
L E V E R A G I N G L I T E R A L S F O R K N O W L E D G E G R A P H E M B E D D I N G S

Zur Erlangung des akademischen Grades eines

DOKTORS DER INGENIEURWISSENSCHAFTEN

(Dr.-Ing.)

von der KIT-Fakultät für Wirtschaftswissenschaften

des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

M.Sc. GENET ASEFA GESESE

Tag der mündlichen Prüfung: 12.07.2023

Referent: Prof. Dr. Harald Sack

Korreferentin: Assoc. Prof. Dr. Mehwish Alam

Karlsruhe (2023)

This thesis is dedicated to:

my grandmother, Abiye. Your love and sacrifices will never be forgotten.

and

to the loving memory of my father Asefa Gesese, who passed away during the final year of
my Ph.D. I know you are still rooting for me from above, Thank you!!

A B S T R A C T

Knowledge Graphs (KGs) are a structured representation of facts pertaining to a specific
domain or multiple domains, composed of entities and their relationships. KGs have been
used in various applications such as relation extraction, question answering, and recom-
mender systems. However, to maximize efficiency, it is beneficial to transform KGs into a
low-dimensional vector space. Moreover, the incompleteness of KGs caused by the open-
world assumption hinders their applicability to real-world use cases. Hence, there is a
need for embedding-based link prediction (LP) approaches to complete KGs. LP can be
performed in two settings, transductive and inductive, where the former requires all test
set entities to be present in the training set, while the latter allows for the possibility of test
set entities that were not seen during training. This thesis investigates the use of literals in
both transductive and inductive LP, as large KGs contain numerous numerical and textual
literals that hold essential semantics. Additionally, high-quality benchmark datasets for the
evaluation of LP methods are proposed.

Specifically, a novel KG embedding (KGE) method RAILD is proposed which leverages
textual literals along with graph contextual information to learn embeddings of KGs with
a LP objective. RAILD aims to address the gap with the state-of-the-art embedding mod-
els in learning embeddings for relations that are not observed during training. In order
to do so, it proposes an architecture that combines language models (LMs) with network
embeddings. It fine-tunes powerful pre-trained LMs such as BERT with a LP objective by
utilizing the textual descriptions of entities and relations. It also introduces a new algo-
rithm WeiDNeR to generate a network of relations which is then used to learn graph-based
embeddings of relations using a network embedding model. The representations of rela-
tions obtained using the given LM as well as the network embedding model are combined
when performing the LP task. Moreover, another novel embedding model LitKGE is pro-
posed which utilizes numeric literals for transductive LP. It aims to generate numerical
features for entities through graph traversal. To achieve this, it introduces a new algorithm
WeiDNeR_Extended to generate a network of object properties and datatype properties.
The property paths extracted from this network are used to obtain the numerical features
of entities.

Furthermore, in this thesis, the benefits of utilizing a multilingual LM for encoding entity
descriptions in various natural languages for the LP task are studied. For the evaluation of
KGE models, the benchmark datasets LiterallyWikidata and Wikidata68K are created. The
promising results obtained with the models proposed in this thesis open up interesting
directions for future research in the area of KGEs and their downstream tasks.

v

Z U S A M M E N FA S S U N G

Wissensgraphen (Knowledge Graphs, KGs) repräsentieren strukturierte Fakten, die sich
aus Entitäten und den zwischen diesen bestehenden Relationen zusammensetzen. Um die
Effizienz von KG-Anwendungen zu maximieren, ist es von Vorteil, KGs in einen niedrigdi-
mensionalen Vektorraum zu transformieren. KGs folgen dem Paradigma einer offenen Welt
(Open World Assumption, OWA), d. h. fehlende Information wird als potenziell möglich
angesehen, wodurch ihre Verwendung in realen Anwendungsszenarien oft eingeschränkt
wird. Link-Vorhersage (Link Prediction, LP) zur Vervollständigung von KGs kommt daher
eine hohe Bedeutung zu. LP kann in zwei unterschiedlichen Modi durchgeführt werden,
transduktiv und induktiv, wobei die erste Möglichkeit voraussetzt, dass alle Entitäten der
Testdaten in den Trainingsdaten vorhanden sind, während die zweite Möglichkeit auch zu-
vor nicht bekannte Entitäten in den Testdaten zulässt. Die vorliegende Arbeit untersucht
die Verwendung von Literalen in der transduktiven und induktiven LP, da KGs zahlreiche
numerische und textuelle Literale enthalten, die eine wesentliche Semantik aufweisen. Zur
Evaluierung dieser LP Methoden werden spezielle Benchmark-Datensätze eingeführt.

Insbesondere wird eine neuartige KG Embedding (KGE) Methode, RAILD, vorgeschla-
gen, die Textliterale zusammen mit kontextuellen Graphinformationen für die LP nutzt.
Das Ziel von RAILD ist es, die bestehende Forschungslücke beim Lernen von Embeddings
für beim Training ungesehene Relationen zu schließen. Dafür wird eine Architektur vor-
geschlagen, die Sprachmodelle (Language Models, LMs) mit Netzwerkembeddings kom-
biniert. Hierzu erfolgt ein Feintuning von leistungsstarken vortrainierten LMs wie BERT
zum Zweck der LP, wobei textuelle Beschreibungen von Entitäten und Relationen genutzt
werden. Darüber hinaus wird ein neuer Algorithmus, WeiDNeR, eingeführt, um ein Relati-
onsnetzwerk zu generieren, das zum Erlernen graphbasierter Embeddings von Relationen
unter Verwendung eines Netzwerkembeddingsmodells dient. Die Vektorrepräsentationen
dieser Relationen werden für die LP kombiniert. Zudem wird ein weiteres neuartiges Em-
beddingmodell, LitKGE, vorgestellt, das numerische Literale für die transduktive LP ver-
wendet. Es zielt darauf ab, numerische Merkmale für Entitäten durch Graphtraversierung
zu erzeugen. Hierfür wird ein weiterer Algorithmus, WeiDNeR_Extended, eingeführt, der
ein Netzwerk aus Objekt- und Datentypproperties erzeugt. Aus den aus diesem Netzwerk
extrahierten Propertypfaden werden dann numerische Merkmale von Entitäten generiert.

Des Weiteren wird der Einsatz eines mehrsprachigen LM zur Kodierung von Entitäten-
beschreibungen in verschiedenen natürlichen Sprachen zum Zweck der LP untersucht. Für
die Evaluierung der KGE-Modelle wurden die Benchmark-Datensätze LiterallyWikidata
und Wikidata68K erstellt. Die vielversprechenden Ergebnisse, die mit den vorgestellten Mo-
dellen erzielt wurden, eröffnen interessante Fragestellungen für die zukünftige Forschung
auf dem Gebiet der KGEs und ihrer Folgeanwendungen.

vi

L I S T O F P U B L I C AT I O N S

This thesis is based on the following publications:

[1] Genet Asefa Gesese, Russa Biswas, Mehwish Alam, and Harald Sack. “A Survey
on Knowledge Graph Embeddings with Literals: Which Model Links Better Literal-
Ly?” In: Semantic Web 12.4 (2021), 617–647. issn: 1570-0844. doi: 10.3233/SW-200404.
url: https://doi.org/10.3233/SW-200404.

[2] Genet Asefa Gesese, Mehwish Alam, and Harald Sack. “LiterallyWikidata - A Bench-
mark for Knowledge Graph Completion Using Literals.” In: The Semantic Web –
ISWC 2021. Cham: Springer International Publishing, 2021, pp. 511–527. isbn: 978-3-
030-88361-4.

[3] Genet Asefa Gesese, Mehwish Alam, and Harald Sack. “RAILD: Towards Lever-
aging Relation Features for Inductive Link Prediction In Knowledge Graphs.” In:
IJCKG. 2022.

[4] Genet Asefa Gesese, Russa Biswas, and Harald Sack. “A Comprehensive Survey
of Knowledge Graph Embeddings with Literals: Techniques and Applications.” In:
Proceedings of the Workshop on Deep Learning for Knowledge Graphs (DL4KG2019) Co-
located with the 16th Extended Semantic Web Conference 2019 (ESWC 2019), Portoroz,
Slovenia, June 2, 2019. 2019, pp. 31–40. url: http://ceur-ws.org/Vol-2377/paper\
_4.pdf.

[5] Genet Asefa Gesese, Mehwish Alam, and Harald Sack. “Semantic Entity Enrichment
by Leveraging Multilingual Descriptions for Link Prediction.” In: DL4KG workshop
co-located with ESWC. 2020.

[6] Genet Asefa Gesese, Mehwish Alam, Fabian Hoppe, and Harald Sack. “Leveraging
Multilingual Descriptions for Link Prediction: Initial Experiments.” In: ISWC 2020
Posters and Demos Track, co-located with ISWC. 2020.

[7] Genet Asefa Gesese. “Leveraging Literals for Knowledge Graph Embeddings.” In:
International semantic web conference, Doctoral Consortium. 2021.

[8] Genet Asefa Gesese, Harald Sack, and Mehwish Alam. “LitKGE: Improving numeric
LITerals based Knowledge Graph Embedding models.” In: [Under Review]. 2023.

The author has further contributed to the following publications:

vii

https://doi.org/10.3233/SW-200404
https://doi.org/10.3233/SW-200404
http://ceur-ws.org/Vol-2377/paper_4.pdf
http://ceur-ws.org/Vol-2377/paper_4.pdf

[1] Cristian Santini, Genet Asefa Gesese, Silvio Peroni, Aldo Gangemi, Harald Sack, and
Mehwish Alam. “A Knowledge Graph Embeddings Based Approach for Author
Name Disambiguation Using Literals.” In: Scientometrics 127.8 (2022), 4887–4912.
issn: 0138-9130. doi: 10.1007/s11192-022-04426-2. url: https://doi.org/10.
1007/s11192-022-04426-2.

[2] Mehwish Alam, Russa Biswas, Yiyi Chen, Danilo Dessì, Genet Asefa Gesese, Fabian
Hoppe, and Harald Sack. “HierClasSArt: Knowledge-Aware Hierarchical Classifi-
cation of Scholarly Articles.” In: Companion Proceedings of the Web Conference 2021.
WWW ’21. Ljubljana, Slovenia: Association for Computing Machinery, 2021, 436–440.
isbn: 9781450383134. doi: 10.1145/3442442.3451365. url: https://doi.org/10.
1145/3442442.3451365.

[3] Rick Petzold, Genet Asefa Gesese, Viktoria Bogdanova, Thorsten Zylowski, Harald
Sack, and Mehwish Alam. “Challenges of Applying Knowledge Graph and their
Embeddings to a Real-world Use-case.” In: Workshop on Deep Learning for Knowledge
Graphs (DL4KG 2021), co-located with the 20th International Semantic Web Conference
(ISWC 2021), Virtual Conference, online, October 25, 2021. Vol. 3034. 2021, p. 4.

[4] Mehwish Alam, Genet Asefa Gesese, Zahra Rezaie, and Harald Sack. “MigrAnalyt-
ics: Entity-based Analytics of Migration Tweets.” In: ISWC 2020 Posters and Demos
Track, co-located with ISWC. 2020.

[5] Yiyi Chen, Genet Asefa Gesese, Harald Sack, and Mehwish Alam. “Temporal Evo-
lution of the Migration-related Topics on Social Media.” In: ISWC 2021 Posters and
Demos Track, co-located with ISWC. 2021.

viii

https://doi.org/10.1007/s11192-022-04426-2
https://doi.org/10.1007/s11192-022-04426-2
https://doi.org/10.1007/s11192-022-04426-2
https://doi.org/10.1145/3442442.3451365
https://doi.org/10.1145/3442442.3451365
https://doi.org/10.1145/3442442.3451365

A C K N O W L E D G M E N T S

I would like to start by expressing my deepest gratitude to Prof. Dr. Harald Sack for giv-
ing me the opportunity to pursue my Ph.D. under his supervision. Throughout the years,
he has provided me with unwavering support, encouragement, and thought-provoking
discussions that have helped me to navigate the research challenges with precision and
confidence. My gratitude also extends to Asoc. Prof. Dr. Mehwish Alam, who has been
instrumental in my success. Her mentorship has been invaluable, as she recognized my
research efforts and gave me the motivation and confidence I needed to succeed.

I also want to thank my team for all the unforgettable experiences that I have shared
with you. I have learned a lot from working with you! A special mention goes to Russa
with whom I have had successful collaborations and interesting professional and personal
discussions, and to Vivien for all the support that you have given me. To Yiyi, heartfelt
thanks for your unwavering kindness. I would like also to extend my thanks to Alex, Rima,
and Angela, for their support and assistance in various personal matters over the past year.
Their help was greatly appreciated.

I am eternally grateful to God for providing me with my chosen sister, Shibire Bekele,
who has been a constant source of support and encouragement since the day we met - she
made Germany home for me. Though not bound by blood, we share a heavenly mother
and our bond is as strong as any sisterhood, and I am blessed to have her in my life. I
would also like to express my heartfelt gratitude to Netsanet, who has been a supportive
friend and made Karlsruhe a home away from home. Moreover, I am beyond grateful to
the Ethiopian community and friends in Karlsruhe and in Germany in general for creating
an environment that is full of support and cooperation.

Last but not least, my grandmother - Abiye, who has been my backbone since childhood,
my father Asefa, and my family in general, thank you for all that you have done for me!!

ix

C O N T E N T S

list of publications vii
list of figures xiv
list of tables xv
acronyms xviii

i motivation and foundations 1

1 introduction 3

1.1 Motivation . 3

1.2 Research Objectives . 6

1.3 Thesis Outline and Contributions . 7

2 foundations 11

2.1 Graphs . 11

2.2 Knowledge Graphs . 12

2.3 Neural Networks . 15

2.3.1 Feed-Forward Neural Network . 16

2.3.2 Convolutional Neural Network . 17

2.3.3 Gated Recurrent Unit . 18

2.4 Language Models . 19

2.4.1 Non-contextual embeddings . 19

2.4.2 Contextual embeddings . 20

2.5 Network Embeddings . 23

2.6 Knowledge Graph Embedding . 24

2.7 Knowledge Graph Completion . 25

2.8 Evaluation Metrics . 27

ii literature review 29

3 kge models with literals in transductive setting 31

3.1 Introduction . 31

3.2 SOTA models . 34

3.2.1 Models with Text Literals . 34

3.2.2 Models with Numeric Literals . 41

3.2.3 Models with Images . 45

3.2.4 Models with Multi-modal Literals . 49

3.3 Applications . 53

3.4 Evaluation Benchmark Datasets . 55

3.5 Experiments on Link Prediction . 58

3.5.1 Datasets . 58

xi

xii contents

3.5.2 Experiments with Text Literals . 59

3.5.3 Experiment with Numeric Literals . 61

3.5.4 Experiment with Images . 64

3.5.5 Experiment with Multi-modal Literals 66

3.6 Discussion and Outlook . 68

4 leveraging literals for the task of lp in inductive setting 73

4.1 Introduction . 73

4.2 The SOTA Methods . 74

4.2.1 Rule-based methods . 74

4.2.2 Embedding-based methods . 75

4.2.3 Other Approaches . 76

4.3 Benchmarks in Inductive LP Settings . 76

4.4 Discussion and Outlook . 77

iii kge with literals in inductive setting 79

5 relation aware inductive link prediction 81

5.1 Introduction . 81

5.2 Problem Formulation . 84

5.3 RAILD: Relation Aware Inductive Link Prediction 84

5.3.1 Encoding Textual Descriptions using BERT 86

5.3.2 Weighted and Directed Network of Relations (WeiDNeR) 86

5.3.3 Node Embeddings . 89

5.3.4 Training Procedure . 89

5.3.5 Computational complexity . 89

5.4 Experiments . 90

5.4.1 Datasets . 90

5.4.2 Baselines . 91

5.4.3 Experimentation Setting . 92

5.4.4 Results . 92

5.5 Conclusion and Outlook . 96

iv kge with literals in transductive setting 99

6 lp benchmark with literals 101

6.1 Introduction . 101

6.2 Dataset Creation . 102

6.2.1 Extracting Attributive Triples . 103

6.2.2 Extracting Relational Triples . 104

6.2.3 Filtering the Triples . 104

6.2.4 Textual Information . 106

6.2.5 Domain of the Datasets . 107

6.3 Comparison with Existing Datasets . 107

contents xiii

6.4 Benchmarking Experiments on Link Prediction 108

6.4.1 KGE Models . 108

6.4.2 Model Selection . 109

6.4.3 Results . 111

6.5 Conclusion and Outlook . 112

7 improving literal-based kge models 115

7.1 Introduction . 115

7.2 Preliminaries . 116

7.2.1 Problem Definition . 117

7.2.2 LiteralE . 118

7.3 LitKGE . 119

7.3.1 Generating features . 119

7.3.2 Incorporating features into KGE models 121

7.3.3 Computational Complexity . 124

7.4 Experiments . 124

7.4.1 Datasets . 124

7.4.2 Experiment Setting . 125

7.4.3 Training . 125

7.4.4 Evaluation . 126

7.4.5 Results and Discussion . 126

7.5 Conclusion and Outlook . 130

8 leveraging multilingual entity descriptions 131

8.1 Introduction . 131

8.2 Methodology . 132

8.3 Experimental Evaluation . 133

8.4 Conclusion and Outlook . 135

v conclusion and outlook 137

9 conclusion and outlook 139

9.1 Conclusions . 139

9.2 Open Issues and Outlook . 141

vi appendix 143

a appendix 145

a.1 Summary of Applications . 145

bibliography 147

L I S T O F F I G U R E S

Figure 1.1.1 An example KG representing real-world entities 4

Figure 1.3.1 Outline of the thesis. 8

Figure 2.1.1 Different variants of graphs . 12

Figure 2.3.1 Activation functions . 16

Figure 2.3.2 A simple MLP with an input layer, two hidden layers and an output
layer . 17

Figure 2.4.1 BERT input sequence embeddings and model illustration 22

Figure 5.1.1 An example illustrating different settings of inductive LP tasks, i.e.,
semi-inductive (the link from Tenet to Christopher Nolan), fully-inductive
(the link from Inception to Christopher Nolan), and truly-inductive (the
link from Christopher Nolan to Directors Guild of America) settings . . 83

Figure 5.3.1 RAILD framework . 85

Figure 5.3.2 An example to show how Algorithm 1 works; taking the graph in
the left, it produces the graph in the right. 87

Figure 7.1.1 An example graph with entity nodes depicted as rectangles and lit-
erals as ovals. 117

Figure 7.3.1 Feature generation pipeline: given a KG as input, it generates a fea-
ture matrix containing numerical features for the entities in the KG. 119

Figure 7.3.2 Overview of LitKGE as an improvement over LiteralE model. LitKGE
takes as input the embedding of the entities and the concatenation
of their corresponding literal vectors li and feature vector fi as in-
put and combines them via a learnable function g (i.e., glf in Equa-
tion 67). Then, it modifies the base scoring function f with the joint
embedding obtained using g. 123

Figure 8.1.1 An entity from Freebase with descriptions from its corresponding
English, German, and French Wikipedia pages. For instance, the
description in German provides more content that is not in the de-
scriptions of either the English or the French Pages. 132

Figure 8.2.1 Passing pretrained multilingual word embeddings to a CNN en-
coder which is adopted from DKRL [60] and shown in [163], in order
to encode multilingual entity descriptions. 133

xiv

L I S T O F TA B L E S

Table 3.1.1 KGE models and their categories. 32

Table 3.1.2 KGE models with literals and their corresponding base models. . . . 33

Table 3.2.1 The complexity of the models with text literals in terms of the num-
ber of parameters. Θ is the number of parameters in the base model,
H is the entity embedding size, Nd is the number of data relations,
L is the number of attribute-value pairs, Nr is the number of rela-
tions, Nw is the number of words, H ′ is the word embedding size,
N

(1)
0 is the dimension of input vectors at the first layer, N(1)

1 is the
dimension of output vectors at layer 1, K is window size, N(2)

0 is the
dimension of input vectors at the second layer, N(2)

1 is the dimension
of output vectors at second layer, Ne1

and Ne2
denote the number

of entities in two different languages of a multilingual KG, Nr1 and
Nr2 denote the number of relations in two different languages of a
multilingual KG, N is the total number of entities and relations, and
M is the total number of entities, relations and words. θ1 and θ2 rep-
resent the cumulative size of the parameters from the encoder and
decoder GRUs, respectively. H ′′ is the path-based entity embedding
size . 41

Table 3.2.2 Complexity of the models with numerical literals in terms of the
number of parameters. Θ is the number of parameters in the base
model, H is the entity embedding size, Nd is the number of data
relations, Λ is the size of the hidden layer in the Attrnet networks of
MTKGNN, Nr is the number of relations, and M is attribute embed-
ding size. 46

Table 3.2.3 The complexity of the models with images in terms of the number
of parameters. Θ is the number of parameters in the base model, H
is the entity embedding size, Hi represents the dimension of image
features, θAlexNet is the number of parameters in AlexNet [110], Ne

represents the number of entities, and Ni is the number of images. . 49

xv

xvi List of Tables

Table 3.2.4 Complexity of the models with multi-modal literals in terms of the
number of parameters. Θ is the number of parameters in the base
model, H is the entity embedding size, Nd is the number of data
relations, Nchar is the number of characters, and Ni is the number
of images, ΘCNN is the number of parameters in the CNN model
used in [114], ΘARAE is the number of parameters in ARAE [115]
where instead of using the random noise vector z, the generator is
conditioned on the entity embeddings, ΘGAN denotes the sum of
the number of parameters in BE-GAN [116] and in pix2pix-GAN
[117]. 53

Table 3.4.1 Existing KGC datasets for the task of LP. 57

Table 3.5.1 The number of entities, object relations, data relations, relational
triples, train sets, valid sets, and test sets of the FB15K and the
FB15K-237 datasets. 58

Table 3.5.2 Experiment results using DKRL model on FB15K and FB15K-237

datasets. 62

Table 3.5.3 Runtime of models considered in the experiments with numeric lit-
erals. The resutls are per single iteration and reported in milliseconds. 63

Table 3.5.4 LP results on FB15K dataset using filtered setting. 65

Table 3.5.5 LP results with models without literals on FB15K using filtered setting. 66

Table 3.5.6 LP results on FB15K-237 dataset using filtered setting. 67

Table 3.5.7 LP results with models without literals on FB15K-237 dataset using
filtered setting. 68

Table 3.5.8 MRR results on LP task on YAGO-10 taken from MKBE [74]. 68

Table 3.5.9 LP results on FB15K and FB15K-237 datasets using filtered set. . . . 69

Table 4.2.1 Inductive LP models. The symbol (✓) denotes that the model uses
textual literals, while the symbol (×) represents the opposite. 77

Table 5.4.1 Dataset statistics . 91

Table 5.4.2 LP results on semi-inductive setting on WN18RR and FB15K-237

datasets. Models with the suffix (*) in their names are those pro-
posed for semi-/Fully inductive LP and their results are taken from [18]
whereas those with the suffix (t) are our baselines. RAILD-TransE
and RAILD-ComplEx are the models proposed in this work. 93

Table 5.4.3 Ablation studies with all 4 datasets using TransE scoring function. . 94

Table 5.4.4 LP results on Wikidata5M dataset using DistilBERT instead of BERT
for RAILD models . 94

Table 5.4.5 LP results on Wikidata68K datasets 95

Table 5.4.6 LP results with semi-inductive setting on WD20K(25). #QP denotes
the number of qualifiers per statement. 96

Table 6.2.1 Dataset Statistics and Analysis . 106

List of Tables xvii

Table 6.2.2 Short and long text literals extracted from Wikidata and Wikipedia
for entities, relations and attributes. The values are presented in
percentages. 107

Table 6.4.1 Hyper-parameter search space . 110

Table 6.4.2 Results of LP . 111

Table 7.4.1 The statistics of the datasets used in the experiments in this chapter. 125

Table 7.4.2 Analysis of the features generated for the entities in the three datasets.
#feat denotes the number of unique features and #feat-entries is the
number of entries with these features for the entities in the corre-
sponding dataset. #feat-max, #feat-min, and #feat-median represent
the maximum, minimum, and median of the occurrences of the fea-
tures. 127

Table 7.4.3 LP results on FB15K-237, YAGO3-10, and LitWD48K. The best values
are highlighted in bold text. 128

Table 7.4.4 Comparison of the LP results on LitWD48K dataset with and with-
out applying the filtering step in the feature generation pipeline.
DistMult-LitKGE is with filtering whereas DistMult-LitKGEunfiltered

is when filtering is not used. 129

Table 7.4.5 Comparison of LitKGE with ConvE scoring function against the
SOTA models on the Yago3-10 dataset 129

Table 8.3.1 The statistics of the dataset used for the experiments. 135

Table 8.3.2 Experiment results using transE and DKRL models on the different
varieties of the FB15K-237 dataset. 135

Table 9.1.1 Resources that are published as part of this thesis 141

Table A.1.1 Summary of different applications on which the KG embedding
techniques with literals, in their original papers, have been trained
and/or evaluated . 145

A C R O N Y M S

KG Knowledge Graph

KGC Knowledge Graph Completion

KGE Knowledge Graph Embeddings

LP Link Prediction

NLP Natural Language Processing

SoTA State-of-the-art

ML Machine Learning

RELU Rectified Linear Unit

FNN Feed-forward Neural Networks

MLP Multi-Layer Perceptron

FCNN Fully Connected Neural Network

CNN Convolutional Neural Networks

GRU Gated Recurrent Unit

LM Language Model

NLM Neural Language Model

SLM Statistical Language Model

OOV Out-of-Vocabulary

BERT Bidirectional Encoder Representations from Transformers

MRR Mean Reciprocal Rank

xviii

Part I

M O T I VAT I O N A N D F O U N D AT I O N S

1
I N T R O D U C T I O N

Knowledge Graphs (KGs) have been among the driving forces in the advancement of Ar-
tificial Intelligence (AI), mainly in the field of semantic understanding and Natural Lan-
guage Processing (NLP), especially since the launch of Google’s KG in 2012. They have
become quite crucial to storing structured information and can be used to improve various
machine learning applications. Popular general-purpose KGs such as DBpedia [1], Wiki-
data [2], Freebase [3], and YAGO [4], which consist of vast quantities of facts represented
using millions of entities as nodes and relations as edges, are publicly available and facili-
tate a range of machine learning applications such as question answering [5], recommender
systems [6], and relation extraction [7]. Even though knowledge graphs are useful for rep-
resenting structured data, their symbolic nature often makes them challenging to handle.
To address this problem, an area of research called Knowledge Graph Embeddings (KGE)
has emerged and gained significant interest [8, 9]. Despite the fact that KGs contain infor-
mation represented as literals (i.e., text, numerical values, and so on), in addition to entities
and relations, most of the existing KGE approaches do not utilize the semantics present in
those literals. Therefore, in this thesis, the use of literals for the representation learning of
KGs is studied.

The rest of this introductory chapter is organized as follows. To begin with, Section 1.1
elaborates on the motivation behind the research works presented in this thesis. Subse-
quently, the hypotheses and the formulated research questions are given in Section 1.2.
Finally, the contributions made and the thesis outline are provided in Section 1.3.

1.1 motivation

KG is a large network of facts that are organized in the form of triples [10]. A triple can be
represented as a connection between either two entity nodes (<head h, relation r, tail

t>) or an entity node and a literal node (<entity e, attribute a, literal l>), where
the relation r and the attribute a are directed and labeled edges. Figure 1.1.1 illustrates a
KG that contains information about the real-world entity OpenAI. The entities dbr:OpenAI,
dbr:GPT-2, etc. are represented as nodes and the relations/attributes such as dbo:product and
dbo:releaseDate are represented as directed edges. The KG encompasses multiple triples such
as <dbr:OpenAI, dbo:product, dbr:GPT-2> which represents a relationship between the entities
dbr:OpenAI and dbr:GPT-2. These connections between entities are commonly known as
relational triples. In addition to such triples, the KG also contains auxiliary information
about the entities in the form of triples which are often referred to as attributive triples.
For example, <dbr:GPT-2, dbo:releaseDate, "2019-02-14"> represents a connection between

3

4 introduction

Figure 1.1.1: An example KG representing real-world entities

the entity dbr:GPT-2 and the literal node representing the date "2019-02-14", which encodes
the date of release of GPT-2. Moreover, in this KG, textual descriptions about the entities
are also provided in the form of attributive triples, e.g., <dbr:OpenAI, dbo:abstract, "OpenAI
is an artificial intelligence (AI) research laboratory consisting of the for-profit corporation OpenAI
LP and its parent company, the non-profit OpenAI Inc. . . . ">.

KGs have been demonstrated to be an effective means of representing structured data.
However, there are several limitations that hinder their efficient manipulation. These limita-
tions include: i) KGs are usually based on different rigorous symbolic frameworks, which
makes it challenging to utilize their data in other applications [11] and ii) the fact that a
significant number of important graph algorithms required for efficient manipulation and
analysis of KGs have been proven to be NP-complete [12]. To address these limitations and
increase the efficiency of working with KGs, several studies have been conducted which
learn embeddings of KGs by mapping them to low dimensional vector spaces [8, 13, 14].
These studies aim to preserve the underlying semantics of the KG while reducing its di-
mensionality.

Another challenge in the effective utilization of KGs is the incompleteness of the infor-
mation stored within them. Open KGs, such as Wikidata, DBpedia, and Freebase which
span multiple domains are either curated by human editors, extracted through automated
or semi-automated methods, or generated using heuristics. These KGs operate under open-
world assumptions, which means that they are not a complete representation of all possible

1.1 motivation 5

knowledge in a given domain. As a result, there are always missing facts or incomplete in-
formation within these KGs. The incompleteness of KGs has a significant impact on their
usage for different real-world applications. For example, the KG depicted in Figure 1.1.1
is characterized by incompleteness, as shown by the links labeled with "?" representing
missing triples. Consequently, it is plausible that a Question Answering system that em-
ploys this KG would be unable to provide either an accurate response or any response to
the query "What is the genre of GPT-2?" despite the fact that both the entity "GPT-2" and
the relation "genre" exist in the KG. This implies the necessity of predicting links between
entities while leveraging the semantics which is present in the KG.

Literals, being one of the integral components of KGs, provide crucial semantics about
entities and relations. For instance, if a KG contains entities that represent individuals and
literal values indicating their ages, incorporating these literal values when learning the rep-
resentation of the KG can result in entities with similar ages being placed closer together in
the vector space, while entities with different ages are separated. Another example, in ref-
erence to the KG shown in Figure 1.1.1, the textual descriptions of the entities <dbr:GPT-2>
and <dbr:GPT-3> provide details about the companies responsible for creating or launching
them and also reveal the sequence in which these two products were introduced. Hence,
incorporating literals can significantly enhance the performance of KG completion tasks,
as well as the transformation of KGs into vector spaces for optimized manipulation. A
majority of large-scale KGs, such as Wikidata, contain a substantial number of numerical
attributive triples which connect entities to numerical literal nodes. In addition to numer-
ical literals, KGs also contain a significant amount of both short and long textual literals,
such as names, labels, and descriptions of entities and relations. These literals play a cru-
cial role in providing vital semantics about the entities and should be leveraged to help
generate new facts that are not included in the KG.

Link Prediction (LP) is a widely known KG Completion (KGC) task that could be used to
address the above-mentioned problems, i.e., to transform KG elements into a low-dimensional
vector space while generating missing facts in the KG. Specifically, LP is the task of estimat-
ing the likelihood of the existence of links between entities based on the current observed
information in the KG. It can be divided into two major categories i) transductive LP and
ii) inductive LP based on the nature of the prediction, i.e., whether it involves entities that
are not observed during training. These categories are discussed in detail as follows:

• Transductive LP: All entities in the test and validation sets are required to be part of
the training set. In other words, in this LP setting, it is possible to complement the
KG only with those entities that are already observed during training. For example
in Figure 1.1.1, despite the fact that both the entities dbr:GPT-2 and dbr:Autoregressive
and the relation genre exist in the KG, the fact <dbr:GPT-2, genre, dbr:Autoregressive> is
missing. This fact could be predicted by leveraging the textual descriptions of the en-
tities. Different LP models which leverage textual literals, numerical literals or both
are introduced so far. However, these models do not leverage indirect associations
between entities and literals, i.e., literals are considered only as features (sources of

6 introduction

information) for the entities to which they are directly linked. For evaluation of those
LP methods which utilize literals in transductive setting, the existing KGC bench-
mark datasets such as FB15K-237 [15], WN18RR [16], and YAGO3-10 [16] are used.
As discussed in [17], these benchmarks do not give proper emphasis to attributive
triples, i.e., attributes are treated as auxiliary information. Consequently, the attribu-
tive triples are either way unbalanced, less in number, or have few unique attributes.

• Inductive LP: A LP task performed in a setting where the validation and test sets may
contain entities that are not seen during training is referred to as inductive LP. For ex-
ample in Figure 1.1.1, it can be observed that the ownership of the product ChatGPT
by OpenAI and the entity ChatGPT itself are not included in the KG. In order to com-
pliment the KG with this information, the link <dbr:OpenAI, dbo:product, dbr:chatGPT>
should be generated. This could be achieved by utilizing the information present in
the textual descriptions of the entities dbr:OpenAI and dbr:chatGPT which indicate that
’ChatGPT is a chatbot launched by OpenAI’.

The existing representation learning-based inductive LP approaches such as BLP [18]
and KEPLER [19], do not pay attention to relations. Unlike entities for which there are
textual descriptions that could be used as features for the entities, relations are usually
just randomly initialized like in BLP. For example, in Figure 1.1.1 the description
of the entity dbr:chatGPT contains the information that chatGPT is built on top of
openAI’s GPT-3. In order to accurately predict the missing triple or fact <dbr:chatGPT,
dbo:follows, dbr:GPT-3>, where the relation dbo:follows is not observed while training,
an LP approach is required which is capable of effectively utilizing this information.

Moreover, due to the fact that there is a lack of an inductive LP approach that ad-
dresses unseen relations, there also exists no benchmark dataset which can be utilized
to perform the evaluation of LP with unseen relations.

Motivated by the research gaps identified above, in this thesis, novel KGE approaches
which utilize literals are proposed along with high-quality benchmark datasets for both
transductive and inductive settings. A detailed discussion of the formulated research ob-
jectives and the significant contributions made are discussed in detail in the subsequent
sections.

1.2 research objectives

In this thesis, based on the shortcomings of the existing KGE approaches in making use of
literals as discussed in Section 1.1, the following hypotheses are defined.

• Hypothesis 1 Combining contextual information about relations and their corresponding
textual descriptions is crucial to learn representation for unseen relations when performing
inductive LP. The benefits of combining text-based and graph-based features for rela-
tions are thoroughly investigated in the inductive LP approach with unseen relations.

1.3 thesis outline and contributions 7

• Hypothesis 2 High-quality benchmark datasets containing literals would facilitate the proper
evaluation of Multimodal KGE models, specifically for the task of LP in both transductive and
inductive settings. Several benchmark datasets are created from Wikidata KG with ex-
tensive experiments for evaluations in a transductive setting. Moreover, a standard
dataset to facilitate inductive LP with unseen relations is also generated.

• Hypothesis 3 Numerical features generated based on graph structure and literals provide
relevant information to learn better representations for entities in the task of transductive
LP. Property paths leading to literal nodes are generated and incorporated into KGE
models in a transductive setting.

• Hypothesis 4 Multilingual LMs can be leveraged to generate embeddings for entities with
textual descriptions in multiple languages to perform LP. Different Multilingual LMs are
leveraged to learn entity embeddings and predict missing links in transductive LP
task.

This dissertation aims to address two challenges of LP for KGE: i) Inductive LP in KGs
using literals, and ii) Transductive LP in KGs using literals.

• Challenge 1 (C1): Inductive LP in KGs using literals:

− C1-RQ1: Can utilizing both graph-based features and description-based embed-
dings for relations improve State-of-the-art (SoTA) inductive LP models? More-
over, can this approach enable inductive LP with unseen relations?

− C1-RQ2: Can the existing inductive LP benchmark datasets with textual literals
be extended to perform inductive LP evaluation with unseen relations?

• Challenge 2 (C2): Transductive LP in KGs using literals:

− C2-RQ1: How well do the SoTA KGE approaches which use literals perform for
the task of LP?

− C2-RQ2: How to extract high-quality benchmark datasets from popular KGs
such as Wikidata, focusing primarily on literals?

− C2-RQ3: Does generating entity features based on property paths, and incorpo-
rating these features into existing KGE models result in improving LP tasks?

− C2-RQ4: How beneficial is to leverage multilingual embeddings to incorporate
multilingual entity descriptions into the task of LP in KGs?

1.3 thesis outline and contributions

The rest of this dissertation is comprised of fundamental concepts related to the topics ad-
dressed in this thesis, the SoTA works in the area of KGEs with literals in both inductive
and transductive settings, the proposed contributions to the hypotheses defined above, and

8 introduction

finally concluding remarks. Chapter 2 presents the several fundamental concepts required
to understand the proposed methodologies as well as the SoTA models. A comprehensive
literature review along with extensive experiments on the SoTA transductive LP models
with literals is provided in Chapter 3 and also a detailed literature review on inductive
LP is presented in Chapter 4. These literature reviews also discuss the shortcomings of
the existing models. The two challenges discussed above and the research questions asso-
ciated with them are addressed in different chapters of this thesis. Figure 1.3.1 presents an
overview of the associations between the chapters and the research questions. Besides, the
contributions of this dissertation are summarized as follows:

Figure 1.3.1: Outline of the thesis.

