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Amith Singhal, Introducing the Knowledge Graph: things, not strings, Google Blog, May 16, 2012

What is a Knowledge Graph? 

https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
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What is a Knowledge Graph?
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The Renaissance of “Soft” AI
Carol Kaelson/Jeopardy Productions Inc., via Associated Press

The Web of Data
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Artificial Intelligence and Machine Learning

Artificial Intelligence

Machine Learning
Reasoning

NLP

Planning

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

Deep Learning
(Neural Networks)

“The Goal of AI is to develop 
machines that behave as 
though they were intelligent.”

- John McCarthy (1955)
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Word2Vec

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean. Distributed representations of 
words and phrases and their compositionality. NIPS, 2013
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Limitations

● Out Of Vocabulary Exceptions (OOV)

● Reason:

○ Internal structure of the word is ignored

○ Problems for morphologically rich languages such as Turkish or French etc.

○ In French or Spanish more than 40 different inflections
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fastText

● Considers internal structure of the word

● Good for morphologically rich languages

● Based on skipgram model with bag of character n-gram representation of the 

words.

● Uses character n-grams as well as the actual words in the scoring function.

● Computes likelihood of each word given a context.

<student>

N = 2 : <st, tu, ud, de, en, nt>

N = 4 : <stud, tude, uden, dent>

P. Bojanowski, E. Grave, A. Joulin, T. Mikolov. Enriching Word Vectors with Subword 
Information. Transactions of the Association for Computational Linguistics, 2017.
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Deep Learning for Knowledge Graphs 

● NLP and Knowledge Extraction via Deep Learning to 

populate and extend Knowledge Graphs

● NLP and Knowledge Extraction via Deep Learning for 

Ontology Learning to extend and refine Knowledge Graphs

● NLP and Graph Analysis supported by Deep Learning for 

Ontology Alignment and Link Discovery to combine and 

integrate Knowledge Graphs
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Graph Representation Learning

ECAI 2020 Tutorial: Knowledge Graph Embeddings: From Theory to Practice  

● Node Embeddings (Node2Vec, DeepWalk, LINE, etc.) [13] 
● Graph Neural Networks: Graph Convolutional Networks [11], Graph Attention 

Networks, Neural Message Passing, …
● Knowledge Graph Embeddings: TransE, DistMult, ...
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Knowledge Graph Embedding Techniques

Categories Without literals With literals

Translational Distance 
Models

TransE and its extensions: TransH, TransR, 
TransD, TranSparse, TransA, etc.

TransEA, DKRL, IKRL, Jointly(desp), 
Jointly, SSP, KDCoE, EAKGAE

Semantic Matching Models RESCAL and Its Extensions: DistMult, HolE, 
ComplEx, etc. Semantic Matching with Neural 
Networks: SME, NTN, MLP, etc.

LiteralE, MKBE, MTKGNN, KGlove 
with literals, Extended RESCAL, 
LiteralE with blocking

Models using Relation Paths PTransE, Traversing KGs in Vector Space, 
RTRANSE, Compositional vector space, 
Reasoning using RNN, Context-dependent KG 
embedding.

KBLRN

Models using Temporal 
Information

Time-Aware Link Prediction, co-evolution of 
event and KGs, Know-evolve.

Models using Graph 
Structures 

GAKE, Link Prediction in Multi-relational 
Graphs.

KBLRN
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Translational Distance Model

● Exploit distance-based scoring functions

● Measure the plausibility of a fact as the distance between the two entities

● A translation carried out by the relation.

● Models: TransE, TransH, TransR, TransD, TransSparse, TransM, TransEdge

Q. Wang, Z. Mao, B. Wang, L. Guo. Knowledge graph embedding: A survey of approaches and applications. 
IEEE Transactions on Knowledge and Data Engineering (TKDE), 2017.
 



Dr. Mehwish Alam: Deep Learning, Knowledge Graphs and their Applications, Sept. 16, 202015

TransE

● Entities and relations are embedded 

into same vector space.

● Consider relation r as translation from 

entity h to entity t

● Learning Assumption h+r=t

A. Bordes et al. "Translating embeddings for modeling multi-relational data." Advances in neural 
information processing systems. 2013.
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TransH

● From original space to Hyperplane

● TransH enables different roles of an 

entity in different relations.

● Entities h and t are projected into 

specific hyperplane of relation r.

● Then predict new links based on 

translation on hyperplane.

Z. Wang et al. "Knowledge graph embedding by translating on hyperplanes." AAAI, 2014.
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TransR

● TransR is similar to TransH.

● Entities h and t are projected into 

specific subspace of relation r.

● Predict new links based on translation 

in subspace.

Y. Lin et al. "Learning entity and relation embeddings for knowledge graph completion." AAAI, 2015.
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Semantic Matching Models

● Exploit similarity-based scoring functions

● Measures plausibility of facts by matching latent semantics of entities and relations

● Based on Matrix Operation

● Represent relation as a matrix and produce score function by operation on matrix.

