 0.675 0.993 0.804 0.952 0.719 0.819 0.828 0.880 0.838

TableNet+type 0.872 0.903 0.887 0.692 0.961 0.805 0.925 0.752 0.829 0.830 0.872 0.840

Table 4: Evaluation results for the tasks of table alignment for the different competitors and TableNet. The evaluation results
correspond to our manually constructed ground-truth dataset.

This shows that the proposed feature set is able to capture re-

lations of type equivalent with high accuracy. However, it often

misclassifies the subPartOf into the none and equivalent classes.

One reason for this misclassification is since the features and the

LR model cannot capture the sequence of columns, and it is not

trivial to incorporate the information from the cell-values into the

model for classifying the table relation.

LSTM and BiLSTM. One key motivation in this work is the

hypothesis that through sequence based models, we can retain the

order of columns in their respective schemas, an important aspect in

determining the table alignment relation. The LSTM and BiLSTM

approaches represent very competitive baselines. An additional

advantage which addresses a deficiency in the standard supervised

models, is that we jointly encode the different representations of a

column for the classification task. Representing the columns as a

combination of their description in the word embedding space, and

the type and instance values through graph embeddings, we can

capture complex relationship between the column description and

the underlying cell-values.

For equivalent relations, LSTM+val and BiLSTM+desc achieve
the highest F1 scores with F1 = 0.886 and F1 = 0.887, respectively.

For subPartOf relations, the results look slightly different, with

LSTM
+val

still having the highest F1 score, whereas for BiLSTM,

BiLSTM
+val

the representation based on the column description

and instance values achieves the highest F1 scores. The introduc-

tion of the column type in BiLSTM
+type

provides a further boost

in the accuracy of determining subPartOf relations. One conclu-
sion we draw from the comparison between the two relations and

two models, is that for subPartOf relations the column type pro-
vides additional power on determining the table alignment relation,

whereas for equivalent it does not provide an additional advan-

tage. These findings are inline with [27], where column type can

provide important information in finding related tables. Comparing

the LSTM and BiLSTM baselines against TableNetLR , we gain 10%

relative improvement in terms of F1 score for equivalent relation,

and with 22% in the case of subPartOf relation. While for Google
Fusion we have a 64% improvement for equivalent relation.

TableNet. In our approach, we addressed several deficiencies

from the related work. Through our column-by-column attention

mechanism, we can compute soft alignments between columns

in the respective table schemas and thus take into account the

position of the matching columns in the corresponding schemas.

Additionally, the column representations allow us to capture the

similarity between columns and the schema context in which they

appear, and additionally the representation context based on their

description, type and its instance values.

The evaluation results reflect this intuition. Comparing our best

performing setup, TableNet
+type

achieves an overall F1 = 0.840

across all three classes. We achieve a relative improvement of 64%

when comparing F1 scores for the equivalent class against Google
Fusion, or 56% if we compare the average F1 score for both alignment

relations (equivalent and subPartOf). Against TableNetLR we

observe high improvements for both alignment relation classes

with a relative increase of 10% and 24% in terms of F1 score, for

equivalent and subPartOf, respectively.
LSTM and BiLSTM are two strong competitors. They are able

to capture the sequence information in the table schemas, and

additionally provide the means to capture the contextual similar-

ity between the column description, type and instance cell-values.

TableNet
+type

outperforms both approaches on average F1 score

across all classes. For the individual classes, we note a variations

amongst the different configurations of TableNet that perform best

(marked in bold). The relative improvements are not as high as

when compared against Google Fusion and TableNetLR , however,

they are consistent in nearly all cases. This confirms the useful-

ness of the attention mechanism for the alignment task, where we

achieve an overall better performance in terms of F1 score.

8 CONCLUSIONS AND FUTUREWORK
In this work, we presented TableNet, an approach for table align-

ment by taking into account the coverage of table relations by

providing an efficient approach for generating article pairs, whose

tables we consider for alignment with a high accuracy. We provide



fine-grained relations equivalent, subPartOf, or none, a signifi-
cant improvement over existing works.

We constructed an exhaustive ground truth for a random sample

of 50Wikipedia articles for which we labeled all possible table pairs,

providing a dataset against which we can measure the coverage

of table relations, and additionally provide high quality labels for

more than 17k table pairs in our ground-truth.

In terms of efficiency, we show that from a naive approach which

produces 26.5M pairs we can provide an efficient means that guaran-

tees a high coverage of more than 68% and at the same time reducing

the amount of pairs by ▼255 times. In terms of table alignment, we
show that we can improve over strong baselines. We showed rel-

ative improvement of 56% when compared to Google Fusion, and
with 17% when compared against TableNetLR , a standard feature

based model. If we compare against LSTM
+type

and BiLSTM
+type

,

we again achieve improvements in terms of F1 score, thus, validat-

ing our hypothesis that a column-by-column attention mechanism

provides soft alignments for columns across table schemas.

Future Work. As future work we foresee the task of relation typ-
ing s.t we can provide a attribute-based explanation of the relations

in the case equivalent alignment, and for subPartOf provide at-
tribute restrictions, i.e., in terms of the semantics of the respective

tables, or in the form of selection criteria that may apply to generate

a sub or superset from a table s.t. the subPartOf alignment holds.
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