• Challenge 1 (Inductive LP in KGs using literals) :

1.3 thesis outline and contributions 9

− C1-RQ1 is addressed in Chapter 5 by introducing a novel inductive LP model
named RAILD which applies a pre-trained BERT model to encode entities and
relations using their corresponding textual descriptions, as well as a feature gen-
erator component that is based solely on graph structure to encode relations.
Hence, two kinds of vectors are generated as features for relations, i.e., text-
based and graph-based. The graph-based encoder employs a novel algorithm
called WeiDNeR to create a relation-relation network, which serves as input for
the Node2Vec [20] node embedding algorithm to generate latent features/embed-
dings. Given a triple with a relation r, the two feature vectors generated for r
are concatenated into a single vector. Then, the resulting head, tail, and relation
vectors are passed to an LP scoring function.

− The contribution made to address C1-RQ2 is provided in Chapter 5, which is a
novel benchmarking pipeline that takes triples as input along with relation types
from Wikidata, and generates a dataset with train, test, and validation splits
with a mutually exclusive set of relations in these splits. In order to evaluate the
RAILD approach introduced in this thesis with unseen relations, a new dataset
named Wikidata68K is created using this pipeline, by taking Wikidata5M [19]
dataset as input along with the relation types from Wikidata for the relations
found in Wikidata5M.

• Challenge 2 (Transductive LP in KGs using literals) :

− C2-RQ1 is addressed in Chapter 3, with a comprehensive survey conducted on
the existing KGE models which leverage literals. This survey also contains exten-
sive experiment-based comparisons in order to better analyze and understand
the capability of these models for the task of LP. Specifically, these experiments
are conducted with multimodal models which use numerical literals, text liter-
als, etc. Moreover, it discusses in detail the shortcomings of each of the existing
models. This survey including the results obtained is reported in [1] as a journal.

− C2-RQ2 is answered in Chapter 6 by providing a set of high-quality KG comple-
tion benchmark datasets extracted from Wikidata and Wikipedia, named Liter-
allyWikidata. It is generated with a special focus on multimodal KG Embedding
(KGE) models, specifically for models using numeric and/or text literals. It con-
tains three novel datasets which vary both in size and structure. Besides, bench-
marking experiments on the task of LP have been conducted on these datasets
with extensively tuned unimodal/multimodal KGE models.

− A novel approach named LitKGE created to tackle C2-RQ3 is presented in Chap-
ter 7. It utilizes a modified version of the WeiDNeR algorithm (i.e., the relation-
relation network generator algorithm proposed in RAILD) called WeiDNeR_Exte-
nded which is enabled to handle numerical attributes. The approach starts by
using WeiDNeR_Extended to create a relation-relation/attribute network from
a given knowledge graph followed by generating property paths by using a

10 introduction

random-walk strategy. Then, it extracts literals associated with entities through
these property paths and applies a filtering mechanism to obtain high-quality
features for the entities. Finally, the numerical features are leveraged to perform
the task of LP with literals.

− C2-RQ4 is addressed in Chapter 8 by exploring the benefits of leveraging mul-
tilingual entity descriptions for LP task on KGs. Specifically, the performance
of the existing model DKRL in leveraging multilingual descriptions using mul-
tilingual embeddings has been analyzed and the results of the experiments are
discussed. The languages considered are English, German, and French whereas
MUSE [21] is used to encode the descriptions.

Note that, as it can be observed in Section 1.1, Chapter 3, and Chapter 4, transductive
LP is discussed first and then follows inductive LP. This is because the majority of the
SOTA inductive LP methods are designed to address the limitations of previously intro-
duced transductive LP methods in handling entities that are not present during training.
Conversely, in the rest of the chapters inductive LP is addressed followed by transductive
LP. It is organized in this manner due to the fact that the WeiDNeR_extended algorithm
of the transductive LP model LitKGE, is developed by extending the WeiDNeR algorithm
introduced as part of the RAILD model proposed for inductive LP.

2
F O U N D AT I O N S

In this chapter, a brief introduction to the fundamental concepts and notation that will be
leveraged extensively in this thesis is provided. It covers Graphs and KGs in Section 2.1 and
Section 2.2 respectively, Deep Neural Networks (DNNs) in Section 2.3, Neural Language
Models (NLMs) in Section 2.4, Network Embeddings (NEs) in Section 2.5, KGC and KGE
in Section 2.7 and Section 2.6 respectively. Finally, in Section 2.8, the various evaluation
metrics that are used in this thesis are discussed.

2.1 graphs

A graph is a mathematical representation used to model the relationship between objects.
The origin of graph theory can be traced back to 1741 when Leonhard Euler first proposed
it as a solution to the Seven Bridges of Königsberg Problem [22]. Over the years, graphs
have been widely used in fields such as mathematics, computer science, and physics to
comprehend complex phenomena and address issues involving organization, connectivity,
optimization, and matching. With the rise of massive social networks, the significance of
graph theory has become even more prominent as it facilitates the understanding and
analysis of the relationships between different entities. A graph consists of objects, depicted
as nodes or vertices, and the relationships between these objects, represented as edges
connecting pairs of nodes.

Definition 1 (Graph)
A graph G is an ordered pair and is given by G = (V ,E), where V is the set of nodes or vertices and
E ⊆ {(u, v)|u, v ∈ V} is the set of edges between the nodes.

• If (u, v) ∈ E is an edge in G, u is referred to as being adjacent to v.

• Two edges (u, v), (x,y) ∈ E are referred to as adjacent if u = x or u = y or v = x or v = y,
i.e., the two edges share a common vertex in G.

In general, graphs vary based on the connectivity between the nodes and the nature of
the edges. They can be categorized into 4 types, namely, undirected simple graph, directed
graph, undirected multigraph, and directed multigraph as shown in Figure 2.1.1. These graph
variants are defined as follows.

Definition 2 (Undirected Simple Graph)
An Undirected Simple Graph G is an ordered pair defined as G = (V ,E) with no parallel edges and
no self-loops (an edge connecting a vertex to itself) given by (u, v) ∈ E↔ (v,u) ∈ E.

11

12 foundations

Figure 2.1.1: Different variants of graphs

Definition 3 (Directed Graph)
A Directed Graph G is an ordered pair G = (V ,E), where V is the set of nodes and E = {(u, v)|(u, v) ∈
V2} is a finite set of directed edges, also called arcs, each of which is an ordered pair of vertices from
V.

Definition 4 (Undirected Multigraph)
An Undirected Multigraph G is an ordered triple G = (V ,E,R), where V is the set of nodes and E
is the set of edges. ϕ : E → {(u, v)|u, v ∈ V} is a function that assigns to each edge an unordered
pair of endpoint nodes.

Definition 5 (Directed MultiGraph)
A Directed MultiGraph G is an ordered pair G = (V ,E), where V and E denote the set of nodes and
directed edges respectively. It consists of multiple edges or arcs with the same source node u ∈ V

and the same target node v ∈ V . It may also contain self-loops.

Figure 2.1.1 part a) is an illustration of an undirected simple graph composed of three
nodes (|V | = 3) and every node has a maximum of two degrees (|V | − 1 = 2) where |V |

refers to the total number of nodes in the graph. Part b) is a directed graph, characterized
by the presence of arcs between source and target nodes. In contrast, part c) represents an
undirected multigraph, which includes parallel edges. Finally, part d) is a simple example
of a directed multigraph that contains directed edges.

2.2 knowledge graphs

In 1972, the term "Knowledge Graph" (KG) was initially mentioned in literature [23]. It
was later reintroduced by Google with the launch of Google Knowledge Graph in 2012

and since then, KG has become a key factor in advancing the field of Artificial Intelligence.
A KG, as defined in [24], is a graph-based representation of real-world entities and their
interrelations, incorporating a schema that defines entity classes and relations, facilitating
potential interrelations between arbitrary entities, and covering various topical domains.
Some of the widely used open KGs include DBpedia [25], YAGO [26], Freebase [3], and
Wikidata [2]. These KGs are either curated by human editors, extracted through automated

2.2 knowledge graphs 13

or semi-automated methods, or generated using heuristics. Moreover, various enterprise
KGs are also being used in different industries for the purpose of web search, commerce,
finance, social networks and so on [10].

Definition 6 (Knowledge Graph)
A KG G is a directed labeled graph consisting of a set of triples T, given by, T ⊆ (E ∪ C)×
R× (E∪C∪L) where E is a set of resources referred to as entities, C is is the set of semantic
types or classes of the entities, L a set of literals, and R a set of relations. An entity is
identified by a URI which represents a real-world object or an abstract concept. A relation
(or property) is a binary predicate and a literal can be a string, date, or number eventually
followed by its data type.

Definition 7 (Triple)
A triple < eh, r, et >∈ T in a KG G, is an ordered set, where eh ∈ E∪ C is the subject, r ∈ R

is the relation, and et ∈ E ∪ C is referred to as tail entity. The subject and object are often
referred to as head and tail entity respectively. The triples consisting of literals as objects,
i.e., et ∈ L are known as attributive triples.

Relations (or Properties): Based on the nature of the objects, relations are classified into
two main categories:

• Object Relation links an entity to another entity. E.g., in the triple
<dbr:Albert_Einstein, dbo:field, dbr:Physics>, both dbr:Albert_Einstein and
dbr:Physics are entities, the relation dbo:field is an Object Relation.

• Datatype Relation links an entity to its values, i.e., literals. For example, in
<dbr:Albert_Einstein, dbo:birthDate, "1879-03-14">, where "1879-03-14" is a
literal value, the relation dbo:birthDate is a Datatype Relation.

Literals: The literals in a KG encode additional information which in general can not be
represented by the entities or relations. As described in [10], literals allow for representing
strings (with or without language tags) and other datatype values (integers, dates, etc.).
The different types of literals present in a KG are given as follows:

• Text: A wide variety of information can be stored in KGs in the form of free text such
as names, labels, titles, descriptions, comments, etc. In most of the KG embedding
models with literals, text information is further categorized into Short text and Long
text. The literals which are fairly short such as for relation like names, titles, labels,
etc. are considered as Short text. On the other hand, for strings that are much longer
such as descriptions of entities, comments, etc. are considered as Long text and are
usually provided in natural language.

• Numeric: Information encoded as integers, float and so on such as height, date, pop-
ulation, etc. also provide useful information about an entity. It is worth considering

14 foundations

the numbers as distinct entities in the embedding models, as it has its own semantics
to be covered which cannot be covered by string distance metrics. For instance, 777 is
more similar to 788 than 77.

• Units of Measurement: Numeric literals often denote units of measurement to a def-
inite magnitude. For example, Wikidata property wdt:P2048 ("height") takes values
in mm, cm, m, km, inch, foot and pixel. Hence, discarding the units and considering
only the numeric values without normalization results in loss of semantics, especially
if units are not comparable, e.g., units of length and units of weight.

• Image: Images also provide latent useful information for modeling the entities. For
example, a person’s details such as age, gender, etc. can be deduced via visual analy-
sis of an image depicting the person.

• Others: Useful information encoded in the form of other literals such as external URIs
which could lead to an image, text, audio or video files.

The datasets used for the evaluation of the proposed approaches in this thesis, as pre-
sented in Chapter 5, 7, and 8, are extracted from the open KGs, Wikidata, Freebase, YAGO,
and WordNet. Additionally, Wikidata is used as a source to extract the KGC benchmark
datasets introduced in this thesis, as discussed in Chapter 6. Details pertaining to these
KGs are presented below.

wikidata Wikidata is a free, open, and multilingual KG that was launched in 2012 by
the Wikimedia Foundation [2]. It enables collaboration to gather and present structured
data supporting various knowledge domains and projects. Wikidata contains information
on various topics such as people, organizations, events, places, and concepts. It acts as a
central data management platform for linking data across various language versions of
Wikipedia, most of its sister projects, external databases, and resources. Wikidata is con-
stantly evolving and growing, with contributions from a diverse community of users and
developers around the world. As of the 1st of August 2023, Wikidata contains 105,599,208

items and 1,943,680,661 edits have been made since its launch1.

yago YAGO is an open KG that has been constructed from Wikipedia (like Categories,
Redirects, infoboxes), WordNet (e.g., synsets, hyponymy), and GeoNames in 2007. As of
2019, it encompasses over 10 million entities (including persons, organizations, cities, etc.)
and contains over 120 million facts related to these entities [27]. The accuracy of YAGO has
been manually evaluated, proving a confirmed accuracy of 95% [27, 28].

freebase Freebase [3] Freebase was a large collaborative KG developed and launched
by Metaweb in 2007. It consists of structured data (more than 125 million triples and more

1 https://www.wikidata.org/wiki/Wikidata:Statistics

2.3 neural networks 15

than 7000 properties) composed mainly by its community members, i.e., it was harvested
from many sources, including individual, user-submitted wiki contributions. Metaweb was
later acquired by Google in 2010, and ultimately, the Freebase API was terminated in 2016.

wordnet WordNet [29] is a large lexical database of English words in more than 200

languages, which organizes nouns, verbs, adjectives, and adverbs into groups of related
words called synsets, which correspond to specific meanings or concepts. These synsets
are connected to each other through both conceptual-semantic and lexical relationships,
forming a network of interlinked words. Synonymy, antonymy, hyponymy, and meronymy
are among the semantic relations used to determine word definitions. WordNet contains
155,327 words organized in 175,979 synsets for a total of 207,016 word-sense pairs. It was
first released in the 1980s in English only in the Cognitive Science Laboratory of Princeton
University.

2.3 neural networks

Neural networks, which are a subset of machine learning and a fundamental component
of deep learning algorithms, are also referred to as simulated neural networks (SNNs) or
artificial neural networks (ANNs). Their structure and nomenclature are inspired by the
human brain, replicating the way biological neurons communicate with each other. In 1943,
the first computational model of neural networks was designed by McCulloch and Pitts [30].
Later in 1958, Frank Rosenblatt created the first perceptron for pattern recognition. It was a
type of neural network that could learn and recognize patterns in input data and was used
in a variety of applications, including image recognition and natural language processing.

An activation function is a mathematical function used in neural networks to deter-
mine whether a neuron should be activated or not. The activation function operates on
the weighted sum of the inputs to a neuron (further with bias), called the activation, and
produces an output that is then passed on to the next layer of the network. The most
commonly used activation functions in neural networks are shown below and the corre-
sponding illustrations are provided in Figure 2.3.1.

sigmoid The Sigmoid function is a popular S-shape non-linear activation function that
transforms its inputs into the interval of values between 0 and 1. It is effective for modeling
binary classification problems and is defined as follows:

sigmoid(x) =
1

1+ e−x
(1)

relu The ReLU (Rectified Linear Unit) function is a non-linear activation function (also
known as a ramp function) that returns the input if it is positive and 0 otherwise and it is
given by:

ReLU(x) = max(0, x) (2)

16 foundations

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

S
ig
m
o
id
(x
)

sigmoid

−4 −2 0 2 4

−1

0

1

x

T
a
n
h
(x
)

Tanh

−4 −2 0 2 4

0

2

4

x

R
e
L
u
(x
)

ReLu

Figure 2.3.1: Activation functions

Due to its lower computational complexity, ReLU is preferred over sigmoid and tanh for
complex deep neural networks with large datasets and numerous neurons.

tanh The Tanh (Hyperbolic Tangent) activation function is similar to the sigmoid func-
tion but produces output values between -1 and 1. Differently from sigmoid, the Tanh
function is mostly used only in the hidden layers, as the output values of the Tanh function
cannot be interpreted as probabilities. Note that Tanh is useful for modeling problems with
symmetric data around zero.

Tanh(x) =
ez − e−z

ez + e−z
(3)

Over the years, more sophisticated types of ANNs are developed to handle more com-
plex data. In the subsequent sections, the neural networks Feed-Forward Neural Network
(FFNN), Convolutional Neural Network (CNN), and Gated Recurrent Unit (GRU) that are
used in this thesis, as presented in Chapter 5, 7, and 8, are discussed.

2.3.1 Feed-Forward Neural Network

A Feed-Forward Neural Network (FNN) is a type of ANN where the connections between
nodes do not form a cycle. The simplest form of FNN is referred to as a single-layer per-
ceptron (SLP), where the inputs are fed directly to the outputs via a series of weights. The
process involves multiplying each input with its corresponding weight, summing up the
results, adding a bias term, and then passing the resulting value through an activation
function. The SLP is an important model of FNN and is often used in classification tasks.
However, SLPs are incapable of handling non-linearly separable data. Hence, Multi-layer
perceptron (MLP) is proposed to deal with the limitations of SLPs.

The basic architecture of an MLP is composed of an input layer, one or more hidden
layers, and an output layer. Each layer is made up of one or more neurons that perform

2.3 neural networks 17

Figure 2.3.2: A simple MLP with an input layer, two hidden layers and an output layer

mathematical operations on the input data. The input layer receives the initial data, which
is then transmitted to the next layer, and this process continues until the output layer is
reached. The hidden layers process the input data and generate intermediate representa-
tions that are passed into the next layer until the output layer is reached. The output layer
produces the final output of the network. A basic MLP is depicted in Figure 2.3.2 contain-
ing an input layer, two hidden layers, and an output layer. The inputs are given by x1, x2,
..., xn where n is the total number of input and the output is given by y1, y2, ..., yC, where
C is the total number of classes. Formally, the activation of the hidden units j of the k-ith

layer, zkj , is computed as follows:

zkj = h(

n∑
i=1

wk
jixi + bk

j0) (4)

Where, k is the number of a given layer, i ranges from 1 to N (the dimension of the input
vector), wji are the weights, and bj0 is the bias. The term ak

j , is the j-ith input activation of
the k-ith layer.

2.3.2 Convolutional Neural Network

A neurocognitive machine was proposed in 1984 that was based on the concept of receptive
field, and is considered the first realization of the Convolutional Neural Network (CNN),
as well as the initial application of the receptive field idea in artificial neural networks [31].

18 foundations

The architecture of CNN draws its inspiration from visual perception, as noted in [32].
CNNs have played a significant role in advancing Image Classification and are now widely
used in Computer Vision systems. In recent years, various applications of CNNs to address
issues in Natural Language Processing have been witnessed [33]. However, in this section,
the fundamental working principle of CNN is discussed as follows.

A CNN architecture is composed of several stages, each of which consists of multiple
layers that work together to extract features at varying levels of abstraction. Typically, each
stage of a CNN consists of three layers: (i) A convolutional layer, (ii) A ReLU layer, and
(iii) A pooling layer. In the convolutional layer, a convolution operation is performed on
the input data to extract features. In the ReLU layer, the RELU activation function that sets
negative values in the feature maps to zero and preserves positive values is applied to the
output of the convolutional layer. This enables introducing non-linearity into the network.
A pooling function, such as MAX-pooling or AVG-pooling, is used in the pooling layer to
downsample the feature maps, resulting in a decrease in the computational complexity of
the network and an increase in its robustness to variations in the input.

A single convolutional layer has n1 filters, where the number of filters applied in one
stage matches the depth of the volume of the output feature maps. At layer l, the output
Y
(l)
i consists of n(l)

1 feature maps of size n
(l)
2 ×n

(l)
3 . The ith feature map Y

(l)
i is computed

as folows:

Y
(l)
i =

n
(l)
1∑

j=1

Kl
(i,j) × Yl−1

(j) +Bl
i (5)

where Bl
i is the bias matrix, Kl

(i,j) is the filter connecting the jth feature map in layer (l− 1)

with ith feature map in the layer.

2.3.3 Gated Recurrent Unit

In 2014, Kyunghyun Cho et al. introduced gated recurrent units (GRUs) as a gating mech-
anism in recurrent neural networks [34]. The purpose of GRUs is to solve the vanishing
gradient problem which comes with a standard recurrent neural network. To do so, GRU
uses the update gate and reset gate which are very similar to the forget gate and input
gate of short-term memory (LSTM). However, GRU has fewer parameters than LSTM since
it lacks an output gate. The update gate plays a crucial role in determining how much
information from the previous time step should be passed on to the current time step. It
takes the current input and the previous hidden state as input, and outputs a value ranging
from 0 to 1, indicating the proportion of information to retain from the previous hidden
state. Conversely, the reset gate decides how much of the previous hidden state should be
discarded in favor of the current input. It takes the current input and the previous hid-
den state as input, and outputs a value ranging from 0 to 1 that represents the amount of

2.4 language models 19

information to forget from the previous hidden state. For every element within the input
sequence in a GRU network, each layer of the network calculates the following function:

zt = σ(Wzxt +Uzht−1 + bz)

rt = σ(Wrxt +Urht−1 + br)

nt = tanh(Whxt +Uh(rt ⊙ ht− 1) + bh)

ht = (1− zt)⊙ ht−1 + zt ⊙nt

(6)

where xt, ht, zt, rt, nt are input vector, output vector, update gate vector, reset gate
vector, candidate activation vector respectively, and W, U, b are parameter matrices and
vector respectively, ht−1 is the hidden state of the layer at time t− 1 or the initial hidden
state at time 0, σ denotes the sigmoid function, and ⊙ is the element-wise product.

2.4 language models

A language model (LM) assigns a probability distribution to a sequence of words, which
is learned by training the model on text corpora in one or multiple languages. The chal-
lenge with LMs is that given any sequence of words of length n, to assign a probability
P(w1, . . . ,wn) to the whole sequence that may not have been seen in the training data.
Various modeling approaches have been created to tackle this issue, including the imple-
mentation of the Markov assumption which claims that the distribution of a word depends
on some fixed number of words that immediately comes before it or the utilization of neural
architectures like recurrent neural networks or transformers. As presented in [35], NLMs
can be divided into two broad categories: (i) Non-contextual Embeddings and (ii) Contex-
tual Embeddings. Their dissimilarity lies in whether the embedding for a word undergoes
dynamic changes depending on its contextual usage.

2.4.1 Non-contextual embeddings

In Non-contextual embedding, methods represent each word or subword as a fixed dense
vector. Formally, a vector ex ∈ RDe is assigned to each word (or subword) x in a vocab-
ulary V using a lookup table E ∈ RDe×|V |, where RDe represents the dimension of token
embeddings. Such embeddings are static by nature, meaning that the embedding for a
word remains the same irrespective of its context, making it challenging to represent pol-
ysemous words. Word2Vec [36], GloVe [37], FastText [38] are among the most common
non-contextual embedding methods. The basic principles of GloVe and FastText are dis-
cussed in the following sections since they are utilized in this thesis, i.e., specifically in
Chapter 5 and Chapter 8, respectively.

20 foundations

glove The Global Vectors for Word Representation (GloVe) algorithm is an unsuper-
vised learning technique that obtains vector representations for words. To achieve this, it
trains on global word-word co-occurrence statistics from a corpus, and the resulting rep-
resentations exhibit linear substructures within the word vector space. The weighted least
squares objective J employed by GloVe aims to minimize the difference between the dot
product of the vectors of two words and the logarithm of their co-occurrence count.

J =

V∑
i,j=1

f(Xij)
(
wT

i w̃j + bi + b̃j − logXij

)2 (7)

where wi and wj are the word vector of word i and the context word vector of word j

respectively, bi and bj are the biases of word i and j respectively, Xij is the number of
times word i occurs in the context of word j, and f is a weighting function that assigns
lower weights to rare and frequent co-occurrences, as they tend to be less informative for
capturing the semantic relationships between words.

fasttext One significant drawback of Word2vec and GloVe is their inability to gener-
ate embeddings for words that are not present in their vocabulary, also known as Out-
of-Vocabulary (OOV) words. The Word2vec model consists of a shallow neural network
architecture with two hidden layers, which takes in a large corpus of text data as input
and learns the word embeddings by predicting the surrounding words in a given context
window. The fastText embedding technique extends Word2Vec by leveraging subword in-
formation to create embeddings for words. It accomplishes this by learning representations
of character n-grams and then summing the n-gram vectors to represent a word. This ap-
proach enhances the word2vec method by including subword details, allowing the embed-
dings to capture prefix and suffix information. After representing a word using character
n-grams, a skip-gram model is employed to learn the embeddings.

2.4.2 Contextual embeddings

In order to tackle the challenge of words having multiple meanings and being influenced
by context, it is necessary to differentiate the semantics of words based on their specific
contexts. Given a text of tokens t1, t2, . . . , tn where each token ti ∈ V is a word or sub-
word, the contextual representation of ti denoted by hi is dependent on the surrounding
words and it is computed as follows:

[h1,h2, . . . ,hn] = fenc(t1, t2, . . . , tn), (8)

where fenc()̇ is a newural encoder. The subsequent sections provide in-depth explanations
of the contextual embedding models BERT and DistilBERT, utilized in the models proposed
in this thesis.

2.4 language models 21

bidirectional encoder representations from transformers (bert) BERT
is a pre-trained natural language processing (NLP) model introduced by Google in 2018

and has since become one of the most popular and powerful NLP models available. BERT
is specifically designed to pre-train deep bidirectional representations from unlabelled text,
taking into account both the left and right context in all layers. Unlike its predecessors,
which were either unidirectional or partially bidirectional, BERT is fully bidirectional, al-
lowing it to simultaneously examine the left and right context of a word. BERT’s framework
comprises two main steps: pre-training and fine-tuning. During pre-training, the model is
trained on unlabeled data using different pre-training tasks. To fine-tune the BERT model,
it is first initialized with pre-trained parameters, and all parameters are then fine-tuned
using labeled data from downstream tasks.

The architecture of BERT’s model is a multi-layer, bidirectional Transformer encoder
based on the original implementation described in [39]. The original BERT trained on the
English language has two model sizes: BERTBASE (number of layers L=12, hidden size
H=768, number of self-attention heads A=12, Total Parameters=110M) and BERTLARGE

(L=24, H=1024, A=16, Total Parameters=340M). The input to BERT is a sequence of tokens,
which may be a single sentence or two sentences packed together. The first token of every
sequence is always a special classification token ([CLS]). The final hidden state correspond-
ing to this token is used as the aggregate sequence representation for classification tasks.
The sentences are differentiated in two ways: first, by separating them with a special token
([SEP]) and then, by adding a learned embedding to every token indicating whether it be-
longs to sentence A or sentence B. The input representation of a token is created by adding
together its respective token, segment, and position embeddings as shown in Figure 2.4.1a. The
purpose of adding positional embedding to each token is to indicate its position in the
sentence. Note that each layer applies self-attention, and passes its results through a feed-
forward network, and then to the next encoder. The BERT-base model with 12 encoder
layers is depicted in Figure 2.4.1b, where the model input consists of a sequence of n words
(w1,w2, ...,wn) and special tokens ([CLS] and [SEP]).

BERT is trained using two different unsupervised tasks: i) Masked Language Modeling
(MLM) task and ii) Next Sentence Prediction (NSP) task. In the MLM task, only 15% of the
input tokens are masked at random, and then those masked tokens are predicted in order
to train a deep bidirectional representation. For this scenario, the output softmax over
the vocabulary is fed with the final hidden vectors that correspond to the mask tokens,
similar to a standard language model. In the NSP task, the model is trained in order to
predict whether two sentences are consecutive in a text corpus, i.e., it involves feeding the
model two consecutive sentences, and asking it to predict whether the second sentence
is a plausible continuation of the first sentence, or whether it is a random sentence from
the training corpus. The BERT model can be easily fine-tuned and has been utilized for
numerous tasks, such as sentiment analysis, question answering, paraphrase identification,
natural language inference, etc. Furthermore, Chapter 5 of this dissertation shows that

22 foundations

BERT plays a significant role in capturing the semantics present in entity and relation
descriptions and predicting missing links in a KG.

a. The embeddings of the BERT input sequence are the sum of the token embeddings, positional
embeddings, and segment embeddings.

b. Illustration of the BERT model

Figure 2.4.1: BERT input sequence embeddings and model illustration

distiled bert (distilbert) DistilBERT is a pre-trained language model introduced
by Hugging Face in 2019. It is a smaller and faster version of the BERT model, which
achieves state-of-the-art performance on various natural language processing tasks. The
model achieves this by using a distillation technique, where a smaller student model,
DistilBERT, is trained to mimic the behavior of the larger BERT model, which serves
as the teacher model. The DistilBERT model has 40% fewer parameters than the original
BERT model while retaining 97% of its language understanding capabilities and being 60%
faster, making it more efficient to use in applications with limited computational resources.

2.5 network embeddings 23

Despite its smaller size and faster speed, DistilBERT achieves comparable or even better
performance than BERT on various NLP tasks such as sentiment classification and question
answering. Moreover, Chapter 5 in this thesis investigates the performance of DistilBERT
for LP and demonstrates comparable outcomes with SoTA models.

2.5 network embeddings

Information networks are commonly employed to represent complex relationships span-
ning various disciplines, such as social networks, citation networks, telecommunication
networks, and biological networks. A crucial hurdle related to such networks is identifying
a concise and efficient way to represent them so as to facilitate advanced analytical tasks.
In order to address this issue, different network embedding techniques have been designed
with the purpose of learning low-dimensional latent representations of the nodes present in
a network while preserving the network structure. These representations can serve as use-
ful features for a diverse set of graph-related tasks, including visualization, classification,
clustering, and link prediction.

As presented in [40], methods for network embedding can be divided into two main
categories: unsupervised and semi-supervised. Unsupervised methods do not rely on la-
beled vertices to generate representations for networks, while semi-supervised approaches
use labeled nodes to learn the representations. SemiNE [41], LDE [42], and LANE [43] are
some examples of semi-supervised network embedding methods whereas DeepWalk [44],
LINE [45], and Node2Vec [20] are among the widely known unsupervised methods. Since
Node2Vec is used in Chapter 5 of this thesis, a more detailed explanation of the method is
presented as follows.

node2vec Node2Vec learns continuous latent representations for nodes in networks
with the likelihood of preserving neighborhood information. It efficiently explores diverse
neighborhoods of a given node by using second-order (biased) random walks and then
applies the SkipGram [46] word embedding method to learn embeddings by treating the
generated walks as sentences. Given a network, Node2Vec selects the next hop by comput-
ing second-order transition probabilities using Equation 9.

P(u|v, t) =
αpq(t,u)w(u, v)∑

u ′∈Nv
αpq(t,u ′)w(u ′, v)

(9)

where u, v ∈ V with V being the set of nodes, Nv denotes the neighboring nodes of v, and
w(u, v) is the weight of the edge between the nodes u and v, and α is the bias factor used
to reweigh the edge weights depending on the previously visited state and it is computed
as shown in Equation 10.

24 foundations

Qij =

1
p if;dtu = 0

1 if;dtu = 1

1
q if;dtu = 2

(10)

where p is the return parameter that controls the likelihood of immediately revisiting a
node, q is the in-out parameter controlling the likelihood of revisiting a node’s one-hop
neighborhood, and dtu is the shortest distance between the nodes t and u. These random
walks are then passed to the SkipGram model to learn the node embeddings. Since the
SkipGram model aims to learn continuous feature representations for words by optimizing
a neighborhood-preserving likelihood objective, in Node2Vec it could be interpreted as
aiming to maximize the probability of predicting the correct context node v for a given
center node u.

2.6 knowledge graph embedding

Knowledge Graph Embedding (KGE) techniques aim to generate a dense representation of
the graph by embedding it into a continuous vector space with fewer dimensions. The gen-
erated embeddings can be leveraged for KG refinement tasks such as KG graph completion
and triple classification or for various downstream tasks such as question answering and
recommendation. The typical approach for knowledge graph embedding involves creating:

• an entity embedding for every node, which is represented as a vector with a certain
number of dimensions denoted by ’e’, and

• a relation embedding for each edge label, usually represented as a vector with a certain
number of dimensions denoted by ’r’.

The size of the entity and relation vectors is typically limited to a fixed, relatively low
range of 50 to 1000 dimensions, as noted in [10]. As noted in [47], the following are typically
the steps involved in a KGE model:

1. Representation space in which the relations and entities are represented. Pointwise
space, manifold, complex vector space, the Gaussian distribution, and discrete space
are among the different types of representation learning spaces. In order to ensure the
quality of a knowledge graph embedding, the embedding space should follow three
essential conditions, i.e., calculation possibility, differentiability, and the possibility of
defining the scoring function [48].

2. Scoring function which is used to measure the plausibility of triples. In the energy-
based learning framework, the scoring function is referred to as the energy function.
The two common types of scoring functions in knowledge graph embedding are
distance-based functions and similarity-based functions. Corrupted/False/negative

2.7 knowledge graph completion 25

triples are usually assigned lower scores, while true triples (those triples observed in
the knowledge graph) tend to have higher scores.

3. Encoding models for representing and learning relational interactions by employing
specific model architectures such as linear/bilinear models, factorization models, and
neural networks. Linear/bilinear mapping is used by linear models to represent re-
lations by putting head entities close to tail entities in the vector space. On the other
hand, factorization aims to decompose relational data into low-rank matrices to learn
embeddings. Neural networks encode relational data with nonlinear neural activation
and more complex network structures by matching the semantic similarity of entities
and relations. In neural network-based embedding models, relational data is encoded
by applying nonlinear neural activation and more complex network architecture by
matching the semantic similarity of entities and relations.

4. Auxiliary information to be incorporated into the KGE embedding approaches in order
to enhance the representation of knowledge. Multimodal KGE embedding models
combine different types of additional information (i.e., auxiliary information), includ-
ing text literals (textual descriptions of entities), relational paths, images associated
with entities, and entity type constraints, with the KG itself in order to enhance the
representation of knowledge. Typically in order to consider such auxiliary informa-
tion when learning embeddings, an ad-hoc scoring function is created for the supple-
mentary data and then incorporated into the overall scoring function.

2.7 knowledge graph completion

Since most KGs are produced using manual, semi-automatic, or automatic methods, a con-
siderable amount of implicit entities and relationships have not been recognized, leading
to incompleteness in KGs. Consequently, the goal of knowledge graph completion (KGC)
is to address this issue by adding the missing triples (links) to a KG, which are consid-
ered accurate but are not currently present in the KG. This task is often addressed with
LP methods which aim to estimate the likelihood of the existence of links between entities
based on the current observed information in the KG [47]. Taking into account the nature
of the missing links, the task of LP can be further divided into the following three types of
prediction problems.

• Entity Prediction (also known as head and tail prediction) is one of the most common
kinds of LP tasks for KGC. It is formulated as predicting the head entity h given
the relation and tail entity (?,r,t) or predicting the tail entity t given the relation and
head entity (h,r,?) where “?” represents a missing entity. For example, in refernece to
Figure 1.1.1, the missing link <dbr:GPT-2, genre, dbr:Autoregressive> could be generated
through a head prediction <?, genre, dbr:Autoregressive> or a tail prediction <dbr:GPT-
2, genre, ?> task.

26 foundations

• Triple Classification is a task that verifies whether a given triple 〈h, r, t〉 is valid or not.
The task involves training a binary classifier to identify the validity of the triple, i.e.,
classifying the triple as true/valid (1) or as false/invalid (0). For example, in refernece
to Figure 1.1.1, triple classification helps in identifying if the triple <dbr:GPT-2, genre,
dbr:Autoregressive> is a true triple for the KG or not.

• Entity Type Prediction (also known as entity classification) aims to classify entities into
different semantic types and it is given by <e, type,?>, where e is the entity.

As discussed in [47], LP models can be divided into three broad categories in terms of
the methodology used, i.e., embedding-based, path-based, and rule-based.

embedding-based Given the entity prediction task as an example, the embedding-
based ranking techniques first learn embedding vectors by using already existing triples.
These methods evaluate the scores of all potential entities by substituting the tail entity or
head entity with each entity in the set of entities and subsequently rank the top k entities.
TransE [49], ConVe [16], and DKRL [50] are among such embedding-based LP techniques.

path-based Although embedding-based approaches have shown remarkable results
in certain benchmarks, they fail to model complex relation paths. In order to tackle this
problem, relation path reasoning has been introduced to leverage the path information
present in the graph structure. Random walk inference has been extensively studied, and
the path-ranking algorithm (PRA) [51] is an example of a method that selects a relational
path based on a combination of path constraints and conducts maximum-likelihood clas-
sification. Another path-based approach is to leverage reinforcement learning (RL)-based
path finding methodologies. In order to enable multihop reasoning, Deep RL is utilized by
treating the search for paths between entity pairs as a sequential decision-making process,
(i.e., a Markov decision process (MDP)). The RL agent, which is based on policy, is trained
to identify a step of relation and extend the reasoning paths by the interaction between
the KG environment. Training of the RL agent is accomplished through the use of policy
gradients.

rule-based The approach based on rules involves learning logical formulas that explic-
itly represent statistical regularities and dependencies present in the KG [52]. These rules
are then utilized to rank potential candidates for incomplete triples by determining the
confidence of the rules being fired.

It should be noted that certain LP methods may fall into two or more of the aforemen-
tioned categories (i.e., embedding-based, path-based, and rule-based), thus forming hybrid
methods. For example, as explained in [47], there are some methods that combine sym-
bolic reasoning and embedding techniques, aiming to integrate rule-based reasoning, ad-
dress the sparsity issue of KGs, enhance the accuracy of embeddings, enable effective rule
integration, and induce explainable rules.