● RESCAL, DistMult, HolE, etc.
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Methods Using Graph Structures

● Use Contextual information around an entity.

● Walk based methods

● RDF2Vec
○ Word2Vec converts raw text into vector representations

○ RDF2Vec converts a graph into a sequence of nodes and edges

○ Methods:

○ Graph Walks

○ Weisfeiler-Lehman Subtree RDF Graph Kernels

P. Ristoski, H. Paulheim. Rdf2vec: Rdf graph embeddings for data mining. International Semantic Web Conference, 2016.
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Graph walks

Depth = 3

Generated Sequences:
● Event →  inheritsFrom → Objective Inuence→  inheritsFrom →  Transitive Action ...

● Intentionally act →  inheritsFrom →  Invasion Scenario →  subFrameOf →  

Conquering ...
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Weisfeiler-Lehman Subtree RDF Graph Kernels

Generated Sequences:
● b→ g→ j; b→ g→ i; b→ g→ f; b→ g→ h; b→ g→ j→ f

● a→ f→ g; a→ f→ j; a→ f→ i; a→ f→ g→ h
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Applications

● In-KG Applications: 

○ Link Prediction: head, tail, relation prediction

○ Triple Classification: Whether unseen triple fact is true or not

○ Entity Classification: Classifying entities into different semantic categories

● Out-KG Applications

○ Relation Extraction

○ Question Answering

○ Recommender System
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Libraries for KG Embeddings

https://github.com/facebookresearch/PyTorch-BigGraph https://github.com/Accenture/AmpliGraph

OpenKE

http://openke.thunlp.org/PyKeen

https://github.com/SmartDataAnalytics/PyKEEN

https://github.com/facebookresearch/PyTorch-BigGraph
https://github.com/Accenture/AmpliGraph
http://openke.thunlp.org/
https://github.com/SmartDataAnalytics/PyKEEN
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What about literals?
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Why Literals for KG Embedding?

Hana Abel Kate

Sport
plays plays

plays
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Why Literals for KG Embedding?
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Why Literals for KG Embedding?
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Types of Literals 
● Text Literals

○ Short text

fb:m.03vdmh  fb:type.object.name "Photo-essay"@en . 

○ Long text: 

fb:m.03vdmh  fb:common.topic.description "A photo-essay is a set or 
series of photographs that are intended to tell a story or …”@en .

● Numerics Literals

fb:g.1269m_vlb  fb:people.person.date_of_birth 

"1957"^^<http://www.w3.org/2001/XMLSchema#gYear>  .

fb:m.064r8g fb:people.person.weight_kg "102.0" .

● Others:  Images, audio files, video files, and etc.

@prefix fb: <http://rdf.freebase.com/ns/>

http://www.w3.org/2001/XMLSchema#gYear
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  KG Embedding Models with Text Literals

● Extended RESCAL
       Tensor factorization

● Description-Embodied Knowledge Representation 
Learning (DKRL) 

       TransE + CBOW/CNN

● Multilingual KG Embeddings for cross-lingual KG 
alignment (KDCoE) 

       TransE + AGRU for multilingual KGs

Drawback:
Don’t consider short text!!



Dr. Mehwish Alam: Deep Learning, Knowledge Graphs and their Applications, Sept. 16, 202030

  KG Embedding Models with Numeric Literals

● Multi-Task Knowledge Graph Neural Network 
(MT-KGNN)

       Regression, Binary Classification

● Knowledge Base Representations with Latent, 
Relational, and Numerical Features (KBLRN) 
TransE, Probabilistic Product of Experts

● LiteralE
Learnable transformation function

● TransEA
TransE, Linear Regression

Drawbacks:
- Units and data types of literals are 

not interpreted
- Multi-valued literals are not treated.
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Other kind of literals

● Image Literals: IKRL, MTKGRL

● Multi-modal Liaterls: 
○ Numeric & Text Literals: LiteralE with blocking, EAKGAE.

○ Numeric, Text & Image Literals: MKBE

● Evaluation Tasks:
○ Link Prediction: head, tail, relation prediction

○ Triple Classification: Whether unseen triple fact is true or not

○ Entity Classification: Classifying entities into different semantic categories
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Applications
Link 
prediction

Triple 
Classif.

Entity  
Classif.