2.8 evaluation metrics 27

2.8 evaluation metrics

Different evaluation metrics are used for the different types of link prediction problems
discussed above, i.e., entity prediction, triple classification, and entity type prediction. In
this thesis, the entity prediction problem is addressed, and hence, the metrics that are
used particularly for the entity prediction models (i.e., Mean Rank, Mean Reciprocal Rank
(MRR), and Hits@k) are discussed as follows.

mean rank The mean rank (MR) represents the average rank of the true triples, where
larger values indicate better performance. MR can be computed as:

MR =
1

|T |

∑
t∈T

rank(t), (11)

mean reciprocal rank The mean reciprocal rank (MRR) is calculated as the arith-
metic mean over the reciprocals of ranks of true triples. A higher MRR value implies that
the model is more proficient at predicting the relevant links. MRR is frequently employed
as a criterion for early stopping since it provides a smooth evaluation that places a stronger
weight on small ranks and is less affected by outlier individual ranks [53]. Formally, MRR
is defined as:

MRR =
1

|T |

∑
t∈T

1

rank(t)
, (12)

where T is a set of triples and rank(t) is the rank of the triple.

hits@k Hits@K denotes the fraction of true triples that appear in the first k triples
among the top k sorted triples. Larger values indicate better performance. Hits@K is com-
puted as follows:

Hits@K =
{t ∈ T | rank(t) ⩽ k}

|T |
(13)

Part II

L I T E R AT U R E R E V I E W

You can put some informational part preamble text here.

3
K G E M O D E L S W I T H L I T E R A L S I N T R A N S D U C T I V E S E T T I N G

Over the past decade, numerous techniques have emerged for generating KGEs that can
be used to predict missing links in KGs. Most of these methods have primarily focused
on the transductive setting of LP (i.e., a setting where all entities in the test and validation
sets are required to be part of the training set as discussed in detail in Chapter 1). Some
of these models make use of the different types of literals present in KGs. In this chapter,
an extensive literature review of the those KGE models which use literals is provided. The
findings of the review are also published as surveys [1, 14].

The rest of this chapter is organized as follows. Section 3.1 provides the rationale for con-
ducting an extensive survey on KGE models with literals. In Section 3.2, the various KGE
methods which leverage literals are discussed followed by a presentation of the various
applications of KGEs on which the methods are trained or evaluated, in Section 3.3. A dis-
cussion of the existing datasets that have been used for the evaluation of KGC is provided
in Section 3.4 followed by, the experiments conducted with these approaches on the task
of LP, in Section 3.5. Finally, in Section 3.6, a concluding remark on the SoTA methods is
presented.

3.1 introduction

As mentioned above, there have been various approaches to KGEs, some of which in-
volve the use of literals. A list of the most popular KGE techniques, including the SOTA
approaches, is given in Table 3.1.1. The categories presented in this table are inspired by
a previous survey work [8] for the models without literals (column 1). The categories are
translation-based models, semantic matching models, models incorporating entity types,
models incorporating relation paths, models using logical rules, models with temporal in-
formation, and models using graph structures. Since the topic of this thesis is on generating
KGE models leveraging literals, the main focus of this literature review lies in analyzing
the SoTA KGE models which make use of literals. Hence, in this thesis, the techniques
which use literals are also grouped with respect to the same set of categories in Table 3.1.1.
Moreover, the standard KGE techniques which are extended by the models with literals are
listed in Table 3.1.2.

Few attempts have been made to conduct surveys on the techniques and applications of
KGEs [8, 13, 102]. The survey [102] is conducted on factorization based, random walk based,
and deep learning based network embedding approaches such as DeepWalk, Node2vec,
and etc. [8, 13] discuss only RESCAL [67] and KREAR [103] as methods which use at-
tributes of entities for KGEs, and focus mostly on the structure-based embedding methods,

31

32 kge models with literals in transductive setting

Table 3.1.1: KGE models and their categories.

Categories Models without literals Models with Literals

Translational Distance
Models

TransE [49] and its extensions:
TransH [54] TransR [55], TransD
[56], TranSparse [57], TransA [58]
etc.

TransEA [59], DKRL
[60], IKRL [61],
Jointly(desp) [62],
Jointly [63], SSP [64],
KDCoE [65], EAKGAE
[66]

Semantic Matching
Models

RESCAL [67] and Its Extensions:
DistMult [50], HolE [68], ComplEx
[69], and etc. Semantic Matching
with Neural Networks: SME [70],
NTN [71], MLP [72], and etc.

LiteralE [73], MKBE
[74], MTKGNN [75],
KGlove with liter-
als [76], Extended
RESCAL [77], LiteralE
with blocking [78]

Models using Entity
Types

SSE [79], TKRL [80], Type con-
strained representation learning
[81], Rules incorporated KG com-
pletion models [82], TRESCAL [83],
Entity Hierarchy Embedding [84]

Extended RESCAL [77]

Models using Relation
Paths

PTransE [85], Traversing KGs
in Vector Space [86], RTRANSE
[87], Compositional vector space
[88], Reasoning using RNN [89],
Context-dependent KGE [90]

KBLRN [91]

Models using Logical
Rules

Rules incorporated KG completion
models [82], Large-scale Knowl-
edge Base Completion [92], KALE
[93], Logical Background Knowl-
edge for Relation Extraction [94],
and etc.

Models using Temporal
Information

Time-Aware Link Prediction [95],
co-evolution of event and KGs [96],
Know-evolve [97]

Models using Graph
Structures

GAKE [98], Link Prediction in
Multi-relational Graphs [99]

KBLRN [91]

i.e., methods using non-attributive triples, for example, translation based embedding mod-
els listed in Table 3.1.1. However, RESCAL is a matrix-factorization method for relational
learning which encodes each object/data property as a slice of the tensor leading to an in-
crease in the dimensionality of the tensor automatically. This method suffers from efficiency

3.1 introduction 33

Table 3.1.2: KGE models with literals and their corresponding base models.

Models with literals The standard models
they extend

Extended RESCAL [77] RESCAL [67]
Jointly(desp) [62] TransE [49]
DKRL [60] TransE [49]
Jointly [63] TransE [49]
SSP [64] TransE [49]
KDCoE [65] TransE [49]
KGlove with literals
[76]

KGlove

LiteralE [73] DistMult [50], Com-
plEx [69], ConvE [16]

TransEA [59] TransE [49]
IKRL [61] TransE [49]
MTKGRL [100] TransE [49]
EAKGAE [66] TransE [49]
MKBE [74] DistMult [50], ConvE

[16]
MADLINK[101] DistMult[50]

issues if literals are utilized while generating KGEs. Similarly, KREAR only considers those
data properties which have categorical values, i.e., fixed number of values and ignores
those which take any random literals as values. One of the recent surveys [24] summarizes
the methods proposed so far on refining KGs. However, this survey does not confine it-
self to embedding techniques and also does not consider most of the approaches which
are making use of literals. Another very recent related study [104], discusses different as-
pects of KGE models such as model architectures, training strategies, and hyperparameter
optimization but it takes into consideration only those models without literals.

None of the surveys mentioned above cover all the existing KGE models which make use
of literals, such as the ones categorized as models incorporating information represented in
literals in Table 3.1.1. Taking this into consideration, this chapter addresses the challenges
in reference to the research question C2-RQ1 from Section 1.2 of Chapter 1.

• C2-RQ1: - How well do the SOTA KGE approaches which use literals perform for the task of
LP?

In order to answer this question, as part of this thesis, a detailed review of the SOTA
KGE models which utilize literals is conducted and published in the surveys [1, 14]. The

34 kge models with literals in transductive setting

major difference between the two surveys is that the first one [1] is a short comprehensive
overview whereas the second one [14] provides a more extensive theoretical analysis of
these models along with an empirical evaluation on the task of link prediction. The findings
of these surveys are presented in the rest of this chapter.

3.2 sota models

This section investigates KGE models with literals divided into the following different cat-
egories based on the types of literals utilized: (i) Text, (ii) Numeric, (iii) Image, and (iv)
Multi-modal. A KGE model which makes use of at least two types of literals providing
complementary information is considered multi-modal. In the subsequent sections, the
descriptions of the models for each of the previously described categories are provided,
highlighting their similarities and differences, as well as a discussion of potential draw-
backs.

3.2.1 Models with Text Literals

In this section, KGE models utilizing text literals are discussed, namely, Extended RESCAL
[77], Jointly(desp) [62] , DKRL [60], Jointly [63], SSP [64] , KDCoE [65], KGloVe with literals
[76], and MADLINK [101]. A detailed description followed by a summary presenting the
comparison of these models is given along with their drawbacks. Moreover, in order to
show the differences between the models based on complexity, the number of parameters
of each model is presented in Table 3.2.1.

extended rescal aims to improve the original RESCAL approach by extending its al-
gorithm to process literal values more efficiently and to deal with the drawback of sparsity
that accompanies tensors. In the original RESCAL approach, relational data is modeled as
a three-way tensor X of size n× n×m, where n is the number of entities and m is the
number of relations. An entry Xijk = 1 denotes the existence of the triple with i-th entity
as a subject, k-th relation as a predicate, and j-th entity as an object. If Xijk is set to 0, it
indicates that the triple doesn’t exist. A new approach for tensor factorization is proposed
which is performed on X. For further details refer to [77]. If attributive triples have to be
modeled in such a way, then the literals will be taken as entities even if they cannot occur
as subjects in the triples. Including literals may lead to an increment in the runtime since a
larger tensor has to be factorized.

In contrast to the original algorithm, the extended RESCAL algorithm handles the at-
tributive triples in a separate matrix. The matrix factorization is performed jointly with
the tensor factorization of the non-attributive triples. The attributive triples containing only
text literals are encoded in an entity-attribute matrix D in such a way that the rows are
entities and the columns are < data type relation, value > pairs. Given a triple with
a textual data type such as rdfs:label or yago:hasPreferredMeaning, one or more such

3.2 sota models 35

pairs are created by tokenizing and stemming the text in the object literal. The matrix D

is then factorized into D ≈ AV with A and V being the latent-component representations
of entities and attributes respectively. Despite the advantage that this approach has for
handling multi-valued attributes, it does not consider the sequence of words of the literal
values. Note that Extended RESCAL represents RDF(S) data in such a way that there is
no distinction drawn among A-Box and T-Box, i.e., both classes and instances are modeled
equally as entities in a tensor. The T-Box is rather taken as soft constraints instead of letting
them impose hard constraints on the model.

jointly(disp) is an approach which jointly learns embeddings of KGs and a text cor-
pus of entity descriptions, i.e, it uses an alignment model to make sure the entities, relations,
and words are represented in the same vector space. This approach consists of three compo-
nents, namely, knowledge model, text model, and alignment model. The knowledge model
is used to capture the semantics of the structured information from the KG. Given a triple
< h, r, t >, the model defines the plausibility of the triple, same as in [105]:

Pr(h|r, t) =
exp{z(h, r, t)}∑
h̃∈I exp{z(h̃, r, t)}

, (14)

where z(h, r, t) = b− 0.5 · ∥h+ r− t∥22, b = 7. Analogously, Pr(r|h, t) and Pr(t|h, r) are de-
fined.

Then, the loss function of the knowledge model is defined as follows:

LK =
∑

(h,r,t)

[logPr(h|r, t) + logPr(t|h, r)

+ logPr(r|h, t)].
(15)

The text model adopts the same assumption made in [105] that is if two words occur in
the same context then there is a relation between them. Based on this assumption, the text
model defines the probability of a pair of words w and v co-occurring in a text window as
follows:

Pr(w|v) =
exp{z(w, v)}∑

w̃∈V exp{z(w̃, v)}
, (16)

where z(w, v) = b− 0.5 · ∥w − v∥22. Then, the loss function of the text model is given as:

LT =
∑
(w,v)

logPr(w|v). (17)

The role of the third component, the alignment model, is to put the embeddings of the
entities, relations, and words into the same vector space. This submodel works by utilizing

36 kge models with literals in transductive setting

entity descriptions to align these embeddings. For every word w in the description of entity
e, the conditional probability of predicting w given e is defined as :

Pr(w|e) =
exp{z(e,w)}∑

w̃∈V exp{z(e, w̃)}
, (18)

where z(e,w) = b− 0.5 · ∥e − w∥22. The entity vector e in Eq 18 is the same as the entity
vector appearing in Eq 14, i.e., an entity has a single unified representation which captures
the semantics from both the structured KG and the entity descriptions. Pr(e|w) is defined
analogously. Based on the definition given in Eq 18, the loss function of the alignment
model is defined as:

LA =
∑
e∈E

∑
w∈De

[logPr(w|e) + logPr(e|w)], (19)

where E and De denote the set of entities and the description of the entity e respectively.
By adopting the joint embedding framework in [105], the main loss of Jointly(desp) is

defined as follows:
L({ei}, {rj}, {wl}) = LK + LT + LA. (20)

DKRL extends TransE [49] by utilizing the descriptions of entities. For each entity e, two
kinds of vector representations are learned, i.e., structure-based es and description-based
ed. These two kinds of entity representations are learned simultaneously into the same
vector space but not forced to be unified so that novel entities with only descriptions can
be represented. In order to achieve this, given a certain triple < h, r, t > the energy function
of the DKRL model is defined as:

E = ||hs + r− ts||+ ||hd + r− td||

+||hs + r− td||+ ||hd + r− ts||,
(21)

where hs and ts are the structure-based representations, and hd and td are the description-
based representations of their corresponding entities.

In order to learn structure-based representations, the TransE approach is directly applied
which considers the relation in a triple as the translation from the head entity to the tail
entity. On the other hand, Continuous Bag of Words (CBOW) and a deep Convolutional
Neural Network (CNN) model have been used to generate the description-based represen-
tations of the head and tail entities. In the case of CBOW, short text is generated from the
description based on keywords and their corresponding word embeddings are summed
up to generate the entity embedding. In the CNN model, after preprocessing the descrip-
tion, pretrained word vectors from Wikipedia are provided as input. This CNN model has
five layers and after every convolutional layer pooling is applied to decrease the parameter
space of CNN and filter noises. Max-pooling is applied for the first pooling and mean pool-

3.2 sota models 37

ing for the last one. The activation function used is either tanh or ReLU. The CNN model
works better than CBOW because it preserves the sequence of words.

In order to train DKRL, the following margin-based score function is considered as an ob-
jective function and minimized using a standard backpropagation using stochastic gradient
descent (SGD)

L =
∑

(h,r,t)∈T

∑
(h ′,r ′,t ′)∈T ′

max(γ+ d(h+ r, t)

−d(h ′ + r ′, t ′), 0),
(22)

where γ > 0 is a margin hyperparameter, d is a dissimilarity function and T ′ is the set
of corrupted triples. The representation of the entities can be either structure-based or
description-based.

jointly Jointly [63] learns KGEs by leveraging entity descriptions. Specifically, it learns
a joint embedding of an entity by combining its structure-based and description-based
representations with a gating mechanism. The gate is used to find a balance between the
structure-based and the description-based representations. For a certain entity, a representa-
tion can be encoded from its descriptions by converting the description into a fixed-length
vector. In Jointly, different text encoders have been used such as bag-of-words, LSTM, and
Attentive LSTM.

For an entity e, its joint representation e is a linear interpolation between its structure-
based representation (es) and description-based representation (ed), which is defined as:

e = ge ⊙ es + (1− ge)⊙ ed, (23)

where⊙ is an element-wise multiplication and ge is a gate to balance the two information
sources (structure and text) which is computed as ge = α(g̃e) with ge = g̃e ∈ Rd being
real-value vector stored in a lookup table.

The entity descriptions are encoded using either bag-of-words, LSTM, or Attentive LSTM
(ALSTM) encoders in order to generate text-based representations for the corresponding
entities. On the other hand, to better model the structure-based embedidngs, entities and
relations can be pre-trained with any existing KGE models, such as TransE.

Jointly’s score function is inspired by TransE and defined as follows:

f(h, r, t;dh,dt) = ∥(gh ⊙ hs + (1− gh)

⊙hd) + r− (gt ⊙ ht + (1− gt)⊙ td)∥22.
(24)

where hs, hd, and gh are the head entity’s structure-based embedding, description-based
embedding, and gate respectively whereas ts, td, and gt are the tail entity’s structure-based
embedding, description-based embedding, and gate respectively.

38 kge models with literals in transductive setting

ssp SSP (Semantic Space Projection) [64] is a joint embedding model which learns from
both structured/symbolic triples and textual descriptions. Differently from DKRL and
Jointly(Desp), where first-order constraints which are weak in capturing the correlation of
textual descriptions and symbolic triples are applied, SSP follows the principle that triple
embedding is considered always as the main procedure and textual descriptions must in-
teract with triples in order to learn better representation. Therefore, triple embedding is
projected onto a semantic subspace such as a hyperplane to allow strong correlation by
adopting quadratic constraint.

SSP applies the following scoring function:

fr(h, t) = −λ∥e − sTes∥22 + ∥e∥22, (25)

where
e .
= h + r − t, (26)

and
s .
=

sh + st

∥sh + st∥
. (27)

Note that λ is a suitable hyper-parameter, h and t are the structure (symbolic triples) based
embedding of the head and tail entities respectively, sh and st are the semantic vectors gen-
erated from the textual descriptions of the head and tail entities respectively. SSE adopts
the Non-negative Matrix Factorization (NMF) topic model to generate description-based se-
mantic vectors for entities (sh and st), i.e., by treating each entity description as a document
and taking the topic distribution of the document as the representation of the correspond-
ing entity.

SSP provides two different settings for training which are referred to as Std and Joint.
In Std, a pre-trained topic model with NMF is used to obtain description-based semantic
vectors. These description-based vectors are fixed during training but the other parameters
are optimized. On the other hand, in the joint setting, the topic model is also learned
simultaneously with the KGEs instead of using fixed pre-trained vectors.

kdcoe KDCoE focuses on the creation of an alignment between entities of multilingual
KGs by creating new Inter-Lingual Links (ILLs) based on an embedding approach that
exploits entity descriptions. The model uses a weakly aligned multilingual KG for semi-
supervised cross-lingual learning. It performs co-training of a multilingual KGE Model
(KGEM) and a multilingual entity Description Embedding Model (DEM) iteratively in or-
der for each model to propose a new ILL alternately. KGEM is composed of two compo-
nents, i.e., a knowledge model and an alignment model, to learn embeddings based on
structured information from the KGs (the non-attributive triples). Given a set of languages
L, a separate k1-dimensional embedding space R

k1

L is used for each language L ∈ L to
represent the corresponding relations RL and entities EL. In order to learn the embeddings
for RL and EL, the knowledge model adopts TransE and thus uses hinge loss as its objective

3.2 sota models 39

function. On the other hand, a linear-transformation-based technique that has the best per-
formance in the case of cross-lingual inferences is adopted for the alignment model. This
technique employs the following objective function:

SA =
∑

(e,e ′)∈I(Li,Lj)

∥Mije − e ′∥2, (28)

where I(Li,Lj) is ILLs between the languages Li and Lj, and Mij is a k1 × k1 matrix used
as a linear transformation on entity vectors from Li to Lj.

Let SK be the hinge loss function used by the knowledge model, the KGEM model then
minimizes SKG = SK + αSA, where α is a positive hyperparameter. In the case of DEM
model, an attentive gated recurrent unit encoder (AGRU) is used to encode the multilin-
gual entity descriptions. DEM applies multilingual word embeddings in order to capture
the semantic information of multilingual entity descriptions from the word level. The two
models, i.e., KGEM and DEM, are iteratively co-trained in order for each model to propose
a new ILL alternately.

kglove with literals KGloVe with literals is an experimental attempt to incorporate
entity descriptions in KGloVe KGE approach. The experiment is conducted on DBpedia
considering the abstracts and comments of entities as their descriptions. The main goal
is to extract named entities from the textual description and for every entity in the text,
to replace those words representing it with the entity itself and then take its neighboring
words and entities as its context. The approach works by creating two co-occurrence ma-
trices independently and then by merging them at the end so that a joint embedding can
be performed. The first matrix is generated using the same technique as in KGloVe [106],
i.e., by performing Personalized PageRank (PPR) on the (weighted) graph followed by the
same optimization used in the GloVe [37] approach.

In order to create the second matrix, the Named Entity Recognition (NER) task is per-
formed on the entity description text using the list of entities and predicates of the KG
as input. The NER step employs a simple exact string matching technique which leads to
numerous drawbacks such as missing entities due to having different keywords with the
same semantics. All the English words that do not match any entity labels are added to the
entity-predicate list. Then GloVe co-occurrence for text is applied to the modified text (i.e.,
DBpedia abstract and comments) using the entity-predicate and word list as input. Finally,
the two co-occurrence matrices are summed up together to create a single unified matrix.
The proposed approach has been evaluated on classification and regression tasks and the
result indicates that for most of the classifiers used, except SVM, the approach does not
bring significant improvement to KGloVe. However, the approach can be improved using
parameter tuning with extensive experiments.

madlink MADLINK is a multi-hop attentive KGE model that aims to enhance the task
of LP by capturing the semantics of entities and relations through the combination of the

40 kge models with literals in transductive setting

random walks (paths) and textual entity descriptions. The random walk captures the con-
textual information of the entities. The selection of the paths also takes into account the
significance of an entity with respect to a relation. For a certain relation, its contextual in-
formation is captured by considering all the triples containing that relation. To obtain a
cumulative representation of the paths extracted for each entity from the KG, MADLINK
uses an adapted seq2seq [107] encoder-decoder architecture with an attention layer. The la-
tent representations of entity descriptions provided in natural language text are extracted
using SBERT [108]. The DistMult scoring function is used to compute the score of a triple
for head or tail prediction.

summary The basic differences between these models lie in the methods used to exploit
the information given in the text literals and combine them with structure-based represen-
tation. One major advantage of KDCoE over text literal based embedding models is that
it considers descriptions present in multilingual KGs. Jointly(Desp) aligns KGEs and word
embeddings on word level, which may lead to losing some semantic information on phrase
or sentence level. Jointly applies a gating mechanism that allows to automatically find a bal-
ance between the structural and textual information. It also uses an LSTM encoder which
enables the model to select the most related information for an entity from its text de-
scription according to different relations. Unlike DKRL and Jointly(Desp), SSP focuses on
characterizing the stronger correlations between entity descriptions and structured triples
by projecting triple embedding onto a semantic subspace such as a hyper-plane, as dis-
cussed above. On the other hand, MADLINK exploits the contextual information from the
KG through random walk and also captures semantics from entity descriptions by apply-
ing a LM. The common drawback among the presented approaches with text literals is
they focus mostly on descriptions, which are long natural language text, and thus, other
types of text literals, such as names, labels, titles, etc. are not widely considered. Moreover,
another way to compare these approaches is by looking at their model complexity. Table
3.2.1 presents the complexity of these models in terms of their number of parameters.

3.2 sota models 41

Table 3.2.1: The complexity of the models with text literals in terms of the number of parameters. Θ
is the number of parameters in the base model, H is the entity embedding size, Nd is the number
of data relations, L is the number of attribute-value pairs, Nr is the number of relations, Nw is
the number of words, H ′ is the word embedding size, N(1)

0 is the dimension of input vectors at

the first layer, N(1)
1 is the dimension of output vectors at layer 1, K is window size, N(2)

0 is the

dimension of input vectors at the second layer, N(2)
1 is the dimension of output vectors at second

layer, Ne1
and Ne2

denote the number of entities in two different languages of a multilingual KG,
Nr1 and Nr2 denote the number of relations in two different languages of a multilingual KG, N is
the total number of entities and relations, and M is the total number of entities, relations and words.
θ1 and θ2 represent the cumulative size of the parameters from the encoder and decoder GRUs,
respectively. H ′′ is the path-based entity embedding size

Model #Parameter

Extended Rescal Θ+HL

Jointly(Desp) Θ+NwH ′

DKRL Θ+NwH ′ +N1
0KN

(1)
1 +N

(2)
0 KN

(2)
1

Jointly(ALSTM) Θ+ (2H+ 4)H

SSP Θ+ (Ne +Nw)H

KDCoE (Ne1
+Ne2

+Nr1 +Nr2 +H)H

+(5H ′ + 3Nw)H ′

KGlove with literals (N+ 1)N+Nw +M

MADLINK 2H+H ′′ + θ1 + θ2

3.2.2 Models with Numeric Literals

In this section, the analysis of the KGE models which use numeric literals, namely, MT-
KGNN [75], KBLRN [91], LiteralE [73], and TransEA [59] are presented followed by a sum-
mary. Moreover, in order to show the differences between the models based on complexity,
the number of parameters of each model is presented in Table 3.2.2.

mt-kgnn MT-KGNN is an approach for both relational learning and non-discrete at-
tribute prediction on knowledge graphs in order to learn embeddings for entities, object
properties, and data properties. It is composed of two networks, namely, the Relational
Network (RelNet) and the Attribute Network (AttrNet). RelNet is a binary (pointwise)
classifier for triple prediction whereas AttrNet is a regression task for attribute value pre-
diction. Given n, m, and l as entity, relation, and literal embedding dimensions respectively,
the model passes as an input [ei, rk, ej, t] to RelNet and [ai, vi,aj, vj] to AttrNet, where ei
, ej ∈ Rn, rk ∈ Rm, t is the classification target which is 0 or 1, ai,aj ∈ Rl, and vi and vj
are normalized continuous values in the interval [0, 1]. Note that the inputs to AttrNet, i.e.,
[ai, vi,aj, vj], are taken from attributive triples with non-discrete literal values. An embed-

42 kge models with literals in transductive setting

ding lookup layer is used to retrieve the corresponding vector representations given these
inputs as one-hot encoded indices.

In RelNet, a concatenated triple is passed through a nonlinear transform and then a
sigmoid function is applied to get a linear transform:

grel(ei, rk, ej) = σ(−→wT f(WT
d [
−→ei ;−→ej ;−→rk])

+brel),
(29)

where w ∈ Rh×1 and Wd ∈ R3n×h are parameters of the network. σ, f, and brel are
the sigmoid function, the hyperbolic tangent function tanh, and a scalar bias respectively.
RelNet is trained by minimizing the following cross entropy loss function:

Lrel = −

N∑
i=1

ti loggrel(ξi)

+(1− ti) log(1− grel(ξi))),

(30)

where ξi denotes triple i in batch of size N and ti takes the value 0 or 1. In case of AttrNet,
two regression tasks are performed, one for the head data properties and another for those
of the tail. The following scoring functions are defined for these two tasks:

gh(ai) = σ(−→u T f(BT [−→ai;
−→ei]) + bz1), (31)

and
gt(aj) = σ(−→y T f(CT [−→aj;

−→ej]) + bz2), (32)

where u,y ∈ Rha×1 and B,C ∈ R2n×ha are parameters of AttrNet. ha is the size of the
hidden layer and bz1 , bz2 are scalar biases. Each AttrNet is trained by optimizing Mean
Squared Error (MSE) loss function:

MSE(s, s∗) =
1

N

N∑
i=1

(si − s∗i)
2. (33)

where s and s∗ are predicted labels (scores computed by the model) and ground truth
labels respectively.
The overall loss of the AttrNet is computed by adding the MSE of the head AttrNet and
that of the tail AttrNet as follows:

Lattr = MSE(gh(ai), (ai)
∗)

+MSE(gt(aj), (aj)
∗),

(34)

where (ai)
∗, (aj)

∗ are the ground truth labels. Finally, the two networks are trained in a
multi-task fashion using a shared embedding space.

3.2 sota models 43

kblrn KBLRN works by combining relational (R), latent (L), and numerical (N) features
together. The model is designed mainly for the purpose of KG completion. It uses a prob-
abilistic PoE (Product of Experts) method to combine these feature types and train them
jointly end to end. Each relational feature is formulated as a logical formula, by adopting
the rule mining approach AMIE+ [109], to be evaluated in the KB to compute the feature’s
value. The latent features are the ones that are usually generated using an embedding ap-
proach such as DistMult. Numerical features are used with the assumption that, for some
relation types, the differences between the head and tail can be seen as characteristics of
the relation itself. Given a triple d = (h, r, t), for each (relation type r, and feature type
F ∈ {L,R,N}) pair, individual experts are defined based on linear models and DistMult
embedding method as follows:

f(r,L)(d | θ(r,L)) = exp((eh ∗ et) ·wr), (35)

f(r,R)(d | θ(r,R)) = exp(r(h,t) ·wr
rel), (36)

f(r,N)(d | θ(r,N)) = exp(ϕ(n(h,t)) ·wr
num), (37)

and
f(r′,F)(d | θ(r′,F)) = 1 for all r′ ̸= r (38)

where wr,wr
rel,w

r
num are the parameter vectors for the latent, relational, and numerical

features corresponding to the relation r. Also, * is the element-wise product, · is the dot
product, and ϕ is the radial basis function (RBF) applied element-wise to the differences of
values n(h,t) computed as follows:

ϕ(n(h,t)) = [exp(
−∥n(1)

(h,t) − c1∥22
σ2
1

) . . .

exp(
−∥n(dn)

(h,t) − cdn
∥22

σ2
dn

)].

(39)

Here, dn corresponds to the relevant numerical features. A PoE’s probability distribution
for a triple d = (h, r, t) is defined as follows:

p(d | θ1 . . . θn) =
ΠFf(r,F)(d | θ(r,F))∑
cΠFf(r,F)(c | θ(r,F))

, (40)

where c denotes all possible triples. The parameters of the entity embedding model are
shared by all the experts in order to create dependencies between them. In this approach,
the PoE are trained with negative sampling and a cross-entropy loss to give high probability
to observed triples.

44 kge models with literals in transductive setting

literale LiteralE incorporates literals into existing latent feature models designed for
LP. In this approach, without loss of generality, the focus lies on incorporating numeri-
cal literals into three state-of-the-art embedding methods: DistMult, ComplEx, and ConvE.
Given a base model like Distmult, LiteralE modifies the scoring function f used in Distmult
by replacing the vector representations of the entities ei in f with literal enriched represen-
tations eliti . In order to generate eliti , LiteralE uses a learnable transformation function g

which takes ei and its corresponding literal vectors li as inputs and maps them to a new
vector. The function g is defined, as shown below, based on the concept of GRU in order to
make it flexible, learnable, and capable to decide, if it is beneficial to incorporate the literal
information or not:

g : RH ×RNd → RH, (41)

and
e, l 7→ z⊙ h + (1− z)⊙ e, (42)

where
z : σ(WT

zee + WT
zll + b), (43)

and
h = h(WT

h[e, l]). (44)

Note that Wze ∈ RH×H, Wzl ∈ RNd×H, b ∈ RH, and Wh ∈ RH+Nd×H are the parame-
ters of g, σ is the sigmoid function, ⊙ denotes the element-wise multiplication, and h is
a component-wise nonlinearity. The scoring function f(ei, ej, rk) has been replaced with
f(g(ei, li),g(ej, lj), rk) and trained following the same procedure as in the base model.

transea TransEA has two component models; a directly adopted translation-based
structure embedding model (i.e., TransE) and a newly proposed attribute embedding model.
In the former, the scoring function of a given triple < h, r, t >, is defined as follows:

fr(h, t) = −∥h+ r− t∥1/2, (45)

where ||x||1/2 denotes either the L1 or L2 norm. The loss function of the structure embed-
ding, for all the relational triples in the KG, is defined as:

LR =
∑

<h,r,t>∈T

∑
<h ′,r,t ′>∈T ′

max(γ+ fr(h, t)

−fr(h
′, t ′), 0),

(46)

where T ′ denotes the set of negative triples constructed by corrupting either the head or
the tail entity and γ > 0 is a margin hyperparameter.

3.2 sota models 45

For the attribute embedding, it uses all attributive triples containing numeric values as
input and applies a linear regression model to learn embeddings of entities and attributes.
Given an attributive triple < e,a, v >, the scoring function is defined as:

fa(e, v) = −∥aT · e + ba − v∥1/2, (47)

where a and e are vectors of attribute a and entity e, ba is a bias for attribute a. On the
other hand, given all the attributive triples with numeric values S, the loss function for the
attributive embedding is computed as:

LA =
∑

<e,a,v>∈S

fa(e, v), (48)

The main loss function for TransEA (i.e.,L = (1− α) · LR + α · LA) is defined by taking
the sum of the respective loss functions of the component models with a hyperparameter
to assign a weight for each of the models. Finally, the two models are jointly optimized in
the training process by sharing the embeddings of entities.

summary Despite their support for numerical literals, all the embedding methods dis-
cussed fail to interpret the semantics behind units/data typed literals. For instance, given
the following two triples taken from DBpedia,

<http://dbpedia.org/resource/Anton_Baraniak, dbp:weight, "110.0"^^<http://dbpedia.org/datatype/

kilogram>,

<http://dbpedia.org/resource/Katelin_Snyder, dbp:weight, "110.0"^^<http://dbpedia.org/datatype/

pound>

the literal value "110.0" from the first triple and the literal value "110.0" from the second
triple could be considered exactly the same if the semantics of the types kilogram and
pound are ignored. Moreover, most of the models do not employ a proper mechanism to
handle multi-valued attributes.

Regarding model complexity, the number of parameters used in each model is presented
in Table 3.2.2 to show the complexity in terms of the parameters. It is noted that the com-
plexity of the models depends on the size of the dataset and TransEA has lower complexity
as compared to the other models.

3.2.3 Models with Images

In this section, KGE models utilizing images of entities, namely, IKRL [61] and MTKGRL
[100] are discussed. First, a detailed analysis of the models is presented followed by a sum-
mary. Moreover, in order to show the differences between the models based on complexity,
the number of parameters of each model is presented in Table 3.2.3.

46 kge models with literals in transductive setting

Table 3.2.2: Complexity of the models with numerical literals in terms of the number of parameters.
Θ is the number of parameters in the base model, H is the entity embedding size, Nd is the number
of data relations, Λ is the size of the hidden layer in the Attrnet networks of MTKGNN, Nr is the
number of relations, and M is attribute embedding size.

Model #Parameters

LiteralE with g Θ + 2H2 + 2NdH + H
LiteralE with glin Θ + (NdH + H)H

MTKGNN Θ + NdH + 2(2HΛ + Λ)
KBLN Θ + NrNd

TransEA Θ + NdM

ikrl IKRL [61] learns embeddings for KGs by jointly training a structure-based represen-
tation with an image-based representation. The structure-based representation of an entity
is learned by adapting a conventional embedding model like TransE. For the image-based
representation, given the fact that an entity may have multiple image instances, an image
encoder is applied to generate an embedding for each instance of a multi-valued image
relation. The image encoder consists of a neural representation module and a projection
module to extract discriminative features from images and to project these representations
from image space to entity space respectively.

For the i-th image, its image-based representation pi in entity space is computed as:

pi = M · f(imgi), (49)

where M ∈ Rdi×ds is the projection matrix with di and ds representing the dimension of
image features and the dimension of entities respectively. f(imgi) is the i-th image feature
representation in image space.

Attention-based multi-instance learning is used to integrate the representations learned
for each image instance by automatically calculating the attention that should be given to
each instance. The attention for the i-th image representation p

(k)
i of the k-th entity is given

as:

att(p(k)
i , e(k)S) =

exp(p(k)
i · e(k)S)∑n

j=1 exp(p
(k)
j · e(k)S)

, (50)

where e(k)S denotes the structure-based representation of the k-th entity. The higher the
attention the more similar the image-based representation is to its corresponding structure-
based representation which indicates that it should be given more importance when ag-

3.2 sota models 47

gregating the image-based representations. The aggregated image-based representation for
the k-th entity is defined as follows:

e(k)I =

n∑
i=1

att(p(k)
i , e(k)S) · p(k)

i∑n
j=1 att(p

(k)
j , e(k)S)

. (51)

Given a triple, the overall energy function is defined by combining four energy functions
(i.e., E(h, r, t) = ESS + EII + ESI + EIS. These energy functions are based on two kinds of
entity representations (i.e, structure-based and image-based representations). The first en-
ergy function (i.e., ESS = ∥hS + r − tS∥) is the same as TransE and the second function
(i.e., EII = ∥hI + r − tI∥) uses their corresponding image-based representations for both
head and tail entities. The third function (i.e., ESI = ∥hS+ r− tI∥) is based on the structure-
based representation of the head entity and the image-based representation of the tail entity
whereas the fourth function (i.e., EIS = ∥hI + r− tS∥) is the exact opposite. These third and
fourth functions ensure that both structure-based representation and image-based repre-
sentations are learned into the same vector space.

Given the energy function E(h, r, t), a margin-based scoring function is defined as fol-
lows:

L =
∑

(h,r,t)∈T

∑
(h ′,r ′,t ′)∈T ′

max(γ+ E(h, r, t)

−E(h ′, r ′, t ′), 0),
(52)

where γ is a margin hyperparameter and T ′ is the negative sample set of T generated by
replacing the head entity, tail entity or the relation for each triple in T. Note that triples that
are already in T are removed from T ′.

mtkgrl MTKGRL [100] is a KGE approach that combines structural (symbolic), visual,
and linguistic KG representations. The structural representations are created by adopting
TransE embedding technique whereas visual embeddings are obtained from the feature
layers of deep networks for image classification on the images that are associated with enti-
ties. For linguistic representations, pre-trained word embedding technique, specifically the
skipgram model, is used. However, the information source for the linguistic representation
is not literals from the KG but an external source, i.e., the word embedding model, trained
on Google 100B token news dataset. Due to this fact, the model MTKGRL is not considered
as multi-modal KGE model in the context of this survey and thus, it is not categorized
under ‘Models with Multi-modal Literals’ (Sec 3.2.4).

MTKGRL defines an energy function for each kind of representation and also their combi-
nations, i.e., structural energy, multi-modal energies, and structural-multi-modal energies.
Structural energy is adopted from TransE, which is defined as ES = ∥hs + rs − ts∥. The
mult-imodal representations for the head and tail entities are computed as hm = hw ⊕ hi

48 kge models with literals in transductive setting

and tm = tw ⊕ ti respectively, where the operator ⊕ can be a concatenation operator or a
mapping function.

The multi-modal energy function under the translational assumption is given as:

EM1 = ∥hm + rs − tm∥. (53)

EM1 can be extended by considering the structural embeddings in addition to the multi-
modal embeddings as follows:

EM2 = ∥(hm + hs)rs − (tm + ts)∥. (54)

On the other hand, in order to allow the structural and multi-modal embeddings to be
learned in the same vector space, the following structural-multi-modal energies are defined
as shown below:

ESM = ∥hs + rs − tm∥ (55a)

EMS = ∥hm + rs − ts∥ (55b)

The overall energy function, shown in Equation 56, is defined by combining the afore-
mentioned energy functions, i.e., ES, EM1, EM2, ESM, EMS.

E(h, r, t) = ES + EM1 + EM2 + ESM

+EMS

(56)

Finally, a margin-based ranking loss function is minimized in order to train the model.

summary IKRL makes use of the images of entities for KG representation learning
by combining structure-based representation with image-based representation. However,
given a triple < h, r, t >, in order to achieve very good representations for the entities h

and t, both entities are required to have images associated with them. The other issue with
this model is that an image is considered as an attribute of only those entities it is associated
with. For example, if there is an image of two entities e1 and e2 but the image is associated
with only e1, then it will be taken as one image instance of e1 but not of e2. However, it
would be more beneficial to explicitly associate images with all the entities they represent
before using them for learning KGE. Some of the main points that make MTKGRL differ
from IKRL are: i) in addition to images, MTKGRL uses linguistic embeddings for entities,
ii) MTKGRL introduces an additional energy function that considers both linguistic and
visual representations of entities as discussed above. These differences allow MTKGRL to
learn better representation for KGs as compared to IKRL.

3.2 sota models 49

Table 3.2.3: The complexity of the models with images in terms of the number of parameters. Θ
is the number of parameters in the base model, H is the entity embedding size, Hi represents the
dimension of image features, θAlexNet is the number of parameters in AlexNet [110], Ne represents
the number of entities, and Ni is the number of images.

Model #Parameter

IKRL Θ+HiH+ΘAlexNet

MTKGRL Θ+NeH+NiHi

3.2.4 Models with Multi-modal Literals

This section presents an analysis of the embedding models making use of at least two types
of literals providing complementary information. First, the category with numeric and text
literals is discussed followed by the category with numeric, text, and image. Moreover, in
order to show the differences between the models based on complexity, the number of
parameters of each model is presented in Table 3.2.4.

3.2.4.1 Models with Numeric and Text Literals

literale with blocking LiteralE with blocking [78] proposes to improve the effec-
tiveness of the data linking task by combining LiteralE with a CER blocking [111] strategy.
Unlike LiteralE, given an attributive triple < h,d, v >, in addition to the object literal value
v it also takes literals from URI infixes of the head entity h and the data relation d. The CER
blocking is based on a two-pass indexing scheme. In the first pass, Levenshtein distance
metric is used to process literal objects and URI infixes whereas in the second pass seman-
tic similarity computation with WordNet [29] is applied to process object/data relations.
All the extracted literals are tokenized into word lists so as to create inverted indices. The
same training procedure as in LiteralE is used to train this model. For every given triple
< h, r, t >, the scoring function f from LiteralE is adopted to compute scores for all the
triples < h, r, t ′ > in the knowledge graph. A sigmoid function, p = σ(f(.)) , is used to
produce probabilities. Then, the model is trained by minimizing the binary cross-entropy
loss of the produced probability function vector with respect to the vector of truth values
for the triples.

eakgae EAKGAE [66] is an approach designed for entity alignment between KGs by
learning a unified embedding space for the KGs. The entity alignment task has three main
modules: Predicate alignment, Embedding learning, and Entity alignment. The predicate
alignment module merges two KGs together by renaming similar predicates so as to cre-
ate unified vector space for the relationship embeddings. The embedding learning mod-
ule jointly learns entity embeddings of two KGs using structure embedding (by adapting
TransE) and attribute character embedding. The adapted TransE is customized in a way

50 kge models with literals in transductive setting

that more focus can be given to triples with aligned predicates. This is obtained by adding
a weight α to control the embedding learning over the triples. Thus, the following objective
function JSE is defined for the structure-based embedding:

JSE =
∑
tr∈Tr

∑
t ′
r∈T ′

r

max(0,γ+α(f(tr) − f(t ′r))), (57)

and
α =

count(r)

|T |
, (58)

where Tr and T ′
r are the sets of valid triples and corrupted triples respectively, count(r)

is the number of occurrences of the relation r, and |T | is the total number of triples in the
merged KG.

On the other hand, the attribute character embedding is designed to learn embeddings
for entities from the strings occurring in the attributes associated with the entities. The
purpose is to enable the entity embeddings from two KGs to fall into the same vector
space despite the fact that the attributes come from different KGs. The attribute character
embedding is inspired by the concept of translation in TransE. Given a triple (h, r,a), the
data property r is interpreted as a translation from the head entity h to the literal value
a i.e. h + r = fa(a) where fa(a) is a compositional function. This function encodes the
attribute values into a single vector mapping similar attribute values into similar represen-
tations. Three different compositional functions SUM, LSTM, and N-gram-based functions
have been proposed. SUM is defined as a summation of all character embeddings of the
attribute value. In LSTM, the final hidden state is taken as a vector representation of the at-
tribute value. The N-gram-based function, which shows better performance than the others
according to their experiments, uses the summation of n-gram combination of the attribute
value.

The following objective function is defined for the attribute character embedding:

JCE =
∑

ta∈Ta

∑
t ′
a∈T ′

a

max(0, [γ+α(f(ta) − f(t ′a))]), (59)

Ta = < h, r,a > h ∈ G; f(ta) = ∥h+ r− fa(a)∥,

and
T ′
a = {< h ′, r,a > h ′ ∈ G}∪ {< h, r,a ′ > a ′ ∈ A},

where, Ta and T ′
a are the sets of valid attribute triples and corrupted attribute triples with

A being the set of attributes in a given KG G. The corrupted triples are created by replacing
the head entity with a random entity or the attribute with a random attribute value. Here,
f(ta) is the plausibility score computed based on the embedding of the head entity h, the
embedding of the relation r, and the vector representation of the attribute value obtained
using one of the compositional functions fa(a).

3.2 sota models 51

The attribute character embedding hce is used to shift the structure embedding hse into
the same vector space by minimizing the following objective function:

JSIM =
∑

h∈G1∪G2

[1− ∥hse∥2 · ∥hce∥2], (60)

where, ∥x∥2 is the L2-Norm of vector x. This way the similarity of entities from two KGs is
captured by the structure embedding based on the entity relationships and by the attribute
embedding based on the attribute values.

All three functions are summed up to an overall objective function J (i.e., J = JSE + JCE +

JSIM) for jointly learning both structure and attribute embeddings. Finally, the alignment
is done by defining a similarity equation with a specified threshold. Moreover, a transitivity
rule has been applied to enrich triples in the KGs to get a better attribute embedding result.

transforming literals to entities Transforming literals of type date and string
into entities is another approach introduced recently [112]. In this work, the idea is to en-
rich the neighborhood structure of entity nodes by transforming literal information into
relational triples. This aims to enable reusing existing LP models without modifications
in comparison to other existing methods such as LiteralE. Three different transformations
are described, namely Literal2Entity, Datatype2Entity, and Value2Shingles, which can be im-
plemented as set-operations. Literal2Entity uses the complete literal information without
modifications to create a URI, Datatype2Entity reduces the literal information to datatype
and language tag and then creates a URI, and Value2Shingles shingles string literals and
enriches the graph by these shingles transformed to URIs. These transformations are ap-
plied to the existing LP benchmark datasets in order to extend the datasets with additional
relational triples. Then, the SOTA KGE models are trained and evaluated on the extended
datasets.

The method has several issues: i) It does not consider normalizing the literals before
applying the transformations, ii) The Datatype2Entity approach transforms only the data
types into entities, disregarding the actual literal values. For example, given the literal
node “1862-05-23:xsd:date” the approach transforms only the data type ’xsd:date’ to an
entity, which leads to losing the semantics present with the actual literal value ’1862-05-
23’. iii) The transformed datasets may be skewed since all literals only appear at the tail
position. v) The Literal2Entity and Value2Shingles approaches may increase the number of
relational triples significantly when treating each literal or shingle as an entity, leading to
longer training times for the KGE models.

summary The common drawback with both methods (LiteralE with blocking and EAKGE)
is that text and numeric literals are treated in the same way. They also do not consider lit-
eral data type semantics or multi-valued attributes in their approach. Furthermore, since
EAKGAE is using character-based attribute embedding, it fails to capture the semantics
behind the co-occurrence of syllables.

52 kge models with literals in transductive setting

3.2.4.2 Models with Numeric, Text, and Image Literals

mkbe MKBE [74] is a multi-modal KGE, in which the text, numeric and image literals
are modeled together. The main objective of this approach is to utilize all the observed
subjects, objects, and relations (object properties and data properties) in order to predict
whether any fact holds. It extends DistMult, which creates embedding for entities and
relations, by adding neural encoders for different data types. Given a triple < s, r,o >, the
head entity s and the relation r are encoded as independent embedding vectors using one-
hot encoding through a dense layer. Similarly, if the object o is a categorical value, then it
will be represented through a dense layer with a relu activation which has the same number
of nodes as the embedding space dimension. On the other hand, if the object o is rather a
numerical value, then a feed forward layer, after standardizing the input, is used in order
to learn embeddings for o by projecting it to a higher-dimensional space. If o is a short
text (such as names and titles), it is encoded using character-based stacked, bidirectional
GRUs and the final output of the top layer will be taken as the representation of o. On the
contrary, if o is a long text such as entity descriptions, CNN over word embeddings will
be used to get the embeddings for o. The object o can also be an image, and in such a case,
the last hidden layer of VGG pretrained network on ImageNet [113], followed by compact
bilinear pooling, is used to obtain the embedding of o. Given the vector representations of
the entities, relations, and attributes, the same scoring function from DistMult is used to
determine the correctness probability of triples.

The binary cross-entropy loss, as defined below, is used to train the model:∑
(s,r)

∑
o

ts,r
o log(ps,r

o) + (1− ts,r
o) log(1− ps,r

o), (61)

where for a given subject relation pair (s, r), binary label vector ts,r over all entities is
used to indicate whether < s, r,o > is observed during training. ps,r

o denotes the model’s
probability of truth for any triple < s, r,o > computed using a sigmoid function.

Moreover, using these learned embeddings and different neural decoders, a novel multi-
modal imputation model is introduced to generate missing multi-modal values, such as
numerical data, categorical data, text, and images, from information in the knowledge
base. In order to predict the missing numerical and categorical data such as dates, gender,
and occupation, a simple feed-forward network on the entity embedding is used. For text,
the adversarially regularized autoencoder (ARAE) has been used to train generators that
decode text from continuous codes, having the generator conditioned on the entity embed-
dings instead of a random noise vector. Similarly, the combination of BE-GAN structure
with pix2pix-GAN model is used to generate images, conditioning the generator on the
entity embeddings.

3.3 applications 53

Table 3.2.4: Complexity of the models with multi-modal literals in terms of the number of param-
eters. Θ is the number of parameters in the base model, H is the entity embedding size, Nd is
the number of data relations, Nchar is the number of characters, and Ni is the number of images,
ΘCNN is the number of parameters in the CNN model used in [114], ΘARAE is the number of
parameters in ARAE [115] where instead of using the random noise vector z, the generator is condi-
tioned on the entity embeddings, ΘGAN denotes the sum of the number of parameters in BE-GAN
[116] and in pix2pix-GAN [117].

Model #Parameter

LiteralE with blocking Θ+ (NdH+H)H

EAKGAE Θ+ (Nd +Nchar)H

MKBE Θ+ (2(Nd + 3(Nchar +H)) +Ni)H

+ΘCNN +ΘARAE +ΘGAN

summary Despite the attempt made in incorporating text literals, numeric literals, and
images into the KGE, the model (MKBE) fails to capture the semantics of the data types/u-
nits of (numeric) literal values. Besides, similar to IKRL, it takes an image I as an instance
of a certain entity e only if, I is initially associated with e in the dataset considered (refer
to Section 3.2.3 for more details).

3.3 applications

This section discusses different applications of KG embeddings on which the previously
described methods have been trained and/or evaluated.

link prediction Most of the models discussed in Section 3.2 have been evaluated on
LP tasks. Head and tail prediction are used to evaluate the models LiteralE [73], TransEA [59],
KBLRN [91], KDCoE [65], EAKGAE [66], IKRL [61], MKBE [74], MTKGRL [100], Jointly(Desp)
[62], Jointly [63], SSP [64], MADLINK [101], and Transforming literals into entities [112].
On the other hand, DKRL [60] has been evaluated on all kinds of LP tasks: head, tail, and
relation predictions. In Extended RESCAL [77], two kinds of LP experiments have been
conducted on the Yago 2 [118], i.e., i) tail prediction by fixing the relation type to rdf:type,
and ii) general LP experiments for all relation types. Unfortunately, it is not possible to
compare the obtained evaluation results of all these models because the experiments have
been carried out on different datasets and also different LP procedures have been followed.
Taking this into consideration, in this survey, experiments have been conducted on head
and tail prediction tasks for these models (see Section 3.5).

triple classification The goal of the triple classification task is the same as that of
LP. A potential triple < h, r, t > is classified as 0 (false) or 1 (true), i.e., a binary classification
task. The embedding models MTKGNN [75], IKRL [61], MTKGRL [100], Jointly(Desp) [62],

54 kge models with literals in transductive setting

Jointly [63], and MADLINK [101] have been evaluated on this task. However, since they
do not use a common evaluation dataset, it is not possible to compare the reported results
directly.

entity classification Given a KG G, with a set of entities E and types T and with
an entity e ∈ E and type t ∈ T , the task of entity classification is to determine if a potential
entity type pair (e, t) which is not observed in G ((e, t) /∈ G) is a missing fact or not. This
task is an entity type prediction using a multi-label classification algorithm considering
the entity types in G as given classes. In DKRL [60], Extended RESCAL [77], and SSP [64],
Entity classification has been used for model evaluation.

entity alignment Given two KGs G1 and G2, the goal of the entity alignment task
is to identify those entity pairs (e1, e2) where e1 is an entity in G1 and e2 is an entity in
G2 which denote the same real world entities, and hence the integration of G1 and G2

can be possible through these unified entities, i.e., entity pairs. Different embedding-based
models have been proposed recently for the entity alignment task. Among the models that
are included in this survey, EAKGAE [66] and KDCoE [65] have been proposed for the
entity alignment task. Specifically, KDCoE [65] uses a cross-lingual entity alignment task
which determines similar entities in different languages. Despite the fact that both these
models use the same task for evaluation, the entity alignment task, their experimental
results cannot be compared since they are based on different datasets.

other applications Attribute-value prediction, nearest-neighbor analysis, data link-
ing, document classification, and relational fact extraction are other application scenarios
used for the evaluation of the models under discussion. Attribute-value prediction is the
process of predicting the values of (discrete or non-discrete) attributes in a KG. For example,
a missing value of a person’s weight can be identified using the attribute value prediction
task which is commonly seen as a KG completion task. In MTKGNN [75], attribute-value
prediction is applied using an attribute-specific Linear Regression classifier for evaluation.
The same task has been employed in MKBE [74] for model evaluation by imputing different
multi-modal attribute values.

Nearest Neighbor Analysis is a task of detecting the nearest neighbors of some given
entities in the latent space learned by an embedding model. This task has been performed
in LiteralE [73] to compare DistMult+LiteralE with the base model DistMult. On the other
hand, data linking and document classification tasks have been used in LiteralE with block-
ing [78] and KGlove with literals [76] respectively (refer to [78] and [76] for more details).
Relational fact extraction is a task of extracting facts/triples from plain text and has been
used as a model evaluation task in Jointly(Desp) [62]. Table A.1.1 summarizes all the ap-
plications on which the KG embedding models with literals have been evaluated in their
respective original studies.

3.4 evaluation benchmark datasets 55

3.4 evaluation benchmark datasets

In order to advance the SoTA in KGE (or in KGC in general), it is crucial to thoroughly
investigate the benchmark datasets utilized for evaluation. There are different commonly
known benchmark datasets available that have been used for the evaluation of the perfor-
mance of various KGE approaches, mainly LP models. A summary of these benchmarks is
given in Table 3.4.1. The sources of the majority of these datasets are Freebase [3], Word-
Net [29], YAGO [27], Wikidata [2], and NELL [119].

freebase extracts FB15K [49] and FB15K-237 [15] are among the most popular datasets
to evaluate KGC models. Even though the original releases of both datasets do not include
any attributive triples, they have been extended with textual and numerical attributes [60,
73, 120]. However, different studies [1, 16, 121] have claimed that FB15K does not possess
the required qualities to be actually used as a benchmark, i.e., it contains multiple inverse
relations. On the other hand, in FB15K-237 which is a subset of FB15K without inverse re-
lations, all validation and test triples containing entity pairs directly linked in the training
set have been removed. Moreover, FB15K-237 contains a significant amount of triples with
skewed relations towards either some head or tail entities [121] (more details are provided
in Section 6.3 of Chapter 6 where the set of benchmark datasets proposed in this thesis for
transductive LP is presented).

wordnet extracts Among the WordNet datasets, WN18 [49] and WN18RR [16] are
the most popular ones. Both datasets are smaller in size and domain-specific as compared
to the other datasets such as FB15K-237. Besides, the original releases do not contain any
numerical attributive triples.

yago extracts YAGO3-10 [16] is the widely used dataset among those extracted from
YAGO. It is a dataset that contains only relational triples from YAGO3 [26] mostly about
locations and people. The dataset has been extended with numerical attributes, textual
entity descriptions, and entity images in [74] and only with numerical attributes in [73].
Most of all, as discussed in [122], YAGO3-10 has a significant number of triples with two
duplicate relations isAffiliatedTo and playsFor which makes the dataset easy for a LP task.

wikidata (and wikipedia) extracts Wikidata-authors [123] is a domain-specific
dataset containing relational triples from Wikidata where the head entities are persons who
are authors or writers. Apart from having a narrow scope and a small set of triples (i.e.,
86,376), this dataset does not contain any attributive triples. CoDEx [121] is a recent KGC
benchmark extracted from Wikidata and Wikipedia. The relational triples in this dataset are
from Wikidata and the attributive triples have been provided as auxiliary information taken
from both Wikidata and Wikipedia. The auxiliary information contains Wikidata labels,
descriptions of entities and relations along with Wikipedia page extracts for entities. This

56 kge models with literals in transductive setting

dataset does not include any numeric attribute and while attempting to retrieve them from
Wikidata, there is only a limited number of entities in the dataset with numeric attributes.
Moreover, in CoDEx the set of triples already contains classes and this may decrease the
level of difficulty of the dataset for tasks other than LP and triple classification which
involve classes, i.e., entity typing/classification.

others There are other datasets such as NELL-995 [124] and MovieLens [74] (see Ta-
ble 3.4.1 for more details). NELL-995 is a dataset extracted from the 995th iteration of
NELL [119]. Due to the fact that the triples in NELL-995 are nonsensical or overly generic,
the dataset is not suitable to be used as a KGC benchmark [121]. Moreover, the dataset
does not contain any attributive triples. MovieLens [74] is a dataset about movies where
relational triples, numerical attributes, and textual attributes are from ML100K [125] and
images are movie posters from TMDB1. This dataset contains few entities, relations, and
triples as compared to the widely used KGC datasets, such as FB15K-237. Moreover, not
all of the entities are associated with textual attributes that describe them. Another very
recently released benchmark is Kgbench [126] which could be used for both node classi-
fication and LP. However, baseline results are only provided for node classification task
because the datasets are generated primarily for that particular task. Kgbench provides
a set of different domain-specific datasets and in each dataset, the source for the multi-
modality is mainly images hence, numeric literals are available only for a limited number
of entities.

summary In general, the existing KGC benchmarks do not give proper emphasis to
attributive triples, i.e., attributes are treated as auxiliary information. Consequently, the
attributive triples are either way unbalanced, less in number, or have few unique attributes.
Therefore, in Chapter 6 of this thesis, a new KGC benchmark called LiterallyWikidata
is presented which properly handles literals, specifically, numerical attributes and textual
descriptions.

1 https://www.themoviedb.org/

https://www.themoviedb.org/

3.4 evaluation benchmark datasets 57

Table 3.4.1: Existing KGC datasets for the task of LP.

Dataset Sources

Domain:
Specific (•)
Generic (⋆)

Attributive triples:
Text (•),

Numerical (⋆),
Image (✓)

Original Extended

CoDEx [121] Wikidata [2], Wikipedia ⋆ •
Wikidata-authors [123] Wikidata •

FB15K [49]

Freebase ⋆

• [60]
⋆[120]
⋆[73]

FB15K-237 [15] ⋆[73] • [73]
FB15k-237-OWE [127] •

FB20K [60] •
FB13 [128]
FB5M [129]
FB24K [130]

FB15K-401 [50]

WN18 [49]
WordNet [29] •WN18RR [16]

WN11 [128]

YAGO3-10 [16]
YAGO

⋆

⋆[73] • ⋆
✓ [74]

YAGO37 [131]
YG58K [120] ⋆[120]

NELL-995 [124] and
other Nell varieties

[132]

NELL [119]

MovieLens [74] ML 100K [125], TMDBa

•

• ⋆ ✓

UMLS [133] UMLS [134]
kinship [133] Alyawarra kinship [135]
Nations [133] Nations Project [136]

Countries [137] Countries datab

Family [87, 138] Families [139]
a https://www.themoviedb.org/
b https://github.com/mledoze/countries

https://www.themoviedb.org/
https://github.com/mledoze/countries

58 kge models with literals in transductive setting

3.5 experiments on link prediction

This section provides an empirical evaluation of the methods discussed in Section 3.2 on
the task of LP under a unified environmental setting. In this work, LP is chosen because
most of the KG embedding models with literals are trained and evaluated on it. One of the
major issues encountered while conducting these experiments is that the source code of
some of these models is not openly available and is not easily reproducible. Such methods
were excluded from the experimentation. In the subsequent sections, the datasets and the
experiments with text, numeric, images, and multi-modal literals are presented.

Based on the results of the experiments, a clear comparison is presented between the
models with literals on LP. In addition, these models are also compared with the stan-
dard KG embedding approaches that they extend. Note that these models may inherit
the problems that already exist in their corresponding base models (i.e., the standard KG
embedding models that they extend). For instance, the models that extend DistMult such
as DistMult-LiteralEg inherit the problem of DistMult, which is not capable of properly
capturing anti-symmetric relations due to the way its scoring function is defined.

3.5.1 Datasets

The performances of the aforementioned models are evaluated using two of the most com-
monly used datasets for LP, i.e., FB15K [49] and FB15K-237 [15] (refer to Section 3.4 for
more details on these datasets). The statistics of these datasets are given in Table 3.5.1.

Table 3.5.1: The number of entities, object relations, data relations, relational triples, train sets, valid
sets, and test sets of the FB15K and the FB15K-237 datasets.

Datasets
FB15K FB15K-237

Entities 14951 14541

Object Relations 1345 237

Relational triples 592213 310116

Train sets 483142 272115

Valid sets 50000 17535

Test sets 59071 20466

3.5 experiments on link prediction 59

3.5.2 Experiments with Text Literals

As discussed in Section 3.2.1, the embedding models Extended RESCAL, DKRL, KDCoE,
and KGloVe with literals utilize text literals. However, all of these models except DKRL are
not considered for experimentation due to the following issues:

• The implementation of the model KGloVe with literals is not publicly available and it
is not easily reproducible.

• KDCoE is designed specifically for cross-lingual entity alignment task which makes
it difficult to apply it for LP.

• MADLINK was introduced after this survey was already conducted and published.

• In the case of Extended RESCAL, practically this method is computationally expen-
sive and thus not considered a feasible embedding model to incorporate literals.

Moreover, none of the models discussed in this chapter consider Extended RESCAL
in their experiments.

In order to conduct experiments with text literals, 15239 English entity descriptions of
the entities common in both datasets FB15K and FB15K-237 shown in Table 3.5.1 are taken
from LiteralE [73]. The focus lies on the common entity descriptions, i.e., for those entities
existing in FB15K but not in FB15K-237 no description is used, because there has already
been experiments done using the whole entity descriptions for FB15K dataset in the original
paper. This way it would be possible to analyse the effect of the size of the dataset (the entity
descriptions) on the performance of the embedding models. The average number of words
(tokens) in the descriptions is 143 whereas the maximum and minimum are 804 and 2.

dataset pre-processing For pre-processing of the text (the entity descriptions), spacy.io2

has been used. This includes tokenization, named entity recognition and conversion of
numbers to text, i.e., 16 has been converted to ‘sixteen’. After the pre-processing step, all
the entities along with the corresponding triples having no or short description of less than
3 words are removed. Also, the triples containing these entities are removed as mentioned
by the authors in the paper. Moreover, only one description is chosen randomly for the
entities with multiple text descriptions.

experimental setup The hyperparameters used for DKRL are as follows: learning
rate 0.001, embedding size 100, loss margin 1, batch size 100 and epochs 1000. For TransE,
learning rate 0.01, embedding size 50, margin 1, and epochs 1000 are used. The experi-
ments with DKRL were performed on Ubuntu 16.04.5 LTS system with 503GiB RAM and
2.60GHz speed. On the other hand,the experiments with TransE are performed with TITAN
X (Pascal) GPU.

2 https://spacy.io/usage

https://spacy.io/usage

60 kge models with literals in transductive setting

runtime Note that the codes used in the experiments for both models DKRL and
TransE are not implemented in the same environment, i.e., for DKRL, the code that is
released by the authors of the paper is used and for TransE the code provided by the au-
thors of TransEA [59] is used. Therefore, it is not fair to compare the runtime results of
these two models directly. However, in order to provide some insights into the computa-
tional complexity of the models, their runtime results on the FB15K dataset are given as
follows. DKRL takes 142 seconds to train 1 epoch using 16 threads whereas the runtime of
TransE for a single iteration with batch size 4831 is 3.271 millisecond. This is computed by
taking the average of 1000 iterations.

evaluation procedure and results The performance of the model is evaluated
based on the LP task. For each triple in the test set, a set of corrupted triples is generated
with respect to the head or the tail entity. A triple is said to be corrupted with respect
to its head entity if that head entity is replaced with any other entity from the KG, and
analogously, a triple is corrupted with respect to its tail entity. The set of corrupted triples
can also contain true triples that exist in the training, validation, or test set. Since it is
not an error to give these true triples better scores than the actual test triple, they are
removed from the set of corrupted triples and this is referred to as a filtered setting [49]. In
order to check if the model assigns a better score to the actual test triple than the corrupted
triples which are obtained by corrupting the test triple, it is evaluated using the metrics MR
(Mean Rank), MRR (Mean Reciprocal Rank), and Hits@N (refer to Section 2.8 of Chapter 2

for details about these metrics). First, for every test triple, all of its corrupted triples with
respect to head are ranked based on their scores which are computed by the model. Then,
the ranks of the actual (true) test triples are taken in order to compute the metrics MR, MRR,
and Hits@N. The same procedure is repeated to evaluate the model against the corrupted
triples with respect to tails.

The results of LP on FB15K and FB15K-237 datasets are shown in Table 3.5.2 for the
models TransE, DKRL with Bernoulli distribution (DKRLBern), and DKRL with Uniform
distribution (DKRLunif). The Bernoulli distribution for sampling as defined in [54] is a
probability distribution, tph

tph+hpt , where tph is the average number of tail entities per
head entity and hpt is the average number of head entities per tail entity. Given a golden
triple < h, r, t >, with the aforementioned probability, the triple is corrupted by replacing
the head, and with probability hpt

tph+hpt , the triple is corrupted by replacing the tail. The
results are reported separately for the head entity and tail entity along with the overall
results obtained by taking the mean of the head and tail predictions. The best scores are
the ones which are highlighted in bold text. The result of the TransE model is presented
in order to allow a clear comparison with DKRL because, as shown in Table 3.1.2, DKRL
extends TransE. This comparison would help to further analyse the advantages of using
text literals for KG embedding.

Note that in the original paper, the result of DKRL on FB15K is slightly better than
TransE. However, in our experiments, as the results in Table 3.5.2 indicate, on the FB15K

3.5 experiments on link prediction 61

dataset TransE achieves better result than both versions of DKRL on all metrics except MRR
and MR. The reason for this is that, as mentioned above, the set of entity descriptions used
in our experiments are common for both datasets FB15K and FB15K-237, i.e., there is less
entity descriptions in our experiment than there is in the original paper for FB15K. This
indicates that the size of the dataset (the entity description has impact on the performance
of the model). On the other hand, on the dataset FB15K-237 TransE is outperformed by
DKRLUnif with respect to MR and by DKRLBern with respect to the rest of the metrics.

Furthermore, the result shows that DKRL model with Bernoulli distribution (DKRLBern)
has better performance than the model with Uniform distribution (DKRLunif) for both the
datasets. DKRLBern works best for the prediction of head, relation, and tail with respect
to MRR, Hits@1, and Hits@3 whereas the DKRLUnif method works better according to
MR for both the datasets. DKRLBern works slightly better than DKRLUnif for FB15K-237

dataset. It is to be noted that DKRL has better improvement over TransE on FB15K-237 as
compared to FB15K dataset because the former one does not contain symmetric relations,
i.e., incorporating textual data to a clean dataset, such as FB15K-237, allows capturing more
semantics.

3.5.3 Experiment with Numeric Literals

MT-KGNN, KBLRN, LiteralE, and TransEA are the KG embedding models which make
use of numeric literals (see Section 3.2.2). KBLN, the submodel of KBLRN, which excludes
the relational information provided by graph feature methods is used in the experiment
instead of the main model KBLRN. This is the case because KBLN is directly comparable
with the other three models (i.e., MT-KGNN, LiteralE, and TransEA) whereas KBLRN is
not. The code3 for the TransEA model is the original implementation from TransEA [59]
where as the source codes4 for the models MT-KGNN, KBLN, and LiteralE are taken from
the implementation in LiteralE [73]. As described in Section. 3.2.2, the structure-based em-
bedding component of MT-KGNN is based on a neural network and it is referred to as
RelNet. However, in the version implemented in LiteralE [73], the authors have replaced
RelNet with DistMult as a baseline in order to have a directly comparable MT-KGNN-like
method to their proposed approach. Thus, in this survey, the MT-KGNN-like model has
been used instead of the original MT-KGNN model.

Moreover, the model LiteralE has different varieties depending on the baseline model
and the transformation function used. As discussed in Section 3.2, in LiteralE there are two
transformation functions: g (GRU based function) and lin (a simple linear function), and
there are three baseline models - DistMult, ConvE, and ComplEx. Thus, in this experiment,
six varieties of the LiteralE model are considered: DistMult-Literaleg, ComplEx-Literaleg,
ConvE-Literalelin, DistMult-Literalelin, ComplEx-Literalelin, and ConvE-Literalelin. The

3 https://github.com/kk0spence/TransEA
4 https://github.com/SmartDataAnalytics/LiteralE

https://github.com/kk0spence/TransEA
https://github.com/SmartDataAnalytics/LiteralE

62 kge models with literals in transductive setting

Table 3.5.2: Experiment results using DKRL model on FB15K and FB15K-237 datasets.

FB15K

MR MRR Hits@1 Hits@3 Hits@10

Head 142 0.219 0.241 0.447 0.622
Tail 109 0.249 0.339 0.514 0.690

TransE

All 125 0.234 0.290 0.480 0.656

Head 162 0.289 0.179 0.336 0.502

Tail 122 0.356 0.24 0.408 0.577DKRLBern

All 142 0.322 0.209 0.372 0.539

DKRLUnif

Head 96 0.289 0.172 0.335 0.52

Tail 75 0.333 0.211 0.383 0.576

All 85 0.311 0.191 0.359 0.548

FB15K-237

MR MRR Hits@1 Hits@3 Hits@10

Head 468 0.094 0.081 0.163 0.287

Tail 255 0.190 0.233 0.373 0.517

TransE

All 361 0.142 0.157 0.268 0.402

DKRLBern

Head 145 0.294 0.184 0.337 0.507
Tail 98 0.359 0.244 0.410 0.585
All 122 0.327 0.214 0.374 0.546

DKRLUnif

Head 104 0.275 0.166 0.312 0.494

Tail 77 0.322 0.209 0.363 0.552

All 91 0.298 0.187 0.337 0.523

datasets, the experimental setup, and the evaluation results are discussed in the subsequent
sections.

attributive triples In order to conduct the experiments with numeric literals, both
the datasets FB15K and FB15K-237 given in Table 3.5.1 are extended with a set of 23521

attributive triples, containing only numeric literals, with 118 data relations. These triples
are created based on the attributive triples from TransEA [59]. In TransEA, the authors
have provided a set of attributive triples where the object values are numeric. However, it
is not possible to directly use this data as the literal values are normalized in the interval
[0-1] as required by the model but the other models in this experiment use the original un-
normalized literal values instead. Therefore, it was necessary to query Freebase to replace
the normalized object literal value for each (subject, data relation) pair from the TransEA

3.5 experiments on link prediction 63

Table 3.5.3: Runtime of models considered in the experiments with numeric literals. The resutls are
per single iteration and reported in milliseconds.

Time(ms)

DistMult-LiteralElin 31.575

DistMult-LiteralEg 37.138

ComplEx-LiteralElin 39.269

ComplEx-LiteralEg 52.346

ConvE-LiteralElin 43.386

ConvE-LiteralEg 50.439

KBLN 86.825

DistMult 29.679

ComplEx 33.526

ConvE 40.970

attributive triples data. Moreover, only those data relations which occur in at least 5 triples
are taken into consideration.

experimental setup For both datasets, the hyperparameters for TransEA are: epoch
3000, dimension 100, batches 100, margin 2, and learning rate 0.3 and for TransE they are
described in Section 3.5.2. For the other models, same as in LiteralE, the hyperparameters
used for both datasets are: learning rate 0.001, batch size 128, embedding size 100 (for
DistMult, ComplEx and their extensions with literals) and 200 (for KBLN, and MT-KGNN,
ConvE, and ConvE’s extensions), embedding dropout probability 0.2, label smoothing 0.1,
and epochs 1000 for ConvE and 100 for the rest. TITAN X (Pascal) GPU has been used for
the models LiteralE, KBLN, and MT-KGNN.

runtime As in the experiments with text literals, not all the models in the experiments
with numeric literals are implemented in the same environment, i.e., for TransEA the code
that is released by the authors of the paper is used and for the other models the code
that is provided by the authors of LiteralE are used. Therefore, direct comparison of the
runtime of TransEA and the other models would not be possible. However, the runtime of
each of the models is computed on FB15K dataset so as to give insights into the models
computational complexity. The running time of TransEA is 3.271 ms per a single iteration
with batch size of 4831. For the other models their runtime for a single iteration of batch
size 128 is shown in Table 3.5.3. Note that the runtime results reported here are the average
over runtime values of 1000 iterations.

64 kge models with literals in transductive setting

evaluation procedure and results The same evaluation metrics discussed in Sec-
tion 3.5.2 are applied to evaluate the performance of models using numeric literals. As
shown in Table 3.5.4, according to the overall result, the model KBLN has considerably
better performance than the other models in all metrics except MR. The results from the
ComplEx-LiteralEg model show that it is capable to produce a highly competitive perfor-
mance having the second-best results with respect to the same metrics. This is the case
due to the fact that this model is able to handle the inverse relations in FB15K by applying
the complex conjugate of an entity embedding when the entity is used as a tail and its
normal embedding when it is the head. Moreover, the model KBLN also achieves better
results when compared to the standard models without literals presented in Table 3.5.5
with respect to all metrics except MR.

Another possible analysis to make is to compare the results of the standard models
presented in Table 3.5.5 with the results of their extensions shown in the ‘both head and tail
Prediction’ part of Table 3.5.4. For instance, ComplEx-LiteralEg achieves better performance
than its base model ComplEx according to all metrics which indicates that using numeric
literals with ComplEx by applying the approach in LiteralE is beneficial. However, this is
not the case with DistMult and ConvE. One reason for this can be the fact that the number
of attributive triples used in our experiment is not as big as in the original paper of LiteralE,
i.e, increasing the number of numeric literals may improve the result as already seen in the
original paper of literalE.

On the other hand, referring to the overall result on FB15K-237 dataset as shown in Table
3.5.6, the model DistMult-LiteralEg outperforms the other models according to all metrics.
This entails that applying LiteralE to DistMult on FB15K-237 provides better performance
than applying it to other baseline models. It should be noted that the DistMult-LiteralEg

model outperforms the DistMult model on the FB15K-237 dataset. This could be attributed
to the absence of any symmetric relation in this dataset. While the DistMult model struggles
to model asymmetric relations on FB15K, the addition of literals might introduce noise.
However, in the case of FB15K-237, the incorporation of literals improves the performance
of DistMult because symmetric relations are absent. Regarding the two transformation
functions g and lin, the function g leads to better results than lin according to the results
on both dataset.