Entity 
Alignment

Attribute  
Value  
Prediction 

Nearest  
Neighbor  
Analysis  

Data 
Linking

Document  
classification

Extended RESCAL ✔

LiteralE ✔ ✔

TransEA ✔

KBLRN ✔

DKRL ✔ ✔

KDCoE ✔ ✔

KGlove with literals ✔ ✔

IKRL ✔ ✔

EAKGE ✔ ✔

MKBE ✔ ✔
MT-KGNN ✔ ✔
LiteralE with blocking ✔
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Limitations
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Results for Link Prediction on FB15K-237

G. A. Gesese, R. Biswas, M. Alam, H. Sack. A Survey on Knowledge Graph Embeddings with Literals: 
Which model links better Literal-ly?. Semantic Web Journal (Accepted), 2020.
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Knowledge Graph Embeddings for Downstream Tasks



Dr. Mehwish Alam: Deep Learning, Knowledge Graphs and their Applications, Sept. 16, 2020

Event-based Knowledge Reconciliation using Frame 
Embeddings and Frame Similarity
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Knowledge Reconciliation

Why Knowledge Reconciliation:

● Text Summarization

● Document Similarity

● Generating Textual Analytics

Existing Tool MERGILO

● Graph Compression

● Graph Alignment

● Uses String matching and Word Similarity

M. Alam, D. R. Recupero, M. Mongiovi, A. Gangemi, P. Ristoski. Event-based knowledge 
reconciliation using frame embeddings and frame similarity. Knowledge-Based Systems, 2017.
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FRED - Event Oriented Knowledge Graphs from Text

Spaniards attacked the Incas

A. Gangemi, V. Presutti, D. R. Recupero, A. G. Nuzzolese, F. Draicchio, M. Mongiovì:
Semantic Web Machine Reading with FRED. Semantic Web Journal, 2017.
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Framester

A. Gangemi, M. Alam, L. Asprino, V. Presutti, D.R. Recupero. Framester: A Wide Coverage Linguistic 
Linked Data Hub. EKAW, 2020.
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Applications Using Knowledge Graph Embeddings
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Reconciled Knowledge Graph



Dr. Mehwish Alam: Deep Learning, Knowledge Graphs and their Applications, Sept. 16, 202042

Cross-document Coreference Resolution (CCR) on RDF
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Weakly Supervised Short Text Categorization Using 
World Knowledge
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Where do we find short-text?

Social Media News Articles Chatbot
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Why short-text classification is challenging?

Contextual Information is required for 
understanding.

“Floyd revolutionized rock with the Wall.”

Humans transfer knowledge from other similar 
situations or external resources.

Ambiguity!
Lack of contextual information!
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Explicit Representation

Floyd revolutionized rock with the Wall.

https://en.wikipedia.org/wiki/Pink_Floyd 

https://en.wikipedia.org/wiki/Rock_(geology)
https://en.wikipedia.org/wiki/Rock_music
https://en.wikipedia.org/wiki/Dwayne_Johnson

https://en.wikipedia.org/wiki/Defensive_wall
https://en.wikipedia.org/wiki/Berlin_Wall
https://en.wikipedia.org/wiki/The_Wall 

Explicit representation refers to the conceptualization [1].

https://en.wikipedia.org/wiki/Pink_Floyd
https://en.wikipedia.org/wiki/Rock_(geology)
https://en.wikipedia.org/wiki/Rock_music
https://en.wikipedia.org/wiki/Dwayne_Johnson
https://en.wikipedia.org/wiki/Defensive_wall
https://en.wikipedia.org/wiki/Berlin_Wall
https://en.wikipedia.org/wiki/The_Wall
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Wide & Deep Model for Short Text Classification

R. Türker, L. Zhang, M. Alam, H. Sack. Weakly Supervised Short Text Categorization Using World 
Knowledge. International Semantic Web Conference, 2020.



Dr. Mehwish Alam: Deep Learning, Knowledge Graphs and their Applications, Sept. 16, 202048

Classification Accuracy
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Knowledge Graph Embeddings based Type Prediction



Dr. Mehwish Alam: Deep Learning, Knowledge Graphs and their Applications, Sept. 16, 202050

Motivation

5050

What are the types of the following entities? 

Instrument

Violin Lisbon Yellow billed duck

City Bird

R. Biswas, R. Soforonova, M. Alam, H. Sack. Entity Type Prediction in Knowledge Graphs using 
Embeddings. DL4KG@ESWC, 2020.
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Motivation

5151

What are the types of the following entities? 

Instrument

Violin Lisbon Yellow billed duck

City Bird
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Pipeline of the Unsupervised Approach

Unsupervised approach is based on the vector similarity between the class vector 
and entity vector
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Supervised Approach - 1D CNN

Length = 100

Input Convolutional Layers MaxPooling Dense Layers Output

Feature Maps DBpedia ClassesEntity Vector
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Wrapping Up

● What did we see so far:
○ Knowledge Graphs

○ Graph Neural Networks

○ Knowledge Graph Embeddings with or without Literals

○ Downstream tasks using Knowledge Graph Embeddings

● What next?
○ Temporal Knowledge Graph Embeddings

○ More expressivity

○ Explainability in Knowledge Graph Embeddings
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Some Advertisements
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Special Issue in Deep Learning and Knowledge Graphs

https://tinyurl.com/yyzeok6l 

https://tinyurl.com/yyzeok6l
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Join us!!

Contact:
mehwish.alam@fiz-karlsruhe.de 

Several PhD and Post Doc positions.

mailto:mehwish.alam@fiz-karlsruhe.de
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