3.5.4 Experiment with Images

Note that it is not possible to compare the whole of MKBE [74] with any other model as
it is the only embedding model which utilizes text literals, numeric literals, and images
together. Therefore, its sub-model S+I which uses only images has been compared with the
embedding model IKRL [61]. Since this comparison has already been done by the authors
of MKBE [74], the result shown in Table 3.5.8 is directly taken from their paper. They have
compared the models DistMult+S+I, ConvE+S+I, and IKRL where S stands for structure
and I for Image. Both DistMult+S+I and ConvE+S+I are sub-models of MKBE which use

3.5 experiments on link prediction 65

Table 3.5.4: LP results on FB15K dataset using filtered setting.

Head Prediction

Models MR MRR Hits@1 Hits@3 Hits@10

DistMult-LiteralElin 121 0.495 0.383 0.559 0.697

ComplEx-LiteralElin 71 0.76 0.697 0.801 0.876

ConvE-LiteralElin 52 0.612 0.51 0.678 0.795

DistMult-LiteralEg 72 0.581 0.479 0.642 0.762

ComplEx-LiteralEg 63 0.768 0.707 0.809 0.878

ConvE-LiteralEg 49 0.72 0.65 0.762 0.849

KBLN 77 0.775 0.705 0.827 0.892
MT-KGNN 73 0.702 0.617 0.758 0.855

TransEA 103 0.285 0.367 0.609 0.728

Tail Prediction

Models MR MRR Hits@1 Hits@3 Hits@10

DistMult-LiteralElin 145 0.447 0.337 0.507 0.645

ComplEx-LiteralElin 101 0.704 0.64 0.743 0.821

ConvE-LiteralElin 74 0.567 0.465 0.63 0.746

DistMult-LiteralEg 94 0.528 0.425 0.589 0.712

ComplEx-LiteralEg 93 0.711 0.65 0.746 0.821

ConvE-LiteralEg 79 0.657 0.586 0.698 0.783

KBLN 90 0.727 0.656 0.776 0.848
MT-KGNN 91 0.65 0.562 0.708 0.806

TransEA 75 0.314 0.417 0.671 0.805

Both Head and Tail Prediction

Models MR MRR Hits@1 Hits@3 Hits@10

DistMult-LiteralElin 133 0.471 0.36 0.533 0.671

ComplEx-LiteralElin 86 0.732 0.668 0.772 0.848

ConvE-LiteralElin 63 0.589 0.487 0.654 0.77

DistMult-LiteralEg 83 0.554 0.452 0.615 0.737

ComplEx-LiteralEg 78 0.739 0.678 0.777 0.849

ConvE-LiteralEg 64 0.688 0.618 0.73 0.816

KBLN 83 0.751 0.68 0.801 0.87
MT-KGNN 82 0.676 0.589 0.733 0.83

TransEA 74 0.299 0.392 0.64 0.766

66 kge models with literals in transductive setting

Table 3.5.5: LP results with models without literals on FB15K using filtered setting.

FB15K

Models MR MRR Hits@1 Hits@3 Hits@10

DistMult 119 0.67 0.589 0.723 0.817

ComplEx 127 0.692 0.614 0.742 0.833

ConvE 50 0.689 0.593 0.757 0.852
TransE 125 0.234 0.290 0.480 0.656

only relational triples and Images. The result indicates that ConvE+S+I outperforms the
other two models in all metrics on the YAGO-10 dataset (refer to MKBE [74] for more
details).

3.5.5 Experiment with Multi-modal Literals

As discussed in Section 3.2, the existing multi-modal embeddings are categorized into two
groups: i) models that use text literals, numeric literals, and images and ii) models with
text and numeric literals. However, since MKBE is the only one in the first category, only
its submodel S+ I can be compared to IKRL (as explained in Section 3.5.4). Regarding the
models with text and numeric literals, i.e., LiteralE with blocking, EAKGAE, and transforming
literals into entities, they are not included in the experiment as well. The issue with EAKGAE
is the same as that of KDCoE, i.e., it is trained on an entity alignment task whereas LiteralE
with blocking is not included as its code is not publicly available. The approach transforming
literals into entities is not part of the experiment because it was released after the survey
was conducted. However, the LiteralE model, which leverages numeric literals, is adapted
to also make use of textual literals along with numerical literals, leading to the creation of
the DistMult-LiteralEg-text model, as presented in Table 3.5.9. Note that DistMult is chosen
here as a baseline due to the fact that the best result in the experiments with numerics on
the FB15K-237 dataset is achieved using this model as discussed in Section 3.5.3.

The datasets listed in Table 3.5.1 are also used for this experiment along with additional
text attributive triples which are descriptions of entities. As shown in Table 3.5.9, the re-
sults are compared with LiteralE with just numeric literals (DistMult-LiteralEg) and DKRL
(a model using only text literals) so as to investigate the benefits of utilizing information
represented by different types of literals. As the results indicate, combining text and nu-
meric literals on FB15K dataset with DistMult-LiteralEg-text approach does not produce
better results as compared to the other models DistMult-LiteralEg and DKRLBern. As men-
tioned before, this dataset contains a set of inverse relations which may lead to having a
triple whose inverse has a different label. Given the fact that DistMult fails to model such
asymmetric relations, incorporating more literals with DistMult may introduce much noise
than improving the performance. On the other hand, for FB15K-237 dataset, according to

3.5 experiments on link prediction 67

Table 3.5.6: LP results on FB15K-237 dataset using filtered setting.

Head Prediction

Models MR MRR Hits@1 Hits@3 Hits@10

DistMult-LiteralElin 245 0.377 0.279 0.422 0.568

ComplEx-LiteralElin 371 0.36 0.271 0.4 0.538

ConvE-LiteralElin 208 0.388 0.296 0.427 0.572

DistMult-LiteralEg 209 0.413 0.320 0.456 0.591
ComplEx-LiteralEg 315 0.366 0.277 0.404 0.543

ConvE-LiteralEg 236 0.317 0.229 0.345 0.501

KBLN 381 0.386 0.295 0.426 0.564

MT-KGNN 437 0.383 0.295 0.423 0.559

TransEA 389 0.111 0.094 0.197 0.342

Tail Prediction

Models MR MRR Hits@1 Hits@3 Hits@10

DistMult-LiteralElin 426 0.195 0.119 0.214 0.349

ComplEx-LiteralElin 575 0.17 0.104 0.185 0.306

ConvE-LiteralElin 362 0.187 0.112 0.204 0.338

DistMult-LiteralEg 359 0.215 0.137 0.234 0.371

ComplEx-LiteralEg 493 0.175 0.106 0.19 0.312

ConvE-LiteralEg 459 0.131 0.07 0.137 0.256

KBLN 501 0.207 0.128 0.23 0.362

MT-KGNN 580 0.191 0.12 0.208 0.338

TransEA 203 0.206 0.25 0.409 0.57

Both Head and Tail Prediction

Models MR MRR Hits@1 Hits@3 Hits@10

DistMult-LiteralElin 335 0.286 0.199 0.318 0.458

ComplEx-LiteralElin 473 0.265 0.187 0.292 0.422

ConvE-LiteralElin 285 0.287 0.204 0.315 0.455

DistMult-LiteralEg 284 0.314 0.228 0.345 0.481
ComplEx-LiteralEg 404 0.27 0.191 0.297 0.427

ConvE-LiteralEg 347 0.224 0.149 0.241 0.378

KBLN 441 0.296 0.211 0.328 0.463

MT-KGNN 508 0.287 0.207 0.315 0.448

TransEA 296 0.158 0.172 0.303 0.456

68 kge models with literals in transductive setting

Table 3.5.7: LP results with models without literals on FB15K-237 dataset using filtered setting.

Models MR MRR Hits@1 Hits@3 Hits@10

DistMult 630 0.280 0.201 0.309 0.438

ComplEx 623 0.288 0.207 0.318 0.448

ConvE 273 0.310 0.222 0.343 0.484
TransE 361 0.142 0.157 0.268 0.402

Table 3.5.8: MRR results on LP task on YAGO-10 taken from MKBE [74].

YAGO-10
Models MRR Hits@1 Hits@3 Hits@10

DistMult+S+I 0.342 0.235 0.352 0.618

ConvE+S+I 0.566 0.471 0.597 0.72
IKRL 0.509 0.423 0.556 0.663

all the measures except MR, DistMult-LiteralEg-text model works better for the head entity
prediction compared to the other two models. For tail entity prediction, DKRLBern works
better with respect to all measures for the same dataset.

3.6 discussion and outlook

In this chapter, an extensive survey of the existing KGE models with literals is presented.
The survey provides a detailed analysis and categorization of these models based on the
proposed methodology along with their application scenarios and limitations. Additionally,
an analysis of the existing KGC benchmark datasets and a set of LP experiments comparing
the performances of the SoTA models are included. As previously mentioned, this survey
is conducted in order to address the research question ’C2 : RQ1 - How well do the SoTA KGE
approaches which use literals perform for the task of LP?’ defined in Section 1.2 of Chapter 1.
In order to answer the research question, the results of the survey are summarized below,
by discussing the techniques utilized to integrate relational and attributive triples, demon-
strating the common approaches for combining different types of literals, and identifying
the limitations of current KGE approaches.

combining relational triples and attributive triples In order to use both
data sources, i.e., relational and attributive triples together for representation learning, in
broader terms, the following two techniques are considered in the models discussed in this
survey:

3.6 discussion and outlook 69

Table 3.5.9: LP results on FB15K and FB15K-237 datasets using filtered set.

FB15K

Models MR MRR Hits@1 Hits@3 Hits@10

Head
DistMult-LiteralEg 72 0.581 0.479 0.642 0.762

DKRLBern 162 0.289 0.179 0.336 0.502

DistMult-LiteralEg-text 93 0.516 0.405 0.582 0.711

Tail
DistMult-LiteralEg 94 0.528 0.425 0.589 0.712

DKRLBern 122 0.356 0.24 0.408 0.577

DistMult-LiteralEg-text 119 0.463 0.351 0.532 0.66

All
DistMult-LiteralEg 83 0.554 0.452 0.615 0.737

DKRLBern 142 0.322 0.209 0.372 0.539

DistMult-LiteralEg-text 106 0.489 0.378 0.557 0.685

FB15K-237

Models MR MRR Hits@1 Hits@3 Hits@10

Head
DistMult-LiteralEg 209 0.413 0.320 0.456 0.591

DKRLBern 145 0.294 0.184 0.337 0.507

DistMult-LiteralEg-text 207 0.416 0.323 0.462 0.594

Tail
DistMult-LiteralEg 359 0.215 0.137 0.234 0.371

DKRLBern 98 0.359 0.244 0.410 0.585
DistMult-LiteralEg-text 354 0.223 0.142 0.246 0.385

All
DistMult-LiteralEg 284 0.314 0.228 0.345 0.481

DKRLBern 122 0.327 0.214 0.374 0.546
DistMult-LiteralEg-text 280 0.319 0.232 0.354 0.489

• Handling literals separately: defining one task per data source like in TransEA or using
a separate encoder for literals as in DKRL. The two tasks are trained simultaneously
to make sure that for every entity the semantics available in both data sources are
used to learn its embedding. The embeddings of the entities learned based on each
data source can be unified in the vector space or not depending on how the model
works. For instance, Jointly(Disp) learns unified representation for entities whereas
DKRL generates two representations per entity and does not force them to be unified.

• Incorporating literals directly into entity embeddings: as in LiteralE, one way is to extend a
certain latent feature method by directly enriching the embeddings with information
from literals via a learnable parameter and use the same scoring function from the
latent feature method.

70 kge models with literals in transductive setting

capturing and combining the heterogeneous types of literals The fol-
lowing are some possible ways to combine different kinds of literals, i.e., text, numeric, etc.
together for representation learning.

• Encoding each type of literal separately: In order to capture the semantics of literals,
different encoders can be used for different types of literals, for example, CNN for
textual descriptions. Then, as shown in MKBE, each attributive triple can be treated
the same as structured triples and use a single scoring function for training.

• Incorporating information present in every kind of literal directly into the entity embedding: as
in LiteralE, for a given entity, first the literals associated with it are encoded as vectors
- using one vector per type of literal. Then, a mapping function is used to map all these
vectors (including the structure-based vector representation of the entity) into a single
vector.

summary of the limitations of the sota models : As mentioned in Section 3.2
or seen from the result of the experiments in Section 3.5, these embedding models have
different drawbacks such as:

• The effect that data types/units have on the semantics of literals has not been fully
leveraged by the models.

• Most of the embedding models which make use of numerical literals, such as LiteralE,
TransEA, MT-KGNN, and KBLN consider only the year part of date typed literals
and ignore the month and day values. This hinders the ability to properly capture
the information represented in such kind of literal. For example, given the following
three date typed literal values:

"1999-10-29"^^xsd:date,

"1999-04-14"^^xsd:date,

"1999-10-30"^^xsd:date,

a model which utilizes only the year part of these values considers all of them to be
exactly the same despite the fact that the first date value is closer to the third value
than it is to the second value.

• Most of the models also do not have a proper mechanism to handle multi-valued
attributes, i.e., they randomly select one value for each entity-attribute pair.

• The performance of most of the models is dependent on the dataset used for training
and testing which shows that these models are not robust. For example, referring
to Table 3.5.9, the results of the model DistMult-LiteralEg-text indicate that combin-
ing text and numeric literals yields better performance on FB15K-237 but not on
FB15K due to the technique used in the model and the nature of the datasets (see
Section 3.5.5).

3.6 discussion and outlook 71

• Not all the models are effective in combining different types of literals. For example,
the performance of DistMult-LiteralEg-text (numeric + text literals), which combines
text and numeric literals, on the dataset FB15K is lower as compared to DistMult-
LiteralEg (only numeric literals).

• Only a few approaches have been proposed for multi-modal KGEs and none of them
take into consideration literals with URIs connected to items such as audio, video, or
pdf files.

Therefore, to put it concisely, even though some studies have been made in an attempt to
leverage literals for the task of KGE, there remain significant gaps in fully utilizing the
semantics present in different kinds of literals and the information associated with them
such as data types.

The answer provided above for the research question C2 : RQ1 clearly emphasizes the
need for further exploration on how to handle various types of literals that obtain differ-
ent inherent semantics, as indicated by the mentioned limitations of current models. For
instance, a possible perspective that arises from this detailed analysis is that there is a need
to properly handle the data typed literals such as the values of the data relation weight
given in kilogram and pound. One possible solution to target this issue could be to nor-
malize these literal values to standardized measures and to treat different measures like
weights and lengths separately in the representation learning process. One cannot expect
that by leaving out available information present in the original KG, its latent representa-
tion as being only an approximation of the original KG, will perform equally well on tasks
that depend on its semantic information content. Overall, the inclusion of datatyped liter-
als with a proper representation of their semantics into the representation learning process
will increase the model’s semantic content and might thereby lead to quality improvement.

4
L E V E R A G I N G L I T E R A L S F O R T H E TA S K O F L P I N I N D U C T I V E
S E T T I N G

As discussed in Chapter 3, various KGE techniques have emerged for generating KGEs
that can be used to predict missing links in KGs in a transductive setting. However, most of
these methods may not work well with real-world, dynamic graphs where new entities are
frequently added. Therefore, several inductive LP methods have been proposed in order to
fill this gap by enabling predictions about entities that are not observed during the training
phase, and some of these methods make use of literals. In this chapter, the focus lies on
providing reviews of these inductive LP approaches.

The rest of this chapter is organized as follows. In Section 4.1, the motivation for gener-
ating inductive LP methods is discussed, followed by Section 4.2 where the details of the
existing methods are provided. A discussion of the existing datasets that have been used
for the evaluation of inductive LP methods is provided in Section 4.3. Finally, a concise
remark summarizing the key points is presented in Section 4.4.

4.1 introduction

Adapting most of the existing transductive LP models such as RotatE [140], Distmult [50],
ComplEx [69], and TransE [49] for inductive settings requires expensive re-training in or-
der to learn embeddings for unseen entities. Therefore, such models are not applicable to
making predictions with unseen entities. There are some models among those presented
in Chapter 3 for transductive LP, such as DKRL, which could also be applied to make pre-
dictions with entities unseen during training. However, since those models are not created
with a special focus on inductive LP, they do not perform well when used in an inductive
setting. For instance, DKRL utilizes a CNN-based entity description encoder with a LP
objective. It falls short in terms of performance since it does not consider stop words, re-
sulting in the loss of some of the semantics present in the entity descriptions. Additionally,
its CNN architecture is not up-to-date with the latest advancements in neural networks,
such as self-attention.

This led to the creation of some inductive LP methods which give more emphasis on
inductive LP such as BLP [18]. The focus of this chapter lies in providing a literature review
on those models. These inductive LP models operate either in dynamic evaluation where in a
test triple, a new entity may appear at the head, tail, or both positions or transfer evaluation
where in a test triple, both entities at the head and tail position are new [18]. In both these
settings, relations are usually assumed to be known during training. In the subsequent
section, the SoTA inductive LP models with and without literals are discussed

73

74 leveraging literals for the task of lp in inductive setting

4.2 the sota methods

Most of the SoTA LP models proposed for inductive settings can be broadly divided into
rule-based and embedding-based categories.

4.2.1 Rule-based methods

Rule-based approaches learn logical formulas or patterns from KGs, which are the ex-
plicit representation of statistical regularities and dependencies encoded in them [52]. The
learned rules are utilized to rank candidates and predict missing links, based on the
confidence of the rules that are triggered. AMIE [141], RuleN [52], NeuralLP [142], and
DRUM [143] are the widely known rule-based inductive LP methods. Note that, as shown
in Table 4.2.1, none of these models consider using literals.

amie AMIE derives logical rules from knowledge bases given support and confidence
thresholds. It can generate rules even in the absence of explicit counter-examples by em-
ploying the Partial Completeness Assumption (PCA) technique. PCA enables AMIE to es-
timate the quality of rules under the Open World Assumption (OWA) by guessing counter-
examples for rules.

rulen Similar to AMIE, RuleN also aims to learn rules but with a different language
bias. While AMIE calculates confidence using the entire KG, RuleN approximates confi-
dence by randomly selecting a sample. AMIE is generally considered complete with precise
confidence, whereas RuleN does not exhibit the same level of completeness or precision.
However, the sampling mechanism in RuleN allows for the possibility of discovering longer
path rules.

neurallp Despite the fact that rule-based approaches such as AIME and RuleN are
inherently applicable to inductive settings, they are prone to limited expressiveness and
scalability issues. In order to address this issue, NeuralLP is proposed and it works by
learning first-order logical rules in an end-to-end differentiable model.

drum DRUM is an end-to-end differentiable rule mining system for mining first-order
logical rules from KGs and provides improvement over NeuralLP. It adopts bidirectional
RNNs to learn rule structures and scores simultaneously, where the learned rules are used
to predict missing links. Similar to NeuralLP, applying the differentiable mining enables
DRUM to learn (path-like) rules and their scores in a more continuous fashion.

4.2 the sota methods 75

4.2.2 Embedding-based methods

Embedding-based methods perform LP by learning embeddings for entities. GraphSAGE [144],
Graph2Gauss [145], GNNs for OOKB (GNN for out-of-knowledge-base) [146], LAN [147],
GraIL [148], KEPLER [19], BLP [18], and QBLP [149] are models proposed for inductive LP.
As presented in Table 4.2.1, among these models, only some of them make use of literals.

graphsage GraphSAGE is an inductive framework that aims to generate embeddings
by sampling and aggregating features from a node’s local neighborhood. It encodes node
features with two graph convolutional layers and samples a fixed-size set of neighbors to
aggregate information instead of the full neighbor set. The framework utilizes three aggre-
gators: mean, LSTM, and pooling. GraphSAGE with a mean aggregator can be considered
as an inductive version of GCN. However, as explained in [150], GraphSAGE is unable to
differentiate between various graph structures. Moreover, as discussed in [18], approaches
like GraphSAGE require predefining a set of attributes (e.g., bag-of-words) before training
to learn entity representations, which restricts their application in downstream tasks.

graph2gauss Graph2Gauss is a technique that examines the 2-hop and 3-hop node
neighborhood sampling strategies for binary graph embedding. It leverages node feature
information (e.g., textual descriptions) to generate node embeddings for previously unseen
entities.

gnns for ookb GNNs for OOKB (GNN for out-of-knowledge-base) approach which
generates entity embeddings for unseen entities by aggregating neighbor entity embed-
dings through GNNs. The drawbacks of this approach lie in the fact that it requires the
new nodes (i.e., the unseen entities) to be surrounded by known nodes and fail to handle
entirely new graphs as discussed in [148].

lan LAN is another approach that uses GNN to aggregate neighborhood information to
perform inductive link prediction. Similar to GNNs for OOKB, it fails to make predictions
with those entities which are not surrounded by observed/known entities.

grail GraIL [148] is a method that reasons over local subgraph structures to predict
missing links in KGs. However, GraIL fails to model semantic correlations between rela-
tions, which are common in KGs.

kepler KEPLER is a unified model for Knowledge Embedding (KE) and pre-trained
language representation by encoding textual entity descriptions with a pre-trained LM as
their embeddings, and then jointly optimizing the KE and LM objectives. However, due to
the additional language modeling objective, KEPLER is quite expensive to compute and
requires more training data.

76 leveraging literals for the task of lp in inductive setting

blp BLP utilizes a pretrained LM for learning representations of entities via an LP objec-
tive which is inspired by the work DKRL [60]. Specifically, the pre-trained BERT model is
fine-tuned to encode entities for the inductive LP task. It aims to demonstrate the power of
LMs in facilitating the generalizability of entity embeddings on downstream tasks.

qblp QBLP is a model proposed to extend BLP for hyper-relational KGs by exploiting
the semantics present in qualifiers. It adopts an inductive approach, where the inference
can be performed using a graph that comprises both seen and unseen entities (i.e., semi-
inductive or dynamic evaluation setting) or exclusively unseen entities (i.e., fully inductive
or transfer evaluation setting).

4.2.3 Other Approaches

KG-BERT [151] utilizes the BERT LM model as an encoder for entities and relations for
the task of triple classification. This method takes textual descriptions of entities and re-
lations in triples as input sentences to the BERT model. However, this approach neglects
the structural information of the entities. Given a KG with millions of entities, completing
every triple using KG-BERT would require millions of inference steps through the MLM
model (as explained in [152]). In order to address this problem with the inference time, a
method named MLMLM [152] has been proposed which uses a mean likelihood method to
compare the likelihood of different text of different token lengths sampled from a Masked
LM to perform LP. Unlike embedding-based methods, this approach does not employ an
entity embedding step instead, it lets the model directly output the predicted entity. Even
though MLMLM could predict missing links with unseen entities, it learns embeddings
neither for entities nor for relations.

4.3 benchmarks in inductive lp settings

The most common datasets that have been used in existing works for the evaluation of
inductive LP are Wikidata5M [19], FB15k-237, and WN18RR. Additionally, WD20K [149] is
introduced in QBLP [149] for the evaluation of inductive models on hyper-relational KG.
The datasets that are used in this thesis, those created for evaluation on triple-based KG
instead of hyper-relational KGs, are discussed in more detail as follows.

wikidata5m Wikidata5M is a large-scale KG dataset with triples extracted from the
Wikidata KG with aligned entity descriptions from Wikipedia pages to facilitate LP with un-
seen entities. Its inductive version comprises 4,594,458 entities, 822 relations, and 20,510,107

triples in total. Wikidata5M has been used to evaluate the performance of different induc-
tive LP models such as KEPLER, MLMLM, and BLP. The dataset contains entities that are
not part of the training set in the test set but all of the relations in the test set also appear
in the training set.

4.4 discussion and outlook 77

Table 4.2.1: Inductive LP models. The symbol (✓) denotes that the model uses textual literals, while
the symbol (×) represents the opposite.

Models Incorporating literals (i.e., textual literals)

AMIE ×
RULEN ×

NEURALLP ×
DRUM ×

GRAPHSAGE ✓

GRAPH2GAUS ✓

GNNS FOR OOKB ×
LAN ×

GRAIL ×
KEPLER ✓

BLP ✓

QBLP ✓

KG-BERT ✓

MLMLM ✓

fb15k-237 FB15k-237 is initially created for the evaluation of transductive LP with 14541

entities, 237 relations, and 310,116 triples in total. However, it has been used by splitting it
into training, validation, and test sets considering inductive LP in a semi-inductive setting.
For instance, in BLP 10%, 10%, and 80% of entities and their associated triples are selected
to form test validation, and training graphs, respectively.

wn18rr Similar to FB15k-237, WN18RR is first created for evaluation in a transduc-
tive setting. However, it has been adopted to evaluate inductive models such as BLP and
MLMLM. FOr instance, in BLP 10%, 10%, and 80% of entities and their associated triples are
selected to form test validation, and training graphs, respectively. This dataset comprises
40,943 entities, 11 relations, and 93,053 triples in total.

4.4 discussion and outlook

In this chapter, discussions on inductive LP approaches are provided by grouping most
of them into rule-based and embedding-based categories. One of the benefits of using
an embedding-based LP method over rule-based approaches is that the embeddings of
entities and relations learned in the LP task could also be leveraged in other downstream
tasks. Furthermore, literals are not considered by any of the rule-based approaches. On

78 leveraging literals for the task of lp in inductive setting

the contrary, some of the embedding-based approaches take into account the use of textual
literals, while other types of literals are mostly disregarded. Additionally, in this chapter,
a review of the existing benchmark datasets for inductive LP is provided. Most of these
datasets, such as FB15K-237 and WN18RR, were originally created for transductive LP
and hence, they had to be adjusted (i.e., their training, validation, and test sets have to be
modified) in order to make them suitable for the evaluation of inductive LP methods.

The major drawbacks of the existing inductive LP approaches and the benchmark datasets
are given as follows, along with the efforts made in this thesis to address them.

• None of the LP methods consider learning embeddings for unseen relations. To fill
this gap, in this thesis, an inductive LP model RAILD is introduced in Chapter 5.
RAILD aims to learn embedding for both unseen entities and unseen relations.

• The current benchmark datasets available for the evaluation of inductive LP models
do not contain unseen relations in their test sets and hence, they do not support
evaluation with relations that are not already observed during training. Therefore, in
order to address this gap, in this thesis a dataset named Wikidata68K is proposed in
Chapter 5 to evaluate inductive LP models with unseen relations as well as unseen
entities.

Part III

K G E W I T H L I T E R A L S I N I N D U C T I V E S E T T I N G

5
R E L AT I O N AWA R E I N D U C T I V E L I N K P R E D I C T I O N

Many KGE techniques are based on optimizing LP objectives [8, 153], resulting in embed-
dings that model relations in a vector space. However, some methods are limited to making
predictions involving only entities observed during training, which makes them unsuitable
to be applied in the real world for dynamic graphs where new entities are constantly added.
In order to address this gap, as discussed in Chapter 1 and Chapter 4, the concept of induc-
tive LP that involves making predictions with entities that are not seen during training has
been introduced. It has been demonstrated that textual literals (entity descriptions) can play
a vital role in providing useful semantics to enable learning embeddings for unseen entities
in inductive LP [18]. However, as presented in detail in the literature review in Chapter 4,
the existing inductive LP methods fail in dealing with unseen relations; the relations are ei-
ther assumed to be present in the training set or the methods do not learn embeddings for
the unseen relations. Moreover, there is a lack of benchmark datasets to perform an evalua-
tion of an inductive LP approach with unseen relations. Therefore, this chapter bridges the
research gap by proposing a novel KGE model along with a new benchmark dataset [154]
for inductive LP.

The rest of the chapter is organized as follows. To begin with, the motivation behind
the work is provided in Section 5.1, followed by the problem formulation in Section 5.2. A
detailed discussion of the proposed model is given in Section 5.3 followed by the findings
of the experiments on the LP task in Section 5.4. Finally, concluding remarks with directions
for future work are given in Section 5.5.

5.1 introduction

Recently, KGs have gained massive attention for use in various applications such as ques-
tion answering, information retrieval, recommender systems, etc [8]. As discussed in Chap-
ter 1, although KGs are effective in representing structured data, the underlying symbolic
nature of such triples usually makes KGs hard to manipulate. Moreover, due to the open-
world assumption, KGs are never complete [155] and hence, there arises the need for au-
tomated KGC systems. In order to tackle this problem, various KGE methods which map
entities and relations into a low-dimensional vector space by leveraging the LP objective
function have been proposed (ref. to the reviews in Chapter 3 and Chapter 4). According
to these reviews, most of the well-known LP approaches are either introduced only for
transductive settings, such as TransE[49], DistMult [50], ComplEx [69], and LiteralE [73] ,
or are inductive models but without paying attention to unseen relations like BLP [18].

81

82 relation aware inductive link prediction

In contrast to entities for which usually their corresponding descriptions are used as
features, relations are typically randomly initialized, as demonstrated in BLP [18]. While
using the textual descriptions of relations is the most straightforward way to obtain their
features, this approach is problematic when the descriptions are either too short or entirely
unavailable. Therefore, in such cases, it is necessary to generate features for relations using
the structural information available. This indicates that there is a need for a method that
generates features for relations so that inductive LP could be performed with previously
unseen relations while learning embeddings for the relations.

To this end, in this work, a novel approach Relation Aware Inductive Link preDiction
(RAILD) is introduced. RAILD is designed to predict missing links in KGs by taking into ac-
count both unseen entities and unseen relationships. To the best of our knowledge, RAILD
is the first approach that handles unseen relations, i.e., learns embeddings for unseen re-
lations. It works by fine-tuning a pre-trained Language Model (LM) to encode textual de-
scriptions of entities and relations. Moreover, it generates a graph-based relation features
by first applying a novel algorithm named Weighted and Directed Network of Relations (WeiD-
NeR) to build a directed relation-relation network from the triples available in the KG and
then, generating embeddings for the relations in the network using Node2Vec model which
leverages contextual information based on random walks. Then, these embeddings are in
turn used as features for the relations for the LP task. Moreover, RAILD also utilizes the
textual descriptions of the relations as features, by either combining them with the features
generated by the feature generator component or separately.

Figure 5.1.1 provides an example of inductive LP settings followed in this work. Gener-
ally, inductive LP is divided into two categories: i) semi-inductive and ii) fully-inductive.
In the semi-inductive setting, it is possible for unseen entities to appear at the head, tail,
or both positions whereas, in the fully-inductive setting, both head and tail entities are
unseen. In this definition, relations are often overlooked, i.e., they are usually assumed
to be seen in the training set and hence are randomly initialized or as in MLMLM [152],
they could be encoded using their labels (or corresponding text descriptions) but without
learning representations (embeddings) for them. Hence, this work divides the settings into
three categories for clarity, i.e., semi-inductive (with seen relations), fully-inductive (with
seen relations), and truly-inductive (with unseen entities and unseen relations).

The effectiveness of the model is evaluated against different the SoTA models in all induc-
tive settings, including semi-inductive, fully-inductive, and truly-inductive, using bench-
mark datasets FB15K-237, WN18RR, and a newly created dataset named Wikidata68K. The
results show that RAILD outperforms the existing models. The following are the main
contributions of this chapter.

• A novel algorithm is introduced to build a relation-relation network, i.e., WeiDNeR, for
the purpose of generating features for relations in a KG solely from the contextual
information present in the graph structure.

5.1 introduction 83

Figure 5.1.1: An example illustrating different settings of inductive LP tasks, i.e., semi-inductive (the
link from Tenet to Christopher Nolan), fully-inductive (the link from Inception to Christopher Nolan),
and truly-inductive (the link from Christopher Nolan to Directors Guild of America) settings

• The results indicate that instead of randomly initializing relations in inductive LP,
encoding the relations like the way entities are encoded by utilizing proper features
leads to outperforming the SoTA inductive LP models on triple-based KGs.

• An experiment-supported evidence is provided showing that the algorithm intro-
duced to generate features, WeiDNeR, enables producing competitive results as com-
pared to using textual descriptions of relations as features.

• As part of the work, a novel LP dataset named Wikidata68K1 which contains un-
seen relations in the validation and test sets is introduced along with an automated
pipeline to generate such datasets. Creating this dataset was required as there exists
no such kind of evaluation dataset due to the fact that, to the best of our knowledge,
no existing LP work deals with unseen relations. The results obtained with the pro-
posed model on this challenging dataset are provided which could be seen as a first
attempt to facilitate further research in the community on the topic of LP with unseen
relations.

1 https://doi.org/10.5281/zenodo.7066504

84 relation aware inductive link prediction

5.2 problem formulation

As mentioned above, existing inductive LP models operate either in a semi-inductive or
fully-inductive setting. In both settings, relations are usually assumed to be known during
training. For the sake of clarity, in this work, predicting with unseen relations is defined
separately named as truly-inductive LP setting. Following the definition of KG provided in
Chapter 2, a KG G consists of a set of triples T , T ⊂ E× R× (E ∪ L), where E, R, L, are the
set of entities, relations between the entities, and literals respectively. Given Ttr, Tva, and
Tte as sets of training, validation, and test triples where Etr & Rtr, Eva & Rva, and Ete &
Rte are their corresponding set of entities and relations respectively, the three inductive LP
settings can be formally defined as follows:

• Semi-inductive setting For every triple < h, r, t >∈ Tva or < h, r, t >∈ Tte, either or
both of h /∈ Etr & t /∈ Ttr may hold true while Rva ⊆ Rtr and Rte ⊆ Rtr.

• Fully-inductive setting For every triple < h, r, t >∈ Tva or < h, r, t >∈ Tte, both
h /∈ Etr & t /∈ Etr holds true while Rva ⊆ Rtr and Rte ⊆ Rtr.

• Truly-inductive setting For every triple < h, r, t >∈ Tva or < h, r, t >∈ Tte, either
or both of h /∈ Etr & t /∈ Etr holds true while there exist a set Rv ⊆ Rva and a set
Rt ⊆ Rte where Rv ⊈ Rtr and Rt ⊈ Rtr.

In this work, the focus lies on predicting missing links between entities in the three induc-
tive LP settings defined above. Hence, the challenges in reference to C1-RQ1 and C1-RQ2

presented in Section 1.2 of Chapter 1 are addressed in this chapter.

• C1-RQ1: Can utilizing both graph-based features and description-based embeddings for rela-
tions improve SOTA inductive LP models? Moreover, can this approach enable inductive LP
with unseen relations?

• C1-RQ2: Could the existing inductive LP benchmark datasets with textual literals be extended
to perform inductive LP evaluation with unseen relations?

5.3 raild : relation aware inductive link prediction

As mentioned before, RAILD fine-tunes BERT pre-trained model to encode entities with a
LP task. The general architecture of the proposed approach is given in Figure 5.3.1. Differ-
ently from BLP where relations are randomly initialized, in RAILD the same pre-trained
BERT model is also applied to encode relations using their corresponding textual descrip-
tions, as shown in Figure 5.3.1 component 2 . In addition to encoding relations using
BERT, a feature generator component that is based solely on graph structure is also pro-
posed. Hence, two kinds of vectors can be generated as features for relations, i.e., text-based

5.3 raild : relation aware inductive link prediction 85

Figure 5.3.1: RAILD framework

and graph-based. Given a triple < h, r, t >, the two feature vectors generated for the rela-
tion r are concatenated into a single vector. Since concatenation of the two relation vectors
leads to doubling the output vector dimension, the vectors of the head/tail entities are also
duplicated (concatenating the head vector with itself to match the size of the concatenated
relation vector). Then, the resulting head h, tail t and relation r vectors are passed to the
LP scoring function.

Textual description encoding is performed by passing the text as input to a pre-retrained
LM (specifically BERT but any other transformer based LM model could be used as well)
and then passing the obtained vector from BERT through a feed-forward layer, as shown in
Figure 5.3.1 component 1 and 2 . For the graph-based feature generation for relations,
two major steps are applied, i.e., building a relation-relation network (Figure 5.3.1 compo-
nent 3) and generating node embeddings for the created network where the nodes are
relations (Figure 5.3.1 component 4). In the subsequent sections, the different components
of the proposed model are presented in detail. First, encoding textual descriptions using
pre-trained BERT is discussed followed by the description of the WeiDNeR algorithm. Then,
the node embedding model applied in this work is presented. Finally, the chosen scoring
functions are analyzed.

86 relation aware inductive link prediction

5.3.1 Encoding Textual Descriptions using BERT

Textual descriptions of entities contain information that would provide useful semantics
while learning KG representations. In order to make use of such text data for representation
learning, both static embedding models such as SkipGram [46] and contextual embedding
models like BERT have been extensively applied with different machine learning and natu-
ral language processing tasks. The power of transformer networks [156] in encoding text to
contextualized vectors has been well received. In particular, pre-trained embedding mod-
els such as BERT provide an advantage to fine-tune the model on other downstream tasks.
In BLP, pre-trained BERT is fine-tuned on the inductive LP task and it showed promising
results as compared to other methods. RAILD differs from BLP in two significant aspects.
Firstly, unlike BLP which only employs the encoder for entities, RAILD utilizes it to encode
both entities and relations. Secondly, in RAILD, the fine-tuning process is enhanced by in-
corporating an additional component that integrates structure-based features specifically
for relations as shown in Figure 5.3.1.

Let d = (w1, ...,wk) be an entity or relation description, as described in detail in Chap-
ter 2, the BERT tokenizer first adds two special tokens [CLS] and [SEP] to the begin-
ning and end of d, respectively ([CLS],w1, ...,wk, [SEP]). BERT takes this as an input lead-
ing to a sequence of k + 2 contextualized embeddings as an output, i.e., BERT(D) =

[hCLS,h1, ...,wk,hSEP]. As in BLP and many other works which employ BERT for text
encoding, this work also utilizes the contextualized vector hCLS ∈ R where h is the hid-
den size in the BERT architecture. Once hCLS is obtained, it will be given as an input to a
linear layer that reduces the dimension of the representation, to yield the output entity or
relation embedding h = WhCLS, where w ∈ Rd×h is the weight with d being the chosen
embedding dimension. Note that, as shown in Figure 5.3.1, the weights are shared with the
linear layer that is applied to the relation embeddings obtained with the Node2Vec model.

5.3.2 Weighted and Directed Network of Relations (WeiDNeR)

Following the KG definition provided in Section 2.2 of Chapter 2, let G = (R,E, T ⊆
E×R×E) be a KG with r1, r2 ∈ R, T1 ⊆ (T ∩ (E× r1×E)), and T2 ⊆ (T ∩ (E× r2×E)). Wei-
DNeR’s design operates on the assumption that the higher the number of common entities
appearing in the sets of triples T1 and T2, the higher the probability that the relations r1
and r2 could be semantically similar. Hence, based on this assumption, an algorithm is pro-
posed which generates a directed and weighted network graph Nrel = (V ,M ⊆ V × V ,w)

where the nodes V are relations in the input KG (i.e., V ⊆ R), M is the set of edges con-
necting the nodes, and w : M 7→ R assigns weight to each edge. Algorithm 1, step by
step, explains the process of creating the network graph. If there is a direct link between
two nodes r1 and r2 in Nrel network generated using this algorithm, then the fol-

lowing statement holds true.
∣∣head(T1) ∩ head(T2)

∣∣ > 0 OR
∣∣tail(T1) ∩ tail(T2)

∣∣ > 0 OR∣∣tail(T1) ∩ head(T2) > 0
∣∣ where head(Ti) and tail(Ti) are the sets of entities occurring at

5.3 raild : relation aware inductive link prediction 87

r1 r2

r4

r3

r2
e1

e2

e3

e4

2

2

1

1

2

2

1

1

2r1

r2

r3

r4

Figure 5.3.2: An example to show how Algorithm 1 works; taking the graph in the left, it produces
the graph in the right.

the head and tail positions in the set of triples Ti respectively. If there is no direct link, then
the statement becomes false, i.e., the two relations are not associated with any common
entity in the input KG. A step-by-step description of the algorithm is given below along
with an illustrative example provided in Figure 5.3.2.
Algorithm description. Taking a KG G = (R,E, T ⊆ E× R× E) with {< hi, rj, tk > | <

hi, rj, tk >∈ T } where hi, tk ∈ E and rj ∈ R as an input and generates a relation-relation
network Nrel. For each pair of distinct relations (ra, rb ∈ R) it performs the following steps:

• it counts the number of pair of triples where the relation in the first triple is ra and
in the second is rb and the tail entity in the first triple is the same as the head entity
in the second triple (i.e., refer to line 3).

• it counts the number of pairs of triples where the relation in the first triple is ra and
in the second is rb and the head entity in the first triple is the same as the tail entity
in the second triple (i.e., refer to line 4).

• it computes the number of entities shared by the triples associated with ra and rb at
the exact same position at the head or at the tail, (i.e., refer to line 5).

• If #direct+ #indirect > 0, then an edge from node ra to node rb will be created with
the summed result given as a weight for the edge (i.e., refer to lines 6 to 10).

On the other hand, if ra and rb are the same, then the following will be performed.

• it counts the number of pairs of triples where the relations in both triples is ra and
the tail entity in the first triple is the same as the head entity in the second triple (i.e.,
refer to line 12)

• it computes the number of entities shared by the triples associated with ra at the
exact same position at the head or at the tail. (refer to line 13)

• If #direct+ #indirect > 0, then an edge from node ra to node rb will be created with
the summed result given as a weight for the edge (refer to lines 14 to 16).

88 relation aware inductive link prediction

Algorithmus 1 : WeiDNeR - An algorithm to generate a directed and weighted
relation-relation network

Data : T ← Triples in KG

Result : Nrel

1 for each pair of relations < ra, rb > do
2 if ra ̸= rb then
3 #direct<ra,rb> ←

∣∣{(⟨h1, ra, t1⟩, ⟨h2, rb, t2⟩) : ⟨h1, ra, t1⟩ ∈ T , ⟨h2, rb, t2⟩ ∈
T , t1 = h2}

∣∣;
4 #direct⟨rb,ra⟩ ←

∣∣{(⟨h1, ra, t1⟩, ⟨h2, rb, t2⟩) : ⟨h1, ra, t1⟩ ∈ T , ⟨h2, rb, t2⟩ ∈
T ,h1 = t2}

∣∣;
5 #indirect←

∣∣{(⟨h1, ra, t1⟩, ⟨h2, rb, t2⟩) : ⟨h1, ra, t1⟩ ∈ T , ⟨h2, rb, t2⟩ ∈
T , (h1 = h2 ∨ t1 = t2)}

∣∣;
6 Weight⟨ra,rb⟩ = #direct⟨ra,rb⟩ + #indirect;

Weight⟨rb,ra⟩ = #direct⟨rb,ra⟩ + #indirect;
7 if Weight⟨ra,rb⟩ > 0 then
8 Nrel ← Nrel

⋃
{⟨ra, rb,Weight⟨ra,rb⟩⟩};

9 if Weight⟨rb,ra⟩ > 0 then
10 Nrel ← Nrel

⋃
{⟨rb, ra,Weight⟨ra,rb⟩⟩};

11 else
12 #direct←

∣∣{(⟨h1, ra, t1⟩, ⟨h2, rb, t2⟩) : ⟨h1, ra, t1⟩ ∈ T , ⟨h2, rb, t2⟩ ∈ T , t1 =
h2, (h1 ̸= t1 ∨ h1 ̸= t2)}

∣∣;
13 #indirect←

∣∣{(⟨h1, ra, t1⟩, ⟨h2, rb, t2⟩) : ⟨h1, ra, t1⟩ ∈ T , ⟨h2, rb, t2⟩ ∈
T , ((h1 = h2 ∧ t1 ̸= t2)∨ (t1 = t2 ∧ h1 ̸= h2))}

∣∣;
14 Weight⟨ra,ra⟩ = #direct+ #indirect;
15 if Weight⟨ra,ra⟩ > 0 then
16 Nrel ← Nrel

⋃
{ra, ra,Weight⟨ra,ra⟩};

5.3 raild : relation aware inductive link prediction 89

5.3.3 Node Embeddings

Features for the nodes in a given network Nrel can be generated leveraging the network’s
structural information. In order to generate these features, it is possible to apply a node
embedding model and hence, in this work, Node2Vec [20] is used. As discussed in detail
in the Foundaiton part of this thesis, i.e., Section 2.5 of Chapter 2, Node2Vec is based on the
skip-gram model, which is a neural network architecture for generating word embeddings.
Specifically, it uses biased second-order random walks to explore node neighborhoods and
SkipGram word embedding to learn embeddings. It selects the next hop using second-
order transition probabilities by applying Equation 9. The SkipGram model intends to
learn continuous word feature representations by optimizing a likelihood objective that
preserves the local context. In the case of Node2Vec, this objective can be interpreted as
maximizing the likelihood of correctly predicting the context node v for a given center
node u.

5.3.4 Training Procedure

The graph-based features for relations in training, validation, and test sets are created
separately and used as inputs for when models are trained. In a truly-inductive setting,
only the triples from the training set are used to generate the graph-based features for the
relations appearing in the training. Similarly, for relations in the validation and test sets,
only triples from the validation and test sets are used respectively. This is performed in
order to avoid using information from the unseen graphs (i.e., from validation and test
sets) to learn features during training. Similarly, in both semi-inductive and fully-inductive
settings, only the triples from the training set are taken as input to generate the graph-based
feature for the relations.

Once the features of the entities and relations are generated or encoded, then they are
used to optimize the model for LP by applying stochastic gradient descent. For each posi-
tive triple < ei, rj, ek >, a positive score Sp is computed. Then, a corrupted negative triple
is created by replacing the head or the tail entity with a random entity, and its score Sn is
computed.

5.3.5 Computational complexity

As it is discussed in the previous sections, RAILD uses text-based and graph-based en-
coders. The text-based encoder is used for both entities and relations whereas the graph-
based encoder is used only to encode relations. Note that the graph-based features for
relations are pre-computed and hence, the major part of the computational cost of training
the model comes from text-based encoder. The BERT encoder used has a complexity of
O(n2) for encoding a sentence of length n. This entails that for training RAILD, the time
complexity would be O(|T |n2) where T is the set of triples. The length of sentences n is in

90 relation aware inductive link prediction

practice fixed and assuming the n is the same for all entities and relations, the complexity
would remain linear with respect to the number of triples in the KG, up to a constant factor.

During testing, the text-based encoder is applied only for unseen entities and unseen
relations while the embeddings for seen entities and seen relations can be pre-computed.
Hence, the LP for a given entity and relation is linear in the number of entities and relations
in the graph.

5.4 experiments

In this section, the details on experimentation including the baselines, the datasets, the ex-
perimentation settings, and the results are discussed. Our implementation and the datasets
are made publicly available2.

5.4.1 Datasets

The three inductive LP settings discussed in Section 5.2 are considered for experimentation.
The datasets FB15K-237 [15] and WN18RR [16], with their respective splits provided in [18],
are used to evaluate RAILD in the semi-inductive setting. In a fully-inductive setting, the
model is evaluated on dataset Wikidata5M [19] and compared against SoTA models. The
statistics of these datasets are provided in Table 5.4.1. To the best of our knowledge, there
are no benchmark datasets that contain unseen relations in their validation and test sets.
To address this issue and to enable the evaluation of RAILD with unseen relations, a new
dataset Wikidata68K is created taking Wikidata5M as raw data. The pipeline developed to
create this dataset is inspired by [17] and is constituted of the following steps.

1. Input: Raw data T containing triples from which the dataset will be created, and
a set of pairs of relations and their types RT. In Wikidata, there exists a metaclass
(Q107649491: type of Wikidata property) with instances that are types of properties
(i.e., relations). For example, Q29546443 (Wikidata property for items about books)
is an instance of Q107649491 and the property P123(publisher) is an instance of
Q29546443. Therefore, (P123, Q29546443) could be an entry in RT.

2. Removing relations which occur in less than N number of triples (N = 3, for Wiki-
data68K).

3. Removing inverse relations, entities and relations without a label, and duplicate rela-
tions.

4. Randomly splitting the set of relations into three R1, R2, and R3 while trying to keep
the same type of relations in the same set based on RT and extract their corresponding
triples T1, T2, and T3 from T.

2 https://github.com/GenetAsefa/RAILD

5.4 experiments 91

Table 5.4.1: Dataset statistics

WN18RR FB15K-237 Wikidata5M WD20K(25)

Relations 11 237 822 333

Training
Entities 32,755 11,633 4,579,609 17,275

Triples 69,585 215,082 20,496,514 38,023

Validation
Entities 4,094 1,454 7,374 3,092

Triples 11,381 42,164 6,699 4,072

Test
Entities 4,094 1,454 7,475 2,615

Triples 12,087 52,870 6,894 3,329

Wikidata68K
Training Validation Test

Entities 55,488 6,559 5,813

Relations 72 37 44

Triples 667,413 67,892 45,512

5. Creating K-cores for each of T1, T2, and T3. (For Wikidata68K, the value of k is set to
10, 6, and 5 for T1, T2, and T3 respectively).

6. Removing relations which are skewed towards either the head or the tail at least 50%
of the time, from each of T1, T2, and T3.

5.4.2 Baselines

For semi-inductive and fully-inductive settings, RAILD could be compared with SoTA mod-
els like BLP and KEPLER on FB15K-237, WN18RR, and Wikidata5M datasets. Since there
exists no SoTA model which handles unseen relations, four different baselines Glove-BOWt,
Glove-DKRLt, BE-BOWt, and BE-DKRLt are created by extending the baselines in BLP, i.e.,
Glove-BOW, Glove-DKRL, BE-BOW, and BE-DKRL respectively to also encode relations
using their textual descriptions in the same way they encode entities. These models are dif-
ferent re-implementations of DKRL [60] where Glove-DKRL uses Glove embeddings as an
input to the DKRL architecture whereas Glove-BOW is the Bag-Of-Word baseline of DKRL.
Furthermore, BE-BOW, and BE-DKRL are other varieties that use context-insensitive BERT

92 relation aware inductive link prediction

Embeddings (BE). Note that the baselines created in this work are used for evaluation in
the truly-inductive setting on Wikidata68K dataset and to compare them with RAILD.

5.4.3 Experimentation Setting

scoring TransE, SimplE, DistMult, and ComplEx are some of the well known transla-
tional models with TransE being the simplest among all. ComplEx handles antisymmetric
relations better than both TransE and DistMult [69]. However, TransE could also perform
well in some cases, for example, in BLP the best performing scoring function is TransE
followed by ComplEx. Hence, in this work, the scoring functions TransE and ComplEx are
selected.

model selection For the Node2Vec model, number of walks=1000, length=10, win-
dow size=10, epochs=100, dim=768 are used for FB15K-237 with semi-inductive split and
Wikidata5M with fully-inductive split. For WN18RR with semi-inductive split, number of
walks=5000, length=10, window size=5, epochs=100, dim=768 are used. For Wikidata68K,
number of walks=10, length=10, window size=10, epochs=100, and dim=768. Similar to [18],
for all newly created baselines and RAILD models, a grid search is run on FB15K-237 and
the hyperparameter values with the best performance on the validation set are chosen.
Then, these values are reused for training with the other datasets. For the BOW and DKRL
baselines, inspired by [18], learning rate: 1e-5, 1e-4, 1e-3, L2 regularization coefficient: 0,
1e-2, 1e-3 are applied. Adam optimizer is used with no learning rate schedule, and the
models are trained for 80 epochs with a batch size of 64 with WN18RR, FB15k-237, and 40

epochs with a batch size of 254 with Wikidata68K.
For the RAILD models, loss function: margin, negative log-likelihood, learning rate: 1e-

5, 2e-5, 5e-5, L2 regularization coefficient: 0, 1e-2, 1e-3 are used. Adam optimizer with a
learning rate decay schedule with a warm-up for 20% of the total number of iterations is
used. The models are trained for 40 epochs (80 epochs for models which combine text and
graph-based features for relations) with a batch size of 64 with WN18RR and FB15k-237,
and 5 epochs with a batch size of 128 with Wikidata5M. In all the experiments, the negative
sample size is set to 64.

5.4.4 Results

Two main varieties of RAILD, i.e., RAILD-TransE and RAILD-ComplEx, are created with the
scoring functions TransE and ComplEx respectively. The results obtained with the different
inductive LP settings are discussed in the subsequent sections.

5.4 experiments 93

Table 5.4.2: LP results on semi-inductive setting on WN18RR and FB15K-237 datasets. Models with
the suffix (*) in their names are those proposed for semi-/Fully inductive LP and their results are
taken from [18] whereas those with the suffix (t) are our baselines. RAILD-TransE and RAILD-
ComplEx are the models proposed in this work.

FB15K-237 WN18RR
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Glove-BOW∗
0.172 0.099 0.188 0.316 0.170 0.055 0.215 0.405

Glove-DKRL∗
0.112 0.062 0.111 0.211 0.115 0.031 0.141 0.282

BE-BOW∗
0.173 0.103 0.184 0.316 0.180 0.045 0.244 0.450

BE-DKRL∗
0.144 0.084 0.151 0.263 0.139 0.048 0.169 0.320

BLP-TransE∗
0.195 0.113 0.213 0.363 0.285 0.135 0.361 0.580

BLP-DistMult∗ 0.146 0.076 0.156 0.286 0.248 0.135 0.288 0.481

BLP-ComplEx∗ 0.148 0.081 0.154 0.283 0.261 0.156 0.297 0.472

BLP-SimplE∗
0.144 0.077 0.152 0.274 0.239 0.144 0.265 0.435

Glove-BOWt 0.1464 0.0813 0.1636 0.2681 0.1589 0.0465 0.2085 0.3812

Glove-DKRLt 0.1131 0.0678 0.1176 0.1990 0.1111 0.0283 0.1362 0.2749

BE-BOWt 0.1569 0.0857 0.1780 0.2923 0.1810 0.0424 0.2483 0.4529

BE-DKRLt 0.1385 0.0817 0.1473 0.2477 0.1342 0.0461 0.1636 0.3090

RAILD-TransE 0.2163 0.1268 0.2411 0.3974 0.2909 0.1360 0.3689 0.5997

RAILD-ComplEx 0.1971 0.1169 0.2121 0.3639 0.3204 0.1772 0.3895 0.6087

5.4.4.1 Results in semi-inductive setting

The results obtained with the semi-inductive setting on WN18RR and FB15K-237 are shown
in Table 5.4.2. The table compares 2 different varieties of RAILD (i.e., RAILD-TransE and
RAILD-ComplEx) with the different models from [18] and our baselines. These results show
that RAILD-TransE outperforms all the other models on FB15K-237 w.r.t. all metrics. On the
contrary, on WN18RR RAILD-ComplEx provides the best result w.r.t. all metrics whereas
the second best results are obtained with RAILD-TransE w.r.t. all metrics except Hits@1.
Although TransE is a less elaborate model than ComplEx, it provides better results when
used with RAILD on FB15K-237 and competitive results on WN18RR. Same is the case with
the results obtained in the truly-inductive setting on Wikidata68K (see Section 5.4.4.3). This
suggests that the expressiveness of TransE could be highly improved with RAILD which
has a more expressive encoder.

5.4.4.2 Results in fully-inductive setting

Table 5.4.4 shows the results obtained with the fully-inductive setting on the dataset Wiki-
data5M. Due to limited computational resources, for the experiment on Wikidata5M the
distilled version of Bert, i.e., DistilBert [157] is used since it is cheaper to train as com-

94 relation aware inductive link prediction

Table 5.4.3: Ablation studies with all 4 datasets using TransE scoring function.

FB15K-237 WN18RR
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

RAILD-TransE 0.2163 0.1268 0.2411 0.3974 0.2909 0.1360 0.3689 0.5997
RAILD-TransE(w/o feat) 0.2130 0.1267 0.2363 0.3872 0.2906 0.1377 0.3672 0.5944

RAILD-TransE(w/o txt) 0.2030 0.1168 0.2258 0.3777 0.2855 0.1312 0.3640 0.5945

Wikidata68K Wikidata5M
RAILD-TransE 0.0285 0.0059 0.0283 0.0688 0.4551 0.2200 0.6345 0.8489

RAILD-TransE(w/o feat) 0.0300 0.0077 0.0283 0.0661 0.4529 0.2274 0.6190 0.8376

RAILD-TransE(w/o txt) 0.0137 0.0014 0.0130 0.0320 0.4522 0.2304 0.6163 0.8378

Table 5.4.4: LP results on Wikidata5M dataset using DistilBERT instead of BERT for RAILD models

MRR Hits@1 Hits@3 Hits@10

Glove-BOW∗
0.343 0.092 0.531 0.756

Glove-DKRL∗
0.362 0.082 0.586 0.798

BE-BOW∗
0.282 0.077 0.403 0.660

BE-DKRL∗
0.322 0.097 0.474 0.720

BLP-TransE∗ 0.478 0.241 0.660 0.871
KEPLER [19] 0.402 0.222 0.514 0.730

MLMLM [152] 0.284 0.226 0.285 0.348

RAILD-TransE (DistilBERT) 0.4551 0.2200 0.6345 0.8489

pared to Bert. However, it should be noted that since DistilBert is a slimmed-down version
of BERT with fewer parameters it may lead it to be less powerful than Bert. Although
MLMLM is not an embedding-based LP model, it is compared with our approach on Wiki-
data5M. It can be seen that even with DistilBert RAILD-TransE trained on Wikidata5M
outperforms KEPLER and MLMLM w.r.t. almost all metrics.

5.4.4.3 Results in truly-inductive setting

Table 5.4.5 presents the results obtained on Wikidata68K (see Section 5.4.1 for details). The
set of training, validation, and test relations are mutually exclusive. Moreover, 89% of val-
idation entities and 74% of test entities are not seen during training. For datasets like
Wikidata68K, it is not possible to just randomly initialize the relations (i.e., it is required
for an LP model to have features for relations). Therefore, in order to assess the capability
of the proposed model RAILD on such a challenging dataset (Wikidata68K), the baselines

5.4 experiments 95

Table 5.4.5: LP results on Wikidata68K datasets

MRR Hits@1 Hits@3 Hits@10

Glove-BOWt 0.0119 0.0005 0.0146 0.0295

Glove-DKRLt 0.0031 0.0005 0.0029 0.0064

BE-BOWt 0.0184 0.0005 0.0225 0.0474

BE-DKRLt 0.0055 0.0006 0.0052 0.0125

RAILD-TransE 0.0285 0.0059 0.0283 0.0688
RAILD-ComplEx 0.0157 0.0027 0.0125 0.0351

discussed in Section 5.4.2 are created. The best results on this dataset are obtained with
RAILD-TransE w.r.t. all the metrics.

As compared to the other datasets, the results obtained on Wikidata68K, in general, are
low. This is mostly attributed to the nature of the dataset as explained above, i.e., the
relations sets in the train validation and test sets being 100% mutually exclusive. Moreover,
the WeiDNeR algorithm is applied to the training set, the validation set, and the test set
separately so as to avoid generating features using unseen graphs for training. As this is
the first work, to the best of our knowledge, to ever make an attempt to perform LP with
unseen relations, it would facilitate further research in the community to redirect the focus
to unseen relations as well as entities.

5.4.4.4 Ablation studies

As the results given in Table 5.4.3 for the datasets FB15K-237, WN18RR, and Wikidata5M
indicate, according to almost all the metrics, combining text-based and graph-based fea-
tures for relations (i.e., RAILD-TransE) provides better results than using them separately.
Moreover, RAILD-TransE(w/o text) model variant which uses only graph-based relation
features is competitive with its counterpart text-based variant RAILD-TransE(w/o feat)
and specially on Wikidata5M it even provides slightly better hits@1 and hits@10 results
than RAILD-TransE(w/o feat). This indicates that the RAILD-TransE(w/o text) could be
used in cases where KGs do not contain textual descriptions for their relations. Similarly,
combining the two kind of features for Wikidata68K provides better results w.r.t. hits@10

and equal or competitive results w.r.t. the other metrics as compared to RAILD-TransE(w/o
feat). Note that both RAILD-TransE(w/o feat) and RAILD-TransE(w/o txt) outperform the
BLP models which share the same scoring function. For instance, RAILD-TransE(w/o txt)
which uses only graph-based features for relations outperforms all the baselines includ-
ing BLP-TransE [18] which randomly initializes relations, on both datasets FB15K-237 and
WN18RR w.r.t. almost all the metrics.

96 relation aware inductive link prediction

Table 5.4.6: LP results with semi-inductive setting on WD20K(25). #QP denotes the number of
qualifiers per statement.

#QP MRR Hits@1 Hits@10

BLP-TransE∗
0 0.1245 0.0598 0.2343

QBLP∗
0 0.1702 0.0882 0.2950

QBLP∗
2 0.2036 0.1177 0.3226

QBLP∗
4 0.2105 0.1232 0.3009

QBLP∗
6 0.1950 0.1114 0.3160

RAILD-TransE (w/o feat) 0 0.1586 0.0761 0.3313

5.4.4.5 Additional Experiments

In addition to the experiments discussed above further experiments are also performed to
compare the performance of the proposed model with QBLP [149] which is an inductive
LP model developed for hyper-relational KG. The same set of optimal hyperparameter val-
ues from FB15K-237 datasets are used. RAILD is compared with QBLP on a WD20K(25)
dataset [149] for hyper-relational KG. The dataset statistics considering only the triples (re-
moving qualifiers) are given in Table 5.4.2 and the results in Table 5.4.6. The performance of
our model could be negatively impacted by the fact that the size of this dataset is very small
as compared to the other datasets used in this work such as FB15K-237. Moreover, since
there are relations that occur only in a few triples, generating relations features using Wei-
DNeR could not be applied as these relations become outliers, i.e., they could not be linked
to any other relation (see Algorithm 1). Therefore, only RAILD-TransE(w/o feat) could be
used. Despite the argument stated above, RAILD scores the best Hits@10 as compared to
QBLP which makes use of qualifiers.

5.5 conclusion and outlook

In this work, a novel inductive LP model RAILD which handles unseen relations is intro-
duced. It works by fine-tuning pre-trained LMs with a LP objective. Textual descriptions of
entities and relations are used to generate features for the corresponding entities and rela-
tions. Moreover, a novel algorithm, i.e., WeiDNeR, is proposed to generate a directed and
weighted relation-relation network given a KG. The experimental results show that RAILD
achieves the SoTA results for the semi-inductive inductive LP task on all the datasets
used while providing comparable results with the SOTA models that use BERT in a fully-
inductive setting using the distilled version of BERT. Furthermore, RAILD outperforms all
the baselines in the truly inductive setting. The answers to the two major research questions
that are formulated in this work, in Section 5.2, are given as follows:

5.5 conclusion and outlook 97

• C1-RQ1: Can utilizing both graph-based features and description-based embeddings for rela-
tions improve SoTA inductive LP models? Moreover, can this approach enable inductive LP
with unseen relations?

− The graph-based features of relations in a KG are obtained by generating relation-
relation network and then learning embeddings for the nodes of the network (i.e.,
relations) with a network embedding model. The description-based embeddings
of entities and relations are encoded using BERT. The results of the extensive
experiments, provided in Table 5.4.2, indicate that combining graph-based and
description-based embeddings of relation provides better results for inductive
LP as compared to the existing models that randomly initialize relations.

Moreover, as shown in Table 5.4.5, RAILD can also be used to learn embeddings
for unseen relations and hence, enable inductive LP involving relations that are
not observed during training.

• C1-RQ2: Could the existing inductive LP benchmark datasets with textual literals be extended
to perform inductive LP evaluation with unseen relations?

− A new benchmark dataset named Wikidata68K is introduced that extends the ex-
isting inductive dataset Wikidata5M to enable evaluation with unseen relations.
Wikidata68K has been used to evaluate the inductive LP model that is proposed
in this chapter, i.e., RAILD.

The following research directions will be considered for future work:

• Incorporating other types of literals for the relations such as numerical literals into
the model.

• Leveraging rules (logical formulas) to capture more semantics and further enhance
the model.

• Investigating the WeiDNeR algorithm further for the LP task where few-shot relations
exist.

• Adapting the proposed approach to hyper-relational KGs.

This chapter focuses entirely on inductive LP by proposing a novel KGE model along
with a new dataset for an inductive setting. It highlights the importance of literals in cap-
turing semantics, especially when they are combined with contextual information from
graphs. In contrast, the subsequent chapters of this thesis focus on literals for transductive
LP, with a set of novel KGC datasets tailored for transductive LP introduced in the next
chapter.

Part IV

K G E W I T H L I T E R A L S I N T R A N S D U C T I V E S E T T I N G

6
L P B E N C H M A R K W I T H L I T E R A L S

As discussed in Chapter 1, literals play a crucial role in providing semantics when learning
KGEs. Therefore, a significant amount of work in KGEs [1] utilize the different types of liter-
als such as text and numeric literals. In order to properly examine the performance of these
KGE approaches, the datasets used to conduct experiments with these models should con-
tain high-quality triples with text and numeric literals. However, the existing KGE bench-
mark datasets are not created taking into consideration such models as explained in detail
in the literature review in Section 3.4 of Chapter 3. In order to fill this gap, in this chap-
ter, a set of benchmark datasets are proposed with the purpose of facilitating research in
utilizing literals for the task of KGE and KGC in general.

The rest of the chapter is organized as follows. Section 6.1 discusses the motivation
behind creating a new set of KGC benchmark datasets followed by Section 6.2, where a de-
tailed description of the procedure followed to generate the proposed benchmark datasets
is presented. Section 6.3 demonstrates the comparison between existing datasets and the
newly created datasets whereas Section 6.4 presents benchmarking experiments on the
generated datasets using KGE models, both with and without literals. Finally, concluding
remarks along with directions for future work are stated in Section 6.5.

6.1 introduction

The performance of various KGE approaches, mainly LP models, has been evaluated using
some commonly known KGC datasets. Most of these datasets except CoDEx [121], as ex-
plained in detail in the literature review in Section 3.4 of Chapter 3, are outdated and easy
for LP tasks such as FB15K [49] and FB15K-237 [15] which are subsets of the no longer main-
tained KG Freebase [3]. Moreover, attributive triples have not been handled properly in any
of the current datasets. For instance, in CoDEx-M [121], it is not possible to find a single
datatype property in Wikidata with numerical literal values for some of the entities. Apart
from numerical properties, the major existing datasets also contain a significant number of
entities for which there is no textual description available. For instance, in CoDEx among
the total number of 77,951 entities, 17,276 of them do not have textual descriptions in En-
glish, i.e., they are not represented in English Wikipedia. Hence, in those studies which
combine KG and textual entity descriptions for representation learning (such as DKRL
[60]) it is common to filter out these entities in order to train the embedding models. This
indicates that a high-quality benchmark that covers both relational and attributive triples
is required to evaluate the performance of the SoTA KGC models.

101

102 lp benchmark with literals

This chapter addresses the challenges in reference to the research question C2-RQ2 from
Section 1.2 of Chapter 1.

• C2-RQ2: How to extract high-quality benchmark datasets from popular KGs such as Wikidata,
focusing primarily on literals?

In order to tackle this question, in this work, a KGC benchmark named LiterallyWiki-
data which properly combines attributive triples with relational triples by taking into ac-
count the aforementioned concerns is presented. LiterallyWikidata consists of a set of KGC
datasets extracted from Wikidata and Wikipedia. In addition to Github, all of the datasets
are made available also on Zenodo under Creative Commons Attribution 4.0 International
license to ensure long-term findability through a persistent identifier1.

The contributions of this work are summarized as follows:

• Datasets: LiterallyWikidata which is a benchmark containing three subsets of Wiki-
data varying in size and structure is introduced. Each of these subsets contains both
relational and attributive triples along with entity types.

• Automatic dataset creation pipeline: As compared to the way the current bench-
marks are created, for instance, CoDEx, the pipeline used in this work requires very
little human intervention. In CoDEx, the first step taken was defining a set of initial
classes in some specific domains whereas in our pipeline it is not required for the
domains and initial classes to be predefined. Moreover, it is possible to adapt the
pipeline to create new datasets with newer Wikidata dumps.

• Benchmarking: Extensive KGC experiments have been conducted on LiterallyWiki-
data for selected embedding models with and without attributive triples on the task
of LP.

• Review of existing LP datasets: A review of the existing KGC datasets in terms of
their sources, domain, and support for literals has been conducted and presented in
Table 3.4.1.

6.2 dataset creation

In this section, the procedure followed to create the LiterallyWikidata benchmark is dis-
cussed in detail. First, attributive triples with numerical literals are extracted from the
Wikidata full dump from 07 September, 2020

2. Then, relational triples are retrieved from the
dump for the entities with the attributive triples. Once the triples are extracted, duplicate
triples are filtered out and different datasets varying in size and structure are generated,
namely, LitWD1K, LitWD19K, and LitWD48K. Finally, each of the datasets is divided into

1 The details including the DOI are given under the reference [158]
2 https://dumps.wikimedia.org/wikidatawiki/

https://dumps.wikimedia.org/wikidatawiki/

6.2 dataset creation 103

training, validation, and testing triples. Note that classes explicitly have not been consid-
ered as entities in this framework in order to enable the adaptability of the datasets for
tasks other than LP such as entity type prediction. Classes in Wikidata are those items
which occur either as the value/object in an instance-of (P31) statement/triple or they are
subject or value/object in a subclass-of (P279) statement. In the subsequent sections, the
steps taken to generate the datasets are discussed in detail, i.e., i) extracting attributive
triples, ii) extracting relational triples, and iii) filtering the triples.

6.2.1 Extracting Attributive Triples

Note that in this phase the main focus is on extracting attributive triples with datatype
properties taking numerical values. Therefore, the first step is identifying those data type
properties in Wikidata. The Wikidata properties which are typed with any of the three
Wikimedia datatypes Wikimedia:Time, Wikimedia:GlobeCoordinate, and Wikimedia:Quantity are
considered, in this work, as properties taking numeric values.

wikimedia:time Those properties which take point in time values, such as P569 (date
of birth) are categorized as Wikimedia:Time properties.

wikimedia:globecoordinate The values of Wikimedia:GlobeCoordinate typed proper-
ties such as P625 (coordinate location), are geographic coordinates given as latitude-longitude
pairs. We have separated these pairs by attaching the postfix “longtiude” and “latitude” to
the ID of the properties. For instance, the triple
<Q100000 P625 "Point(5.7678 50.8283)"^^geo3:wktLiteral .>

is transformed into the following two triples:
<Q100000 P625_Longtiude "5.7678"^^xsd4:double .> and
<Q100000 P625_Latitude "50.8283"^^xsd:double .>

Note that some entities have multiple values per property. For such entities, splitting
their corresponding triples might create a logical problem, i.e., it would be difficult to
associate longitude and latitude values once the triples are split. Therefore, only one triple
per <entity, property> pair has been randomly selected before splitting.

wikimedia:quantity Properties of wikimedia type Wikimedia:Quantity take quantities
representing decimal numbers, such as P2049 (width). In the case of these properties, for
every <entity, property> pair statements ranked as “preferred” are retrieved if there are any.
Otherwise, all statements which are ranked as “Normal” are extracted. In Wikidata, such
statements have units associated with their values. These units might be either SI units
or non-SI units. Those values with non-SI units are normalized to their corresponding

3 http://www.opengis.net/ont/geosparql#
4 http://www.w3.org/2001/XMLSchema#

http://www.opengis.net/ont/geosparql#
http://www.w3.org/2001/XMLSchema#

104 lp benchmark with literals

SI unit whenever possible. There are still properties with more than one unit after normal-
ization. These units are either not normalizable or are outliers. For each statement with a
non-normalizable unit, the unit is attached to the ID of the property as a postfix. For exam-
ple, the property P3362 (Operating Income) takes currencies such as Q4916 (Euro), Q4917
(United States Dollar), and Q25224 (Pound sterling), as units that could not be converted
to one base unit and thus, they will be combined with the property ID as in P3362_Q4916,
P3362_Q4917, and P3362_Q25224 respectively. For each property, units that occur less than
1% of the time are considered outliers and are removed.

Note that the extracted triples with the aforementioned data type properties do not include
those entities which satisfy at least one of the following conditions:

• The entities do not have site-links at least to the English Wikipedia. This step is re-
quired in order to support those LP models which leverage textual descriptions of
entities.

• The entities have types only from the set of subclasses of the class Q17379835 (Wiki-
media page outside the main knowledge tree). This is imposed in order to keep only
those entities that describe real-world concepts.

6.2.2 Extracting Relational Triples

Those triples with properties of Wikibase type wikibase:Item, are referred to as relational
triples in this work. Once the entities with numerical literals are obtained as discussed
above in Section 6.2.1, the next step is to extract relational triples for these entities. At this
phase, we address both inverse properties and symmetric properties as follows:

• Inverse properties: Given two inverse properties p1 and p2 connected with the prop-
erty P1696 (inverse property) where the frequency of p1 is greater than or equal to
that of p2, the subject and object entities of those triples with p2 have been swapped
and p2 is replaced with p1.

• Symmetric Properties: In these relational triples, every relation, except P1889 (differ-
ent from) whose head-tail pairs overlap with its tail-head pairs at least 50% of the
time is considered as symmetric and hence, for each pair of redundant triples belong-
ing to this relation, only one of them is kept. The property P1889 (different from) has
been removed due to the fact that it occurs in a significantly high number of triples
but the semantic information captured in this property is not that much beneficial for
KGE approaches to learn better KG representation.

6.2.3 Filtering the Triples

Taking as inputs the extracted attributive and relational triples, the goal in this phase is to
create three datasets that vary in structure and size to be used for different purposes. The

6.2 dataset creation 105

smallest dataset could be used for debugging and testing KGE models with and without
literals whereas the medium size dataset would suit for evaluating KGE approaches on
multiple tasks in general. On the other hand, the largest dataset could be used for few-shot
evaluations in addition to general evaluations for KGEs. In this section, these datasets are
referred to as small, medium, and large. The following three steps are applied to create
these datasets:

seeding entities . The top N entities with the highest number of datatype properties
are considered as seed entities. The value of N is 200, 000 for the small and large datasets
and 50, 000 for the medium datasets. Different values have been tried out for N and those
particular values are chosen because they suit well to generate appropriate-sized datasets.

extending the seed entities . At this phase, fractions of the relational triples are
taken by extending the seed entities with their one-hop entities for the small and large
datasets and with their two-hop neighbors for the medium dataset.

creating k-cores . The size of the triples extracted using the steps discussed so far is
huge as it is from the entire Wikidata dump. Hence, the relational triples have been further
filtered into k − cores, i.e., maximal-subgraphs G ′ of a given graph G where each node
in the sub-graphs has at least a degree of k [159]. The value of k is 15 for the small and
medium datasets and 6 for the large datasets. Note that the values for k are determined by
taking into consideration both the size and structure of the datasets to be generated. The
value of k is less for the largest dataset as compared to the others because this dataset is
intended to be used for few-shot evaluations. In case of few-shot evaluations, it would be
possible to see the advantages of literals in learning representations for entities occurring
in few structured triples. Once the k-cores are created, some triples have been removed
from each of the k-cores due to the following factors:

• Either the head or the tail entity doesn’t have a summary section on the corresponding
English Wikipedia page or the section contains less than 3 non-stop words.

• All entities having exactly the same Wikipedia pages for various reasons have been
excluded in order to avoid having meaningless descriptions.

• Relations (object properties) with more than 50% subject-object overlap have been
considered as duplicates and only one of them is kept.

• Relations occurring less than 3 times have been removed to ensure that every relation
has a chance to appear in the training, validation, and test sets.

• Attributes (data properties) skewed 100% of the time towards a single (head) entity
have been excluded.

106 lp benchmark with literals

In the subsequent sections, the created small, medium, and large datasets are referred
to as LitWD1K, LitWD19K, and LitWD48K respectively. The statistics and analysis of these
datasets are presented in Table 6.2.1. Each of these datasets has been split into 90/5/5

train/valid/test sets. While splitting the datasets, we have ensured that the entities which
occur in validation and test sets also occur in the respective training sets. Moreover, the
test sets do not contain any relation which is 100% skewed towards a single head or tail
entity. LitWD48K contains more than double the number of entities in LitWD19K. However,
both datasets have almost the same number of structured triples. This is due to the way
the datasets are created, i.e., LitWD19K is based on two-hop whereas LitWD48K is based
on one-hop as discussed above. Table 6.2.1 also presents a summary of the analysis of the
datasets in terms of graph connectivity, diameter, and density.

Table 6.2.1: Dataset Statistics and Analysis

LitWD1K LitWD19K LitWD48K

Statistics

#Entities 1,533 18,986 47,998

#Relations 47 182 257

#Attributes 81 151 291

#StruTriples 29,017 288,933 336,745

#AttrTriples 10,988 63,951 324,418

#Train 26,115 260,039 303,117

#Test 1,451 14,447 16,838

#Valid 1,451 14,447 16,838

Analysis
Connectivity Yes Yes Noa

Diameter 5 7 8
b

Density 0.01235 0.0008 0.00014

a LitWD48K contains 3 connected components and the

largest component contains 47,994 entities.
b The diameter of the largest component of LitWD48K is 8.

6.2.4 Textual Information

In addition to the relational and attributive (numerical) triples discussed in Section 6.2.2
and Section 6.2.1, textual information about the entities and relations has also been ex-
tracted. The textual information includes Wikidata labels, aliases, and descriptions of en-
tities, relations, and attributes. Moreover, for each entity, the summary sections of the cor-
responding English, German, Russian, and Chinese Wikipedia pages have been extracted.
The statistics of the text literals for each dataset are given in Table 6.2.2.

6.3 comparison with existing datasets 107

Table 6.2.2: Short and long text literals extracted from Wikidata and Wikipedia for entities, relations
and attributes. The values are presented in percentages.

Wikipedia Sum-
mary

Wikidata (entity/relation/attrb) (en)

en de ru zh labels aliases descriptions

LitWD1K 100 78 72 66 100/100/100 38/83/81 95/98/100

LitWD19K 100 80 65 39 100/100/100 44/87/81 99/99/100

LitWD48K 100 88 75 29 100/100/100 47/87/79 99/99/100

6.2.5 Domain of the Datasets

Since the pipeline developed in this study to create LiterallyWikidata framework does not
require pre-defining the domains or classes of entities or relations, the created datasets are
generic and their domains could be identified only after they are created. Based on the
types/classes of entities, People, Geography, Entertainment, Transportation, Sport, Travel,
Business, and Research are among the domains covered in LiterallyWikidata. The classes/-
types of the entities are also released along with the datasets.

6.3 comparison with existing datasets

LP benchmark datasets are usually characterized based on the nature of the relations such
as symmetricity, inversion, skewness, and cartesian product (fixed-set). LP with symmet-
ric/inverse/cartesian product relations is easy and does not require a complex embedding
model [121, 122]. It could also be done with simple rule-based approaches. Here, the com-
parison will be with two existing datasets, FB15K-237 as the most popular extension of
FB15K and CoDEx-M as the most recent dataset extracted from Wikidata. In order to make
a fair comparison, the LitWD19K dataset is chosen to be compared against these datasets
as it is comparable to both in terms of size.

skewness As reported in CoDEx [121], 15.98% and 1.26% of test triples in FB15K-237

and CoDEx-M contain relations which are skewed 50% or more toward a single head or
tail entity. As mentioned above, when splitting the LiterallyWikidata datasets, any relation
which is 100% skewed towards a single head or tail entity in each of the datasets was
excluded. However, for a fair comparison with the numbers reported in CoDEx [121], we
also consider skewed relations as relations which are skewed 50% or more (instead of 100%)
towards a single head or tail entity and find 6.48% of the test sets of LitWD19K to contain

108 lp benchmark with literals

such skewed relations. This number does not have much of an impact as its coverage of the
test set is low and also as already mentioned, none of the relations are 100% skewed.

symmetricity 4.01% of the triples in CoDEx-M contain symmetric relations [121]. In
case of FB15K-237, every validation and test triple containing entity pairs that are directly
linked in the training set were removed, which leads to deleting any symmetric relations
from its test/validation sets. LitWD19K does not contain any symmetric relation in the
entire dataset not only test/valid sets.

inversion Similar to the existing datasets FB15K-237 and CoDEx-M, LitWD19K also
do not contain any inverse relations (see section 6.2.2 for more details).

cartesian product or fixed-set relations As reported in [121], about 12.7% of
test triples in FB15K-237 contain fixed-set relations, i.e., relations which connect entities to
fixed sets of values. On the other hand, both CoDEx-M and our dataset (LitWD19K) do not
contain any such kind of relation.

6.4 benchmarking experiments on link prediction

In this section, the benchmarking experiments conducted on the LP task are discussed.
The chosen KGE approaches, the model selection strategy, and the obtained results are
presented. Note that there are properties in the LiterallyWikidata datasets which take date
values. In order to treat those date values as numeric literals, for the experiments, the values
are converted to decimals. This allows leveraging the semantics present in all parts of the
date values, i.e., the year, the month, the days, and so on.

6.4.1 KGE Models

In this word, the models DistMult-LiteralE, DistMult, and ComplEx have been chosen to
conduct the benchmarking experiments. The model DistMult-LiteralE was selected because
the main focus of this study lies in providing benchmark datasets for KGE with literals
whereas the other models DistMult and ComplEx are included to show the comparisons
with and without literals. DistMult scores a given triple using a diagonal bilinear interac-
tion function between the head and tail entity embeddings and the relation embeddings -
f(h, t, r) = hTdiag(r)t. This model can only deal with symmetric relations due to the fact
that f(h, t, r) = f(r, t,h). ComplEx is an extension of DistMult, which uses complex-valued
embeddings in order to better handle asymmetric relations. DistMultLiteral extends Dist-
Mult by modifying the scoring function f such that the entity embeddings of h and t are
replaced with their respective literal enriched representations hlit and tlit. More details
on these models are provided in Chapter 3.

6.4 benchmarking experiments on link prediction 109

6.4.2 Model Selection

As it is demonstrated in [53], in addition to a model’s architecture, the combination of the
training approach and the loss function used also plays an important role to determine
a model’s performance. Hence, in this work, pytorch-based configurable KGE framework
Pykeen5 is used to search from a large range of hyperparameters listed in Table 6.4.1. First,
around 70 different combinations of datasets, models, training approaches, losses, regular-
izers and optimizers (for example, LitWD1K + DistMult + LCWA + CEL + LP + Adam)
were defined as configurations. Then, for each of these configurations, random search has
been used to perform the hyper-parameter optimizations over all other hyper-parameters
in order to select the best models. The details on the training approaches, losses, and search
strategies are given as follows:

training approaches and loss functions The models have been trained based
on the sLCWA (Stochastic Local Closed World Assumption) and LCWA (Local Closed
World Assumption) approaches. The sLCWA training approach has been used with UNS
(Uniform Negative Sampler) to generate negative samples. The loss functions Cross En-
tropy Loss (CEL) and Binary Cross Entropy Loss (BCEL) are used together with LCWA
whereas BCEL and Margin Ranking Loss (MRL) are used with sLCWA. In order to learn
more about these training approaches and losses refer to [53].

search strategies For each configuration with LitWD1K, a maximum of 100 trials
are generated within a bound of 24 hours for DistMult and DistMultLiteral, and 36 hours
for ComplEx. During each trial, the model is trained for 1000 epochs. On the other hand,
for LitWD19K and LitWD48K a maximum of 100 trials are generated within 48 hours for
DistMult and DistMultLiteral, and 60 hours for ComplEx. Every trial is run for a maximum
of 500 epochs where early stopping is performed by evaluating the model every 25 epochs
with a patience of 50 epochs on the validation set using MRR. Finally, for each dataset and
embedding model pair (e.g., LitWD1K+DistMult), the best configuration is chosen based
on the evaluation result on the validation set. Then, evaluation is carried out using the test
set by retraining the selected models on each dataset for 1000 epochs. In order to make sure
that the results reported are consistent, the retraining is done three times for all models on
LitWD1K and for DistMult on LitWD19K and since the results are very close, the retraining
is run only once for the rest of the experiments.

The experiments with LitWD1K and LitWD19K are run on TITAN X (Pascal) 12 GB whereas

5 https://pykeen.readthedocs.io/en/latest/

https://pykeen.readthedocs.io/en/latest/

110 lp benchmark with literals

those on LitWD48K are run on NVIDIA Tesla V100S-PCIE-32GB. The optimal hyperparam-
eter values for each of the models on all the datasets are provided along with the datasets
on Github6.

Table 6.4.1: Hyper-parameter search space

Hyper-parameter Range

Embedding dimension {64,128,256}
Initialization {Xavier}
Optimizersa {Adam, Adadgrad}
Regulaizer {None, L1, L2}

Weight for L1 and L2 [0.01, 1.0)
Learning Rate (log scale) [0.001, 0.1)
Batch size {128, 256, 512, 1024}
Input dropoutb {0,0.1,0.2,0.3,0.4,0.5}
Training Approachc

sLCWA
Loss {BCEL, MRL}
Number of Negatives {1, 2, ... , 100}
Margin for MRL {0.5, 1.5, ... , 9.5}

LCWA
Loss {BCEL, CEL}
Label Smoothing (log scale) [0.001, 1.0)

a Both Adam & Adagrad are evaluated using DistMult & DistMultLiteral on
LitWD1K and using DistMult on LitWD19K & LitWD48K(sLCWA). The result indi-
cates that Adagrad performs better than Adam on the smallest dataset whereas Adam
is better on the larger ones. Hence, for that reason and also due to the fact that Adam
is known for addressing the problem of decreasing learning rate in Adagrad, for the
two larger datasets, Adam is used for the rest of the experiments in order to reduce
computational cost.
b The input dropout range is applied to DistMultLiteral
c Both sLCWA & LCWA are evaluated using DistMult & DistMultLiteral on all three
datasets and learned that LCWA performs better at all times. Hence, only LCWA is
used for the rest of the experiments.

6 https://github.com/GenetAsefa/LiterallyWikidata

https://github.com/GenetAsefa/LiterallyWikidata

6.4 benchmarking experiments on link prediction 111

6.4.3 Results

The results of the experiments on LP are presented in Table 6.4.2. Three different compar-
isons can be made from the results, i.e., i) Baselines vs. Models with literals, ii) between
baselines, and ii) proposed datasets vs. existing datasets.

• Baselines vs. Models with literals: Here, DistMult is compared with DistMutLiteral
because DistMutLiteral is a literal-enriched KGE that extends DistMult. As the results
indicate, for all three datasets DistMultLiteral outperforms DistMult w.r.t. almost all
metrics. This indicates that making use of literals (numeric literals) improves entity
representations.

• Baselines vs. Baselines: When comparing the baselines (models that do not leverage
literals), ComplEx, and DistMult, it can be seen that ComplEx performs better than
DistMult on the largest dataset LitWD48K. On the other two datasets, the results of
the two models are comparable.

• Proposed datasets vs. Existing datasets: In order to show the level of difficulty of the
proposed datasets, here the results of the two baselines are compared on LitWD19K
and the existing datasets FB15K-237 and CoDEx-M. For both ComplEx and DistMult,
w.r.t. all metrics, the results on LitWD19K are worse than those on FB15K-237 and
CoDEx-M.

Table 6.4.2: Results of LP

Dataset Model MRR Hits@1 Hits@10

Ours

LitWD1K
DistMult 0.419 0.283 0.697

ComplEx 0.413 0.28 0.673

DistMultLiteral 0.431 0.297 0.703

LitWD19K
DistMult 0.195 0.138 0.308

ComplEx 0.181 0.122 0.296

DistMultLiteral 0.245 0.168 0.399

LitWD48K
DistMult 0.261 0.195 0.4
ComplEx 0.277 0.207 0.428

DistMultLiteral 0.279 0.204 0.434

Existing∗
FB15K-237

DistMult 0.343 0.250 0.531

ComplEx 0.348 0.253 0.536

CoDEx-M ComplEx 0.337 0.262 0.476

∗ The results are copied from LibKGE (https://github.com/uma-pi1/kge)

https://github.com/uma-pi1/kge)

112 lp benchmark with literals

6.5 conclusion and outlook

This chapter presents LiterallyWikidata which is a set of KGC benchmark datasets extracted
from Wikidata and Wikipedia with a special focus on literals. It contains 3 datasets, namely,
LitWD1K, LitWD19K, and LitWD48K, that vary in size and structure. Each of these datasets
contains both relational and attributive triples along with entity types. Benchmarking ex-
periments have been conducted on the task of transductive LP using KGE models with and
without literals. Moreover, the datasets are compared with existing datasets both concep-
tually and experimentally. The answer to the major research question that is formulated in
this work, in Section 7.1, is given as follows:

• C2-RQ2: How to extract high-quality benchmark datasets from popular KGs such as Wikidata,
focusing primarily on literals?

− Generating high-quality benchmark datasets can be achieved by following the
pipeline introduced in Section 6.2, which gives proper attention to literals. The
pipeline contains the process of generating attributive and relational triples with
different types of literals and also applies various filtering mechanisms to pro-
duce a very sound set of datasets. The existing datasets FB15K-237 (popular)
and CoDEx (recent) are both valuable datasets for LP with KGC models that
do not make use of literals. However, as shown in Table 6.4.2, the LiterallyWiki-
data benchmark datasets created with the proposed pipeline are appropriate for
the evaluation of KGC models with or without literals on the transductive LP
tasks. Hence, the release of LiterallyWikidata addresses the need for high-quality
benchmark datasets and may foster research on more sophisticated KGE models
that exploit the additional semantics provided by literals.

In future work, the following research directions will be considered to further investigate
LiterallyWikidata.

• More tasks: Using the datasets with other tasks such as triple classification.

• More Experiments: Conducting experiments with text literals and also by fusing
relational triples, numeric literals, short text literals (aliases and labels), and long text
literals together. Moreover, experiments with more varieties of KGE models will be
performed.

• Detailed analysis: Conducting further analysis on the datasets in terms of composi-
tionality will be undertaken, so as to explore its use for models which leverage paths.

• Studying data bias: Bias in training data is one of the crucial aspects of Machine
Learning that needs to be carefully addressed. Since Wikidata is one of the crowd-
sourced KGs, it is susceptible to biases. These biases in Wikidata reflect the real-world
and hence, LiterallyWikidata may as well be biased. However, the current version of

6.5 conclusion and outlook 113

the dataset is not yet de-biased. An investigation will be carried out on whether de-
biasing should be done and what methods should be used for such purpose.

In the next chapter, a novel KGE model for transductive LP task is introduced and one
of the datasets from LiterallyWikidata is among the datasets used for the evaluation of the
model.

7
I M P R O V I N G L I T E R A L - B A S E D K G E M O D E L S

As discussed in Chapter 1, numeric literals contain useful semantics which could be lever-
aged when performing LP in KGs. To this end, some KGE methods have been proposed
which make use of numeric literals (See Chapter 3 for more details). These literals could be
used even further to extract implicit information from the KG when performing KGC. To
achieve this, in this chapter, a novel KGE approach is presented which utilizes numeric lit-
erals for improved representation learning of KGs with a focus on the LP task in a transduc-
tive setting. The rest of the chapter is organized as follows. To begin with, the motivation
behind the proposed approach is discussed in Section 7.1, followed by the problem formu-
lation along with an overview of the base models considered in this work in Section 7.2.
A detailed discussion of the proposed methodology is given in Section 7.3 whereas the ex-
periment settings and the results obtained are provided in Section 7.4. Finally, Section 7.5
summarizes the chapter and provides directions for further research.

7.1 introduction

KGs have recently gained massive attention for representing structured knowledge about a
particular domain. As explained in Section 1, in addition to relational triples, these KGs
also include triples with numeric literals (i.e., attributive triples). For example, in Fig-
ure 7.1.1, the triple <Paper_B, nominatedFor, Best_Paper_by_Emerging_Authors> is a re-
lational triple whereas <Anna, age, 24> is an attributive triple. These literals contain valu-
able semantics which can be combined with relational triples to predict missing links in
KGs. Few of the embedding-based approaches (KGE models) such as LiteralE [73], LiteralE-
AT [160], and transforming literals into entities [112] perform LP by utilizing the literals
present in the KGs [1].

In contrast to the above-mentioned models, this chapter presents a novel method named
LitKGE to explore the advantages of utilizing numeric literal information not only for those
entities which are directly connected to the literals but also for others that are indirectly
associated with the literals. This enables the generation of numerical features for entities
that do not occur in the set of attributive triples. The goal is to reveal implicit information
and enhance the task of LP. This could be achieved using the property paths leading to nu-
merical literals as features of those entities which are indirectly associated with the literals
through graph traversal. For instance, in Figure 7.1.1 given a paper (i.e., Paper_A, Paper_B,
or Paper_C), the average age and the average number of papers of its authors could be
used to determine if the paper can be nominated for the Best_Paper_by_Emerging_Authors

award. Moreover, this information also has a role in providing the semantics required to

115

116 improving literal-based kge models

determine whether Paper_A should be close to Paper_B or Paper_C in the vector space. This
is done by generating and treating property paths that lead to literal nodes as features of
entities. author_age and author_paper are among the property paths that could be gener-
ated from Figure 7.1.1. For the entity Paper_C, the average of the age values of Lina and
Martin (i.e., 60) is taken as the value for the first feature (<Paper_C, author_age, 60>).
The generated features could be used to further enrich the attributive triples and in turn to
improve the LP task.

Generating features for entities in KGs has been investigated recently in Literal2Feature [161]
for basic machine learning tasks such as regression and clustering of entities and the results
achieved indicate that literals contain useful semantics about entities. In LitKGE, literal-
based features of entities are considered as a source of semantics for the task of KGC,
specifically LP. However, the feature generation procedure of LitKGE is different from
that of Literal2Feature. In Literal2Feature, a graph traversal algorithm (either Breadth-First
Search or Random Walk) is applied directly to the input RDF graph in order to gather liter-
als for each entity and consider them as a feature vector for the given entity. Then, given the
generated path, it keeps only the properties and the literal value, ignoring the entities ap-
pearing between the starting entity and the literal node. Differently from Literal2Feature, in
this work, LitKGE proposes a novel algorithm named WeiDNeR_extended which generates
a weighted and directed relation-relation/attribute network, which is used as an input to
a random walk algorithm to generate property paths. Then these property paths are used
to collect literals to leverage them as features of entities. The WeiDNeR_extended algorithm
enables LitKGE to efficiently generate more sound features by using the weights in the
resulting network graph.

Hence, the approach proposed in this work LitKGE aims to enhance the performance
of KGE models with literals. Furthermore, it could be integrated with many KGE models
which use numerical literals such as LiteralE, TransEA [120], etc. The contributions of this
work are summarized as follows:

• A novel approach named LitKGE which generates features for entities in order to en-
hance the standard KGE models such as LiteralE, is introduced. LitKGE is a universal
method which can be integrated with any KGE model which utilizes literals.

• LitKGE is evaluated on three LP datasets: FB15K-237[15], YAGO3-10[16], and LitWD48K[17].
These datasets are extended with the generated features and the extensions are made
publicly available to facilitate further research.

• The experimental results indicate that making the implicit information explicit en-
abled LitKGE to outperform the SOTA models.

7.2 preliminaries

In this section, the formal definition of the LP problem that is being addressed in this
chapter is given. Moreover, a detailed discussion on the LiteralE KGE model which is used

7.2 preliminaries 117

Figure 7.1.1: An example graph with entity nodes depicted as rectangles and literals as ovals.

as a base model to be improved with our approach is provided along with a description of
the chosen scoring functions DistMult and ComplEx.

7.2.1 Problem Definition

Following the definition of KG provided in Chapter 2, let G = {E,R,D,L,T} be a KG where
E = {e1, e2, ..., eNd

} representing the set of entities in G, R = {r1, r2, ..., rNr
} denotes the set

of relations connecting two entities, D = {d1,d2, ...,dNd
} as a set of attributes (a.k.a data

relations) connecting entities to their corresponding literals, and L is the set of literal values.
The triples in G are represented as T ⊆ ((E× E×R)∪ (E×L×D)). Given G, the task of LP
can be formulated by a function Φ : E× E× R → R which assigns a score to each triple
(ei, ej, rk) ∈ E× E×R, where a higher score indicates that the triple is more likely to be
valid. As discussed above, most of the KGs consist of numeric literals to provide semantic
information about entities. In this work, the focus is to make use of the numeric literals to
learn embeddings of the entities and relations for the purpose of predicting the missing
links between entities in a KG. Hence, this chapter tackles the challenges in reference to the
research question C2-RQ3 from Section 1.2 of Chapter 1.

• C2-RQ3: Does generating entity features based on property paths and incorporating these
features into existing KGE models result in improving LP tasks?

118 improving literal-based kge models

7.2.2 LiteralE

As presented in Section 3, LiteralE is a universal approach that incorporates literals into
latent feature methods (KGE models) such as DistMult and ComplEx via a learnable para-
metric function. This function takes as input an entity embedding and a literal feature
vector and maps them to a new vector of the same dimension as the entity embedding.
The resulting literal enriched vector is then passed as input to the given LP scoring func-
tion. As per the experimental results presented in a survey conducted on KGE models
with numeric literals [1], LiteralE outperforms all other KGE models which use literals like
KBLN, MTKGNN, and TransEA. Given a base model like DistMult with a scoring func-
tion f = fdistmult shown in Equation 62 or ComplEx with f = fcomplex in Equation 63,
LiteralE modifies f by replacing the original entity vectors ei in f with literal enriched
representations eliti using a flexible and learnable GRU-based transformation function g.

fdistmult(ei, ej, rk) = eTi diag(rk)ej (62)

fcomplex(ei, ej, rk) = Re(⟨ei, ej, rk⟩)
= ⟨Re(ei),Re(ej),Re(rk)⟩
+⟨Im(ei), Im(ej),Re(rk)⟩
+⟨Re(ei), Im(ej), Im(rk)⟩
−⟨Im(ei),Re(ej), Im(rk)⟩

(63)

The function g is shown in Equation 64 which takes as an input ei and its corresponding
literal vector li and maps them to a new vector. Note that li is the i-th row of a literal
matrix L ∈ RNe×Nd as the literal vector of the i-th entity. The entry Lik in L is the k-th
literal value of the i-th entity if an attributive triple with the i-th entity and the k-th data
relation (i.e., attribute) exists in the KG, and zero otherwise.

g : RH ×RNd → RH,

e, l 7→ z⊙ h + (1− z)⊙ e,
(64)

where
z : σ(WT

zee + WT
zll + b), (65)

and
h = h(WT

h[e, l]). (66)

Note that Wze ∈ RH×H, Wzl ∈ RNd×H, b ∈ RH, and Wh ∈ RH+Nd×H are the parame-
ters of g, σ is the sigmoid function, ⊙ denotes the element-wise multiplication, and h is
a component-wise nonlinearity. The scoring function f(ei, ej, rk) would be replaced with
f(g(ei, li),g(ej, lj), rk).

7.3 litkge 119

Figure 7.3.1: Feature generation pipeline: given a KG as input, it generates a feature matrix contain-
ing numerical features for the entities in the KG.

7.3 litkge

In this Section, the proposed approach LitKGE is presented in detail. It consists of two ma-
jor components, i.e., i) Generating numeric features and ii) Incorporating numeric features
into KGE models. These components are discussed in the subsequent sections.

7.3.1 Generating features

As discussed in Chapter 1 given a KG, implicit features of entities could be made explicit
by traversing the KG using property paths. Hence, LitKGE generates such paths which lead
to literal values to create features for entities. The overall phases in the feature generation
process are depicted in Figure 7.3.1.

The phases are described as follows:

• Input graph: A KG that contains entity nodes, literal nodes, and properties (relations
and attributes) is taken as input to generate numerical features.

• WeiDNeR-Extended: A novel algorithm named WeiDNeR-Extended is introduced
which is an extension of the WeiDNeR algorithm developed for the RAILD model pre-
sented in Chapter 5. The are two major differences between WeiDNeR and WeiDNeR-
Extended: i) WeiDNeR is designed based on the assumption that given a KG G =

(R,E,T ⊆ E×R× E), r1, r2 ∈ R and T1 ⊆ (T ∩ (E× r1 × E)), T2 ⊆ (T ∩ (E× r2 × E)),
the higher the number of common entities between T1 and T2, the higher the probabil-
ity that r1 and r2 could be semantically similar. In WeiDNeR-Extended, the assump-

120 improving literal-based kge models

tion is formulated as Given a KG G = (R,A,E,L,TR ⊆ E×R× E,TA ⊆ E×A×L),
p1 ∈ R, p2 ∈ R ∪A and T1 ⊆ (TR ∩ (E× p1 × E)), T2 ⊆ ((TR ∪ TA) ∩ (E× p2 × E|L)),
the higher the number of matches between tail entities in T1 and head entities in T2,
the higher the probability that p1 and p2 appear close to each other in the original
KG. This restriction to matching only the tail of T1 and the head of T2 is performed in
order to keep only outgoing links when generating property paths. ii) As described
in i), WeiDNeR generates a relation-relation network taking only relational triples as
inputs, i.e., excluding literals, hence, there are no attributes in the resulting network.
However, in WeiDNeR-Extended, the network is intended to contain relation-relation
as well as relation-attribute connections. Algorithm 2 describes the steps followed by
WeiDNeR-Extended to generate the network.
Algorithm Description: Given two properties pi and pj,

− if pi and pj are different relations connecting entities, it computes the weight
Weight<pi,pj> by counting the number of pair of triples where the relation in
the first triple is pi and in the second is pj and the tail entity in the first triple
is the same as the head entity in the second triple. If Weight<pi,pj> is greater
than zero, then pi and pj are considered as nodes in the output network, and a
directed link from pi to pj is created with the computed weight. Weight<pj,pi>

is computed similarly and if it is greater than 0, then a directed link from pj to
pi is created and assigned the computed weight (i.e., refer to lines 4- 9).

− if pi is a relation connecting entities and pj denotes an attribute connecting entity
to a literal node, the weight Weight<pi,pj> by counting the number of pair of
triples where the relation in the first triple (a relational triple) is pi and in the
second triple (an attributive triple) is pj and the tail entity in the first triple is
the same as the head entity in the second triple. If Weight<pi,pj> is greater
than zero, then pi and pj are considered as nodes in the output network, and
a directed link from pi to pj is created with the computed weight. The same
analogy applies if pi is an attribute and pj is a relation so as to decide whether
there should be a link from pj to pi and to compute the weight Weight<pj,pi>

(i.e., refer to lines 11- 17).

− if pi and pj are relations and they are exactly the same, then the weight Weight<pi,pi>

by counting the number of pair of triples where the relation in the first triple (a
relational triple) is pi and in the second triple (an attributive triple) is pj and the
tail entity in the first triple is the same as the head entity in the second triple. If
Weight<pi,pi> is greater than zero, then pi is considered as a node in the output
network, and a link from pi to itself (i.e., a loop)is created with the computed
weight.

Note that the motivation behind creating a relation-relation/attribute network (i.e.,
proposing the WeiDNeR-Extended algorithm) is to make sure that within a prop-
erty path that is generated as a feature, the properties are semantically related. For

7.3 litkge 121

instance, considering the example relation-relation/attribute graph in the feature gen-
eration pipeline in Figure 7.3.1, when the random walk algorithm is applied to this
graph and takes r3 as a starting node, it selects r1 as the next node instead of r6 be-
cause the weight on the link from r3 to r1 (i.e., 10) is bigger than the weight from r3 to
r6 (i.e., 1). Moreover, having the weights in such relation-relation/attribute networks
allows the generation of less-sparse features. This approach is novel due to the fact
that none of the existing KGE methods utilized such a technique to generate features
for entities.

• Random walk: The 2
nd order-based biased random walk approach used in [20] is

applied to generate network neighborhoods for nodes in the WeiDNeR-Extended net-
work.

• Extracting literals: The generated walks/property paths with the random walk graph
traversal are used as templates to obtain literals for entities in the input KG. Given
an entity, some property paths could have multiple values and in such cases, their
average is taken. For example, taking the graph in Figure 7.1.1 as the input KG and
author_age as a property path generated with a random walk, for Paper_B there
would be two possible literal values 23 and 25 through the entities Marry and Daniel
respectively (i.e., <Paper_B, author_age, 23> and <Paper_B, author_age, 25>) and
taking the average would result in <Paper_B, author_age, 24>.

• Filtering: In this step, those property_paths/features which have values for only one
entity are removed. This is done in order to avoid having features that do not provide
much semantics to help compare entities but rather make the feature matrix sparse.

• Output: The resulting feature matrix F ∈ RNe×Nf contains the generated numerical
features for the entities in the input KG, where Ne and Nf denote the number of
entities and the number of features respectively. Note that each entry Fik contains
the k-th feature value of the i-th entity if a feature value is generated for the i-th
entity and the k-th feature using the feature generation pipeline, and zero otherwise.

7.3.2 Incorporating features into KGE models

Once the features are generated using the procedure discussed in Section 7.3.1, they can
be utilized while learning KGEs. This can be achieved by incorporating them in any KGE
model which utilizes literals. For instance, TransEA and LiteralE are among those KGE
models which can be improved using the LitKGE approach. TransEA is an extension of
TransE model where an attribute embedding component is integrated into TransE. The at-
tributive embedding component uses all attributive triples with numeric literals as input

122 improving literal-based kge models

Algorithmus 2 : WeiDNeR-Extended - An algorithm to generate a directed and
weighted relation-relation/attribute network.

Data : T ← Relational and Attributive Triples in KG

Data : R← Properties in Relational Triples (i.e., Relations)
Data : D← Properties in Attributive Triples (i.e., Data relations/Attributes)
Result : Nrel

1 for each pair of properties ⟨pi,pj⟩ do
2 if pi ̸= pj then
3 if pi,pj ∈ R then
4 Weight⟨pi,pj⟩ ←

∣∣{(⟨h1,pi, t1⟩, ⟨h2,pj, t2⟩) : ⟨h1,pi, t1⟩ ∈ T , ⟨h2,pj, t2⟩ ∈
T , t1 = h2}

∣∣;
5 Weight⟨pj,pi⟩ ←

∣∣{(⟨h1,pi, t1⟩, ⟨h2,pj, t2⟩) : ⟨h1,pi, t1⟩ ∈ T , ⟨h2,pj, t2⟩ ∈
T ,h1 = t2}

∣∣;
6 if Weight⟨pi,pj⟩ > 0 then
7 Nrel ← Nrel

⋃
{⟨pi,pj,Weight⟨pi,pj⟩⟩};

8 if Weight⟨pj,pi⟩ > 0 then
9 Nrel ← Nrel

⋃
{⟨pj,pi,Weight⟨pi,pj⟩⟩};

10 else if pi ∈ R & pj ∈ D then
11 Weight⟨pi,pj⟩ ←

∣∣{(⟨h1,pi, t1⟩, ⟨h2,pj, l⟩) : ⟨h1,pi, t1⟩ ∈ T , ⟨h2,pj, l⟩ ∈
T , t1 = h2}

∣∣;
12 if Weight⟨pi,pj⟩ > 0 then
13 Nrel ← Nrel

⋃
{⟨pi,pj,Weight⟨pi,pj⟩⟩};

14 else
15 Weight⟨pj,pi⟩ ←

∣∣{(⟨h1,pj, t1⟩, ⟨h2,pi, l⟩) : ⟨h1,pj, t1⟩ ∈ T , ⟨h2,pi, l⟩ ∈
T , t1 = h2}

∣∣;
16 if Weight⟨pj,pi⟩ > 0 then
17 Nrel ← Nrel

⋃
{⟨pj,pi,Weight⟨pj,pi⟩⟩};

18 else
19 if pi ∈ R then
20 Weight⟨pi,pi⟩ ←

∣∣{(⟨h1,pi, t1⟩, ⟨h2,pj, t2⟩) : ⟨h1,pi, t1⟩ ∈ T , ⟨h2,pj, t2⟩ ∈
T , t1 = h2, (h1 ̸= t1 ∨ h1 ̸= t2)}

∣∣;
21 if Weight⟨pi,pi⟩ > 0 then
22 Nrel ← Nrel

⋃
{pi,pi,Weight⟨pi,pi⟩};

7.3 litkge 123

and applies a linear regression model to learn embeddings of entities and attributes. One
way to improve TransEA with LitKGE would be to use the generated features in LitKGE
and treat them as attributes and predict the values using the attributive embedding compo-
nent. On the other hand, LiteralE is a universal KGE model which incorporates literals to
the standard KGE models such as DistMult and ComplEx. In this work, LiteralE is selected
as a base model to improve it with LitKGE due to the fact that it performs better than
TransEA and other KGE models which use literals as presented in [1]. In addition to its per-
formance, LiteralE is a universal model, i.e., as mentioned above it can be applied to many
standard models, which implies that applying LitKGE to LiteralE is in turn applying it to
the base scoring models. The modification to the LiteralE architecture with LitKGE is de-

Figure 7.3.2: Overview of LitKGE as an improvement over LiteralE model. LitKGE takes as input
the embedding of the entities and the concatenation of their corresponding literal vectors li and
feature vector fi as input and combines them via a learnable function g (i.e., glf in Equation 67).
Then, it modifies the base scoring function f with the joint embedding obtained using g.

picted in Figure 7.3.2. Let L ∈ RNe×Nd be a matrix representing literals and F ∈ RNe×Nf be
a newly introduced feature matrix generated using the procedure presented in Section 7.3.1.
The final new matrix would be a combination of L and F as LF = [L; F], LF ∈ RNe×Nd+Nf

Then, the mapping function used in LiteralE (i.e., g in Equation 64) is modified as glf in
Equation 67.

124 improving literal-based kge models

glf : RH ×RNd+Nf → RH,

e, lF 7→ z⊙ h + (1− z)⊙ e,
(67)

where ⊙ is the pointwise multiplication and

z : σ(WT
zee + WT

zllF + b), (68)

and
h = h(WT

h[e, lF]). (69)

Note that Wze ∈ RH×H, Wzl ∈ RNd+Nf×H, b ∈ RH, and Wh ∈ RH+Nd+Nf×H are the
parameters of g, σ is the sigmoid function, ⊙ denotes the element-wise multiplication, and
h is a component-wise nonlinearity. The scoring function f(ei, ej, rk) would be replaced
with f(g(ei, lFi),g(ej, lFj), rk).

7.3.3 Computational Complexity

Note that given a KG, the numerical features of entities, as discussed in Section 7.3.1, are
pre-computed, and hence, the major part of the computational cost of LitKGE comes from
training the model depicted in the architecture in Figure 7.3.2. The cost can be computed
in terms of the number of parameters in the model. LitKGE, similar to LiteraLE, introduces
some overhead in the number of parameters as compared to the base model. The overhead
is the number of parameters in the function glf in Equation 67. Specifically, there are 2H2+

2H(Nd +Nf) +H additional parameters corresponding to the dimensionality of Wh, Wze,
Wzl, and b in Equation 68 and 69. Hence, given glf and H, the number of additional
parameters of LitKGE grows in O(Nd +Nf), that is, linear to the number of attributes
(a.k.a data relations) and features in the KG.

7.4 experiments

In this section, the details of experimentation including the datasets, the experimentation
settings, and the results are discussed. Our implementation and the datasets are online1

for the reviewing period and they will be made publicly available through github upon
acceptance.

7.4.1 Datasets

Three standard datasets, namely, FB15K-237, YAGO3-10, and LitWD48K have been used to
evaluate the performance of the proposed LitKGE LP approach. FB15K-237 is created by

1 shorturl.at/eklN7

shorturl.at/eklN7

7.4 experiments 125

Table 7.4.1: The statistics of the datasets used in the experiments in this chapter.

FB15K-237 YAGO3-10 LitWD48K
#Entities 14,541 123,182 47,998

#Relations 237 37 257

#Attributes 121 5 297

#Relational Triples 310,116 1,089,040 336,745

#Numerical Attributive Triples 70,257 111,406 324,418

#Train 272,115 1,079,040 303,117

#Test 17,535 5,000 16,838

#Valid 20,466 5,000 16,838

removing the inverse relations from FB15K[49] which is a subset of Freebase[3] KG. YAGO3-
10 is extracted from the YAGO3 knowledge graph, which mostly consists of triples related
to people. For YAGO3-10, the numerical literals published in YAGO3-10-plus [74] and for
FB15K-237 the numerical literals provided by LiteralE [73] are used for the experiments in
this work. Differently from FB15K-237 and YAGO3-10, LitWD48K is a recent benchmark
dataset extracted from Wikidata by explicitly designing it to contain literals so as to evaluate
the performances of LP models. The statistics of these datasets are given in Table 7.4.1.

7.4.2 Experiment Setting

Note that the experiments are conducted using the scoring functions from two different
base models DistMult and ComplEx and the LitKGE models corresponding to these func-
tions are referred to as DistMult-LitKGE and ComplEx-LitKGE. In order to train the models,
the strategy from LiteralE[73] is adopted. The hyperparameters used in our experiments
across all datasets are: learning rate 0.001, batch size 128, embedding size 100, embedding
dropout probability 0.2, and label smoothing 0.1. DistMult-LitKGE is trained for a max-
imum of 200 epochs on FB15K-23 and YAG03-10 datasets and 300 epochs on LitWD48K
whereas ComplEX-LitKGE is trained for a maximum of 100 epochs on all datasets. More
details on the hyper-parameters for the feature generation pipeline are provided in the
resources made available publicly.

7.4.3 Training

The same training procedure used in LiteralE which is known as 1-N scoring approach is
adopted to train the LitKGE models. For every triple (ei, ej, ek) in the KG, the score for
(ei, e

′
j, ek), ∀e

′ ∈ E is computed by applying the extended scoring function f. Then, the
sigmoid function is applied to the resulting score (i.e., p = σ ◦ f), in order to interpret the

126 improving literal-based kge models

result as the probability of the existence of a given triple. Finally, the probability vector
P ∈ [0, 1]Ne collects the probabilities computed w.r.t. all e

′ ∈ E. Finally, the training is
performed by minimizing the binary cross-entropy loss between p and the ground truth
labels y ∈ 0, 1Ne which indicates the existence of triples (ei, e

′
j, ek), ∀e

′ ∈ E. Given px and
yx as the predicted probability and the given truth value for the x-th element in the set
{(ei, e

′
j, ek), e

′ ∈ E} respectively, the loss function is defined as shown in Equation 70 and
optimized using the Adam [162] optimizer.

L(p,y) = −
1

Ne

Ne∑
x=1

(yx log(px) + (1− yx) log(1− px)) (70)

7.4.4 Evaluation

In order to evaluate the performance of the proposed approach on the LP task, the standard
setup in other similar studies including LiteralE is followed. For each triple (ei, ej, rk)
appearing in the test set, a set of corrupted/negative triples by either replacing the head
entity ei or the tail entity ej with any other entity e

′ ∈ E. The scores are computed for the
corrupted triples as well as the true triple. Then, all triples with respect to their scores are
ranked and evaluated using the standard evaluation metrics: Mean Reciprocal Rank (MRR),
Hits@1, Hits@3, and Hits@10.

7.4.5 Results and Discussion

The statistics of the generated features for the datasets FB15K-237, YAG03-10, and LitWD48K
with the proposed pipeline in this work, are presented in Table 7.4.2. Moreover, the results
of the LP experiments conducted on these datasets are provided in Table 7.4.3. Overall,
as these results indicate, the model LitKGE outperforms all the other models across all
datasets with respect to all metrics using the DistMult scoring function. The results are
discussed in detail as follows:

7.4 experiments 127

Table 7.4.2: Analysis of the features generated for the entities in the three datasets. #feat denotes the
number of unique features and #feat-entries is the number of entries with these features for the en-
tities in the corresponding dataset. #feat-max, #feat-min, and #feat-median represent the maximum,
minimum, and median of the occurrences of the features.

FB15K-237 YAG03-10 LitWD48K
#feat 11 5 828

#feat-entries 2,337 10,151 192,035

#feat-max 1,127 5,072 15,289

#feat-min 8 347 2

#feat-median 170 1,403 12

7.4.5.1 LitKGE vs. Base models (DistMult and ComplEx)

DistMult-LitKGE outperforms DistMult on all three datasets with respect to all metrics.
Specifically, applying LitKGE on top of DistMult improves the MRR score by 1.18%, 11.87%,
and 10.38% on LitWD48K, FB15K-237, and YAGO3-10 datasets, respectively. Similarly, ap-
plying LitKGE on top of ComplEx improves the MRR score with 1.87% and 3.97%, re-
spectively on LitWD48K and FB15K-237. It can be noted that applying ComplEx-LitKGE
does not outperform ComplEx on YAGO3-10. This might be attributed to the fact that the
ComplEx base model already achieves higher performance than DistMult. Note that this is
also the case with ComplEx-LiteralE, i.e., ComplEx-LiteralE does not improve ComplEx on
YAGO3-10.

7.4.5.2 LitKGE vs. LiteralE

When comparing LitKGE with LiteralE, it is seen that LitKGE outperforms LiteralE across
all three datasets with the DistMult scoring function with respect to all metrics. DistMult-
LitKGE improves DistMult-LiteralE’s MRR score by 2.56%, 0.94%, and 7.88% on LitWD48K,
FB15K-237, and YAGO3-10 datasets, respectively. Similarly, applying LitKGE on top of
ComplEx improves the MRR score by 1.25% on LitWD48K dataset.

7.4.5.3 Impact of the feature matrix

As shown in Table 7.4.2, the LitWD48K dataset has many features (i.e., 828) as compared
to the other datasets, and also it has as large as 192,035 entries which makes the result-
ing feature matrix less sparse. This contributes to the fact that LitKGE outperforms all the
SOTA models on this dataset. Note that, unlike LitWD48K, FB15K-237 and YAGO3-10 are
not created specifically for the evaluation of KGE models with literals, i.e., not all of their
entities have literals. However, these datasets could benefit from the feature generation ap-
proach in LitKGE since LitKGE also generates features for those entities which do not have

128 improving literal-based kge models

Table 7.4.3: LP results on FB15K-237, YAGO3-10, and LitWD48K. The best values are highlighted in
bold text.

LitWD48K
mrr hits@1 hits@3 hits@10

DistMult 0.336 0.264 0.360 0.480

ComplEx 0.315 0.248 0.341 0.442

DistMult-LiteralE 0.331 0.258 0.352 0.480

ComplEx-LiteralE 0.317 0.238 0.343 0.475

DistMult-LitKGE 0.340 0.266 0.363 0.491
ComplEx-LitKGE 0.321 0.243 0.344 0.480

FB15K-237

DistMult 0.282 0.203 0.309 0.438

ComplEx 0.290 0.212 0.317 0.445

DistMult-LiteralE 0.317 0.232 0.348 0.483

ComplEx-LiteralE 0.305 0.222 0.336 0.466

DistMult-LitKGE 0.320 0.234 0.354 0.488
ComplEx-LitKGE 0.302 0.219 0.333 0.465

YAGO3-10

DistMult 0.466 0.377 0.514 0.653

ComplEx 0.493 0.411 0.536 0.649

DistMult-LiteralE 0.479 0.4 0.525 0.627

ComplEx-LiteralE 0.485 0.412 0.527 0.618

DistMult-LitKGE 0.520 0.446 0.563 0.653
ComplEx-LitKGE 0.481 0.406 0.522 0.615

any literals associated with them. This gain is observed in the LP results obtained on these
datasets with LitKGE where LitKGE outperforms the SOTA models.

7.4.5.4 Impact of filtering while generating features

As discussed in Section 7.3.1, those features which have values for only one entity are
filtered out. This is performed in order to make the feature matrix less sparse. An ab-
lation study is conducted on the LitWD48K dataset with the DistMult-LitKGE model
in order to show the impact of performing the filtering step in the feature generation
pipeline in Figure 7.3.1. As the results in Table 7.4.4 indicate, DistMult-LitKGE outper-
forms DistMult− LitKGEunfiltered with respect to all metrics, mainly with hits@10 met-

7.4 experiments 129

Table 7.4.4: Comparison of the LP results on LitWD48K dataset with and without applying the
filtering step in the feature generation pipeline. DistMult-LitKGE is with filtering whereas DistMult-
LitKGEunfiltered is when filtering is not used.

mrr hits@1 hits@3 hits@10

DistMult-LitKGE 0.340 0.266 0.363 0.491
DistMult-LitKGEunfiltered 0.334 0.263 0.357 0.474

rics which is improved by 3.46%. This improvement is attributed to the filtering step in the
pipeline during which 269 property_paths/features occurring only once are removed. This
proves that including filtering in the pipeline plays its role in reducing sparsity.

7.4.5.5 Experiment with a different scoring function

In this work, as shown above, DistMult and ComplEx are chosen as scoring functions for
LitKGE based on the following considerations. Firstly, DistMult and ComplEx are widely
adopted and have been demonstrated to be effective latent feature methods, as reported
in Chapter 3 and in [73]. By utilizing these scoring functions, it is possible to compare
the results obtained with LitKGE against the SoTA models such as LiteralE-DistMult and
LiteralE-ComplEX. Secondly, it is convenient to analyze the results obtained using datasets
with different characteristics, such as comparing the symmetric and inverse handling ca-
pabilities of these models on various datasets. Thirdly, as discussed in Chapter 6 where a
comparison of datasets for KGE with literals is provided, FB15K-237 is better than YAGO3-
10 and FB15K to evaluate KGE models with literals. Besides, according to the results pre-
sented in [73], the DistMult and ComplEx scoring functions perform better than ConvE
on the FB15K-237 dataset. Therefore, DistMult and ComplEx are chosen in this work to
evaluate LitKGE.

Table 7.4.5: Comparison of LitKGE with ConvE scoring function against the SOTA models on the
Yago3-10 dataset

mrr hits@1 hits@3 hits@10

ConvE-LiteralE 0.525 0.448 0.572 0.659

ConvE-LitKGE 0.540 0.467 0.583 0.671

However, it is very important to note that the methods DistMult and ComplEx are a rep-
resentative selection and LitKGE can also be adapted to alternative latent feature methods,
such as ConvE. In order to support this argument, an additional experiment is conducted
with the ConvE scoring function on YAGO3-10 and the results are presented in Table 7.4.5.
Note that YAGO3-10 dataset is selected due to the fact that ConvE performs best only on
this dataset as compared to the other datasets with the current approaches [73]. The results

130 improving literal-based kge models

presented in Table 7.4.5 indicate that LitKGE with the ConvE scoring function outperforms
the current best-performing model ConvE-LiteralE proposed in [73].

7.5 conclusion and outlook

In this chapter, a novel approach named LitKGE that generates features for entities in
order to enhance the standard KGE models such as LiteralE for the task of transductive LP
is introduced. LitKGE is a universal method that can be integrated with any KGE model
which utilizes literals. Its main focus is on making implicit information explicit so that KGE
models could leverage it. To do so, it introduces an algorithm named WeiDNeR_Extended
to generate a relation-relation/attribute network which is in turn used to generate property
paths. The resulting property paths are further processed to get numerical features for the
entities in the KG. Finally, the obtained features are incorporated into the LP task. LitKGE
is tested on LitWD48K, FB15K-237, and YAGO3-10 datasets and it outperforms all the SoTA
models across all these datasets. These datasets are extended with the generated features
and the extensions are made publicly available to facilitate further research. The answer to
the major research question tackled in this chapter is provided as follows.

• C2-RQ3: Does generating entity features based on property paths and incorporating these
features into existing KGE models result in improving LP tasks?

− Following the proposed approach LitKGE, as discussed in Section 7.3, it is pos-
sible to generate numerical entity features using property paths. Incorporating
these features into the LP task results in making the implicit information explicit
leading to enabling LitKGE to outperform the SoTA models, as presented in
Table 7.4.3, Table 7.4.5, and Table 7.4.4.

The following are possible future works in order to further improve the proposed model:

• Exploring schema definitions and constraints of properties to deal with those KGs
with possible duplicate paths and to handle sparsity in the feature matrix.

• Extending LitKGE by fusing the relational triples and the numeric literals with short
textual literals such as labels and aliases and also long textual literals such as the
description of entities.

• Studying explainability of the LitKGE model.

In this chapter, the benefits of numerical literals for the task of LP are demonstrated
whereas, in the next chapter, the capability of multilingual LMs in capturing semantics
present in the entity descriptions available in multiple natural languages is investigated for
the task of LP.

This chapter showcases the advantages of using numerical literals in LP, while the follow-
ing chapter explores how multilingual LMs can capture semantics from entity descriptions
in various natural languages for LP purposes.

8
L E V E R A G I N G M U LT I L I N G U A L E N T I T Y D E S C R I P T I O N S

Most KGs contain textual descriptions of entities in various natural languages. These de-
scriptions of entities provide valuable information that may not be explicitly represented
in the structured part of the KG. Based on this fact, some LP methods which make use
of the information presented in the textual descriptions of entities have been proposed to
learn representations of KGs. However, these methods use entity descriptions in only one
language and ignore the fact that descriptions given in different languages may provide
complementary information and thereby also additional semantics. In this chapter, the ben-
efits of multilingual embeddings for incorporating multilingual entity descriptions into the
task of LP in KGs are investigated and initial results are presented.

The rest of the chapter is organized as follows. To begin with, the motivation behind
the work is provided in Section 8.1 followed by a discussion on the proposed approach in
Section 8.2. The experiments conducted on the LP task are presented in Section 8.3. Finally,
concluding remarks with directions for future work are given in Section 8.4.

8.1 introduction

In recent years, there has been extensive research on KGE with a focus on predicting miss-
ing links in KGs. Most of these models use only relational triples (i.e., triples with object
properties) such as TransE [49] and ConvE [16] whereas a few others include textual entity
descriptions such as DKRL [60], MKBE[74] , and Jointly[63]. Furthermore, most popular
KGs contain descriptions in two or more languages for a single entity due to the multilin-
gual community working on these KGs (as in Wikidata) or the multilingual nature of its
sources (as in DBpedia). The cultural context and bias associated with each of these de-
scriptions induce a difference with regard to content. However, despite the fact that entity
descriptions are available in multiple natural languages, all the existing models including
DKRL consider only one language. Figure 8.1.1 presents an example scenario showing
the differences in contents of multilingual descriptions of a single entity. In this example,
the description in German contains information which does not appear in the English or
French descriptions. For instance, the fact that the team is the record winner of the U-19

Asian Cup with twelve titles is only mentioned in the German description.
This chapter addresses the challenge in reference to the following research question C2-

RQ4 defined in Section 1.2 of Chapter 1.

• C2-RQ4: How beneficial is to leverage multilingual embeddings to incorporate multi-
lingual entity descriptions into the task of LP in KGs?

131

132 leveraging multilingual entity descriptions

/m/05f5sr9 ("South Korea
national under-20 football
team")

"Die südkoreanische U-20-Fußballnationalmannschaft ist ... bei U-20-
Weltmeisterschaften und U-19-Asienmeisterschaften..."@de

"L’équipe de Corée du Sud
de football des moins de
20 ... de la Fédération de
Corée du Sud de football
(KFA).@fr).

"The Korea Republic na-
tional under-20 football
team represents South Ko-
rea in international youth
football competitions."@en

Figure 8.1.1: An entity from Freebase with descriptions from its corresponding English, German,
and French Wikipedia pages. For instance, the description in German provides more content that is
not in the descriptions of either the English or the French Pages.

In order to tackle this question, the performance of the existing model DKRL in lever-
aging multilingual descriptions using multilingual embeddings has been analyzed and the
results of the initial experiments are discussed. The contributions of this work are summa-
rized as follows.

• Empirical evaluation of the performance of the existing DKRL, i.e., CNN-based KGE
model, in encoding descriptions based on multilingual embeddings.

• Analysis of the capability of the MUSE1 embedding model in capturing semantics
from descriptions in multiple languages.

8.2 methodology

As discussed in [163], an entity alignment model named KDCoE [65] has demonstrated the
advantage of multilingual word embeddings by using a cross-lingual Bilbowa word embed-
ding [164] to encode multilingual descriptions for the task of cross-lingual learning. In this
work, the same approach is adopted to encode multilingual entity descriptions for a LP task
on a monolingual dataset. In particular, the experiments have been performed with one of
the existing models DKRL [60] using pretrained multilingual word embeddings by MUSE.
DKRL is an extension of TransE [49], which learns two kinds of vector representations for
an entity, i.e., structure-based and description-based representations. DKRL adopts TransE
for the structure-based representation and uses CNN to encode entity descriptions for the
description-based representations. These two kinds of entity representations are learned
simultaneously into the same vector space without forcing them to be unified. For our ex-
periments, in order to effectively utilize multilingual descriptions, the embeddings of the

1 https://github.com/facebookresearch/MUSE

8.3 experimental evaluation 133

words in the descriptions obtained by MUSE are passed as inputs to the encoder. MUSE
has been chosen because this work deals with multilingual descriptions and MUSE aligns
embeddings (specifically, FastText embeddings) of words in different languages into the
same vector space. Figure 8.2.1 shows the CNN encoder part of DKRL with pretrained
word embeddings from multilingual descriptions as inputs.

Figure 8.2.1: Passing pretrained multilingual word embeddings to a CNN encoder which is adopted
from DKRL [60] and shown in [163], in order to encode multilingual entity descriptions.

8.3 experimental evaluation

In this section, the experiments conducted to incorporate textual descriptions in English,
French, and German into DKRL (for the task of transductive LP) are presented.

datasets Table 8.3.1 shows the dataset created out of FB15K-237 [15] for the experi-
ments by removing those triples for which either the head or tail entity does not have
descriptions in at least one of the three languages mentioned above or have less than 3

words after preprocessing. Since FB15K-237 is a dataset generated from Freebase and the
entity descriptions in Freebase are old, the descriptions in all the three languages have been

134 leveraging multilingual entity descriptions

constructed by taking the information from the summary part of their respective Wikipedia
pages. During preprocessing, stop words are removed and all phrases are marked using
entity names and also by applying Spacy’s2 named entity recognizer. The modified dataset
is made publicly available3.

experimental setting For the experiments with DKRL and TransE, the code4 pub-
lished by the authors of the DKRL paper and the code5 made available by OpenKE [165]
has been used respectively. The DKRL model has been trained on three varieties of the
dataset, given the names DKRLe, DKRLeg, and DKRLegf. For DKRLe, only the descrip-
tions in English are used whereas for DKRLeg the combination of descriptions in German
and English are used. On the other hand, descriptions in all three languages are used to
train DKRLegf. The minimum, maximum, and average number of words are 3, 615, and
107.351 for the descriptions in DKRLe, 9, 970, and 140.591 in DKRLeg, and 18, 1460, and
192.091 in DKRLegf respectively.

In DKRLe, the words are initialized using FastText pretrained embeddings and for the
other two models, MUSE pre-trained embeddings are used. As shown in Table 8.3.2, TransE
[49] has also been trained on the new dataset for a fair comparison with DKRL. The hy-
perparameters are chosen from embedding size {50, 100, 150}, margin {1.0, 2.0, 3.0, 4.0, 5.0},
learning rate {0.01, 0.1, 1.0} (following the same procedure as in the paper of TransE). The
optimal parameters for TransE on this dataset is embedding size: 100, margin: 4.0, learning
rate: 0.1, and epoch: 1000. For all the other models DKRLe, DKRLeg, and DKRLegf, the
same procedure as in the original study DKRL has been adopted. The optimal parameters
are entity and relation embedding size: 100, learning rate 0.001, margin: 1.0, window-size:
2, dimension of feature map: 100, and word embedding size: 300, for all the three varieties.
DKRLe is trained for 1000 epochs where as DKRLeg and DKRLegf are trained for 1200

epochs.

results As shown in Table 8.3.2, incorporating descriptions into the LP task brings
improvement over TransE. However, when comparing the different varieties of DKRL, it
is seen that combining multiple descriptions has only a slight improvement. For instance,
hits@10 is the same for DKRLeg and DKRLegf. One potential reason for such results could
be the out-of-vocabulary words in the pre-trained word embeddings by MUSE. There are
18.4% and 20% out of vocabulary words for DKRLeg and DKRLegf respectively and they
are randomly initialized.

2 https://spacy.io/
3 https://github.com/ISE-FIZKarlsruhe/Link-Prediction-with-Multilingual-Entity-Descriptions
4 https://github.com/xrb92/DKRL
5 https://github.com/thunlp/OpenKE

https://spacy.io/
https://github.com/ISE-FIZKarlsruhe/Link-Prediction-with-Multilingual-Entity-Descriptions
https://github.com/xrb92/DKRL
https://github.com/thunlp/OpenKE

8.4 conclusion and outlook 135

Table 8.3.1: The statistics of the dataset used for the experiments.

FB15K-237

#Entities 12729

#Relations 234

#Train triples 219573

#Valid triples 13919

#Test triples 16084

Table 8.3.2: Experiment results using transE and DKRL models on the different varieties of the
FB15K-237 dataset.

MR MRR Hits@1 Hits@3 Hits@10

TransE 213 0.266 0.175 0.297 0.448

DKRLe 201 0.275 0.189 0.304 0.449

DKRLeg 185 0.280 0.191 0.310 0.457

DKRLegf 180 0.285 0.196 0.311 0.457

8.4 conclusion and outlook

In this chapter, preliminary results from an ongoing work to discuss the benefits of lever-
aging multilingual embeddings for the task of LP are presented. Specifically, DKRL which
is one of the existing KGE models has been evaluated on making use of the information
present in multilingual descriptions. For the experiments, an extension of the FB15K-237

dataset with textual descriptions of entities extracted from their corresponding English,
German, and French Wikipedia pages is created. The experiments conducted show promis-
ing results that encourage the use of entity descriptions available in multiple languages.
The answer to the research question that is addressed in this chapter is given as follows.

• C2-RQ4: How beneficial is to leverage multilingual embeddings to incorporate multi-
lingual entity descriptions into the task of LP in KGs?

− Multilingual embeddings play a vital role in capturing the semantics present in
entity descriptions in multiple natural languages. A promising result is obtained
with the MUSE multilingual embedding model to capture descriptions in En-
glish, German, and French to improve the task of transductive LP, as shown in
Table 8.3.2.

As future work, more experiments will be conducted by aligning pre-trained FastText
embeddings which have a bigger vocabulary size, using MUSE, to avoid the problem which
rises due to out-of-vocabulary words. Moreover, exploring other multilingual LMs such

136 leveraging multilingual entity descriptions

as Multilingual BERT will be considered. Another alternative to investigate is to learn
description-based embeddings of an entity separately for each language and then fuse the
vectors using different approaches.

Part V

C O N C L U S I O N A N D O U T L O O K

9
C O N C L U S I O N A N D O U T L O O K

This dissertation explores the use of literals for representation learning on KGs through the
task of LP. It aims to address two primary challenges in LP: transductive LP and inductive
LP. The literature reviews presented in Chapters 3 and Chapter 4 show that there exist some
methods that make use of literals to learn embeddings of entities and relations into a low-
dimensional vector space for LP. However, the full potential of different types of literals in
a KG is still underutilized. In this thesis, different KGE-based LP models leveraging literals
are proposed to predict the missing links in the KG in transductive and inductive settings.
Moreover, several benchmark datasets are also introduced for both LP settings to address
the lack of high-quality evaluation datasets for KGC. The contributions of this thesis are
summarized in this chapter, along with areas for future research.

9.1 conclusions

The importance of different types of literals for KGE, particularly in the context of LP, is
studied in this dissertation. One of the contributions of the thesis is an extensive survey
of SoTA KGE methods, along with an empirical evaluation on the task of LP. Furthermore,
based on the findings of the survey, different novel KGE models are introduced along with
new benchmark datasets for KGC.

Chapter 3 and Chapter 4 provide a literature review on the SoTA KGE models, for trans-
ductive and inductive LP respectively. The research question C2-RQ1 from Section 1.2 of
Chapter 1 is answered in Chapter 3 by conducting a detailed survey on the existing KGE
models with literals focusing on transductive LP models. The survey covers the following
parts: a thorough description of the architectures of the models, an analysis of the applica-
tions or tasks that the models are trained or evaluated on, an analysis of the various KGC
evaluation datasets, an empirical evaluation of the models on transductive LP task, and a
discussion on the shortcomings of the models and the datasets. In Chapter 4, a comprehen-
sive review of the methods that are proposed for inductive LP is provided, along with a
discussion of the existing evaluation datasets for inductive LP.

In Chaper 5, based on the findings of the literature review on inductive LP, a novel em-
bedding model named RAILD is proposed to tackle the research question C1-RQ1 from
Section 1.2 of Chapter 1. This model is designed to enable inductive LP involving relations
that are not observed during training, i.e., unseen relations, by using textual literals and
the contextual information available in the KG. The textual descriptions of entities and re-
lations are used to generate features with a neural LM for the corresponding entities and
relations. In order to capture the contextual information for relations, the model gener-

139

140 conclusion and outlook

ates a directed and weighted relation-relation network from triples in a KG using a novel
algorithm called WeiDNeR and learns embeddings of the relations by applying a node em-
bedding approach. The two components, i.e., the text-based and graph-based (contextual
information) are combined during fine-tuning of a pre-trained LM with a LP objective. Fur-
thermore, in the results obtained from the experiments, it is observed that combining the
textual description and contextual information about relations significantly improves the
prediction results. One of the key benefits of the model is that it is able to learn latent rep-
resentations for unseen relations while performing LP. It is to be noted that, similar to the
existing models which fine-tune neural LMs, the proposed model is computationally expen-
sive as compared to simple KGE models such as TransE. However, the main focus is not on
the runtime, but rather on the model’s effectiveness, which is easily demonstrated by the
results obtained. Moreover, in Chapter 5, a new benchmark dataset named Wilikdata68K
is introduced to address the research question C1-RQ2 from Section 1.2 of Chapter 1. The
release of this dataset is expected to facilitate more research on inductive LP with unseen
relations, as there is currently no dataset of this kind.

Taking into account the limitations of the existing KGC datasets for the evaluation of
transductive LP models with literals, as highlighted in the literature review provided in
this thesis, a set of novel KGC benchmark datastes named LiterallyWikidata is introduced
in Chapter 6. These datasets are created to tackle the research question C2-RQ2 from Sec-
tion 1.2 of Chapter 1. The main focus is to create high-quality benchmark datasets con-
taining different types of literals. Hence, the pipeline used to generate the datasets applies
different steps to ensure that the datasets are not skewed, do not contain any duplicates,
and are not easy for LP but rather pose a significant challenge. The datasets contain nu-
meric literals, and short and long textual literals such as labels, aliases, and descriptions
for relations and entities from Wikidata and Wikipedia.

In Chapter 7, the benefits of leveraging property paths that lead to numerical literals
in a KG are investigated for the task of transductive LP. The aim is to find solutions to
the research question C2-RQ3 from Section 1.2 of Chapter 1 by proposing a novel KGE
model named LitKGE that makes implicit information explicit for entities using property
paths and numeric literals. LitKGE provides a universal approach to integrate numerical
entity features into any KGE model which utilizes literals. This is accomplished by introduc-
ing an algorithm named WeiDNeR_Extended, which generates a relation-relation/attribute
network used to produce property paths through graph traversal. The resulting property
paths are then processed to extract numerical features for entities in the KG, which are
subsequently integrated into the LP task. Leveraging literals in along with property paths
enabled LitKGE to outperform all the existing SoTA models on multiple datasets. The
datasets have been extended with the generated features and made publicly available for
further research.

Finally, in Chapter 8, the answer to the research question C2-RQ4 from Section 1.2 of
Chapter 1 is provided. The main objective is to investigate the advantages of utilizing
multilingual embeddings to incorporate multilingual entity descriptions into the task of

9.2 open issues and outlook 141

Table 9.1.1: Resources that are published as part of this thesis

Approach Resources

RAILD
Github: https://github.com/GenetAsefa/RAILD
Zenodo: https://doi.org/10.5281/zenodo.7066504

LiterallyWikidata
Github: https://github.com/GenetAsefa/

LiterallyWikidata

Zenodo: https://doi.org/10.5281/zenodo.4701190
Multilingual-KGE Github: https://github.com/ISE-FIZKarlsruhe/

Link-Prediction-with-Multilingual-Entity-Descriptions

LP in KGs. To achieve this, DKRL, one of the existing KGE models, has been assessed on
making use of the information present in multilingual descriptions, and the obtained initial
results are presented. To conduct the experiments, an extension of the FB15K-237 dataset
with textual descriptions of entities in English, German, and French natural languages is
used collected from Wikipedia. The results of the experiments are encouraging and suggest
that incorporating entity descriptions available in multiple languages can be beneficial.

A summary of the various resources that are published as part of the different works
presented in this thesis is given in Table 9.1.1. These resources include links to source
codes and datasets which are made available on Github and Zenodo. Adhering to the FAIR
principles (Findable, Accessible, Interoperable, and Reusable), these resources are openly
shared, promoting their availability and usability by the wider research community.

9.2 open issues and outlook

This dissertation is anticipated to inspire the exploration of novel solutions for open chal-
lenges that have yet to be tackled. In this section, the open issues of this thesis are presented,
along with potential directions for future research.

The focus of this thesis lies in predicting missing links within a KG in transductive and
inductive settings. However, LP can also be carried out across different KGs to predict the
missing links between the two same entities across KGs, which is referred to as Entity
Alignment. One way to accomplish this is to learn the embedding of the entities and the
relations of the source and the target KGs separately and align them using a supervised
model. Another way is to perform joint representation learning of the two KGs into a
unified space. The LitKGE approach proposed in this thesis can be extended to perform a
KG alignment task. Furthermore, the feature generation technique introduced in LitKGE
could also be used to perform other machine-learning tasks on KGs.

In this thesis, numerical literals are utilized by LitKGE for transductive LP. However,
there can be additional semantics about numerical literals such as their datatypes which
should also be incorporated into the representation learning. Moreover, other sources of

https://github.com/GenetAsefa/RAILD
https://doi.org/10.5281/zenodo.7066504
https://github.com/GenetAsefa/LiterallyWikidata
https://github.com/GenetAsefa/LiterallyWikidata
https://doi.org/10.5281/zenodo.4701190
https://github.com/ISE-FIZKarlsruhe/Link-Prediction-with-Multilingual-Entity-Descriptions
https://github.com/ISE-FIZKarlsruhe/Link-Prediction-with-Multilingual-Entity-Descriptions

142 conclusion and outlook

information like literals containing URIs leading to files such as audio, PDFs, and videos
are not considered. Therefore, another future research directions would be to leverage the
semantics present in these additional sources of information for the task of LP.

As discussed in the literature reviews of this thesis, there are some LP methods that
are based on logical rules. Specifically, to the best of our knowledge, none of the existing
rule-based inductive LP methods utilize literals. This indicates that there is a gap in lever-
aging literals with rule-based methods to perform LP tasks. Hence, future research could
explore the advantages of combining literals and logical rules for LP to leverage both the
explanatory qualities of rule-based systems and the semantics present in the literals.

One of the challenges that remain open in this thesis is the prediction of literals, also
known as attribute values. The methods introduced in this thesis concentrate on utilizing
literals to enhance the embeddings of entities and relations, and do not directly predict
attribute values. As a result, a potential future task to enhance the proposed approaches
would be to predict attribute values. Moreover, as the surveys conducted in this thesis indi-
cate, there has been limited exploration into learning representations for literals. Therefore,
this presents an interesting challenge for future research.

Another challenge related to KGE is the utilization of entity embeddings learned on LP
tasks in real-world use-cases. For instance, the work in [166] presents a KGE-based ap-
proach applied to scholarly data for the task of author name disambiguation using literals.
Another study investigates the challenges of enriching a KG which is generated from a real-
world relational database (RDB) about companies, with information from external sources
such as Wikidata and learning representations for the KG. Similarly, a possible future di-
rection would be to apply the embeddings learned using the KGE methods proposed in
this thesis i.e., RAILD and LitKGE, for downstream tasks in different real-world use-cases.

To sum up, it is anticipated that the findings and the contributions made in this thesis
will play a vital role in advancing the progress of techniques employed for KGE and its
utilization in various fields.

Part VI

A P P E N D I X

A
A P P E N D I X

a.1 summary of applications

Table A.1.1: Summary of different applications on which the KG embedding techniques with literals, in their original papers, have
been trained and/or evaluated

Link
Prediction

Triple
Classification

Entity
Classification

Entity
Alignment

Attribute
value
prediction

Nearest
neighbour
analysis

Data
linking

Document
classification

Relational
Fact
Extraction

Extended RESCAL ✓ ✓

LiteralE ✓ ✓

TransEA ✓

KBLRN ✓

DKRL ✓ ✓

KDCoE ✓ ✓

KGlove with literals ✓

MADLINK ✓ ✓

Transforming literals into entities [112] ✓

IKRL ✓ ✓

EAKGE ✓ ✓

MKBE ✓ ✓

MT-KGNN ✓ ✓

LiteralE with blocking ✓

Jointly(Desp) ✓ ✓ ✓

Jointly ✓ ✓

SSP ✓ ✓

MTKGRL ✓ ✓

1
4

5

B I B L I O G R A P H Y

[1] Genet Asefa Gesese, Russa Biswas, and Harald Sack. “A Comprehensive Survey
of Knowledge Graph Embeddings with Literals: Techniques and Applications.” In:
Proceedings of the Workshop on Deep Learning for Knowledge Graphs (DL4KG2019) Co-
located with the 16th Extended Semantic Web Conference 2019 (ESWC 2019), Portoroz,
Slovenia, June 2, 2019. 2019, pp. 31–40. url: http://ceur-ws.org/Vol-2377/paper\
_4.pdf.

[2] Denny Vrandečić and Markus Krötzsch. “Wikidata: A Free Collaborative Knowl-
edge Base.” In: (2014).

[3] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. “Free-
base: A Collaboratively Created Graph Database for Structuring Human Knowl-
edge.” In: ACM SIGMOD international conference on Management of data. 2008.

[4] Thomas Pellissier Tanon, Gerhard Weikum, and Fabian M. Suchanek. “YAGO 4: A
Reason-able Knowledge Base.” In: The Semantic Web - 17th International Conference,
ESWC 2020, Heraklion, Crete, Greece, May 31-June 4, 2020, Proceedings. Vol. 12123. Lec-
ture Notes in Computer Science. Springer, 2020, pp. 583–596. doi: 10.1007/978-3-
030-49461-2_34. url: https://doi.org/10.1007/978-3-030-49461-2_34.

[5] Antoine Bordes, Sumit Chopra, and Jason Weston. “Question Answering with Sub-
graph Embeddings.” In: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational
Linguistics, Oct. 2014, pp. 615–620. doi: 10.3115/v1/D14-1067. url: https://www.
aclweb.org/anthology/D14-1067.

[6] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma. “Col-
laborative Knowledge Base Embedding for Recommender Systems.” In: Proceedings
of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. KDD ’16. San Francisco, California, USA: ACM, 2016, pp. 353–362. isbn:
978-1-4503-4232-2. doi: 10.1145/2939672.2939673. url: http://doi.acm.org/10.
1145/2939672.2939673.

[7] Jason Weston, Antoine Bordes, Oksana Yakhnenko, and Nicolas Usunier. “Connect-
ing Language and Knowledge Bases with Embedding Models for Relation Extrac-
tion.” In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing. 2013.

[8] Q. Wang, Z. Mao, B. Wang, and L. Guo. “Knowledge Graph Embedding: A Survey
of Approaches and Applications.” In: TKDE (2017).

147

http://ceur-ws.org/Vol-2377/paper_4.pdf
http://ceur-ws.org/Vol-2377/paper_4.pdf
https://doi.org/10.1007/978-3-030-49461-2_34
https://doi.org/10.1007/978-3-030-49461-2_34
https://doi.org/10.1007/978-3-030-49461-2_34
https://doi.org/10.3115/v1/D14-1067
https://www.aclweb.org/anthology/D14-1067
https://www.aclweb.org/anthology/D14-1067
https://doi.org/10.1145/2939672.2939673
http://doi.acm.org/10.1145/2939672.2939673
http://doi.acm.org/10.1145/2939672.2939673

148 bibliography

[9] Jiahang Cao, Jinyuan Fang, Zaiqiao Meng, and Shangsong Liang. “Knowledge Graph
Embedding: A Survey from the Perspective of Representation Spaces.” In: arXiv
preprint arXiv:2211.03536 (2022).

[10] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo,
Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebas-
tian Neumaier, et al. “Knowledge graphs.” In: ACM Computing Surveys (CSUR) 54.4
(2021), pp. 1–37.

[11] Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio. “Learning
Structured Embeddings of Knowledge Bases.” In: Proceedings of the Twenty-Fifth
AAAI Conference on Artificial Intelligence. AAAI’11. San Francisco, California: AAAI
Press, 2011, pp. 301–306. url: http://dl.acm.org/citation.cfm?id=2900423.
2900470.

[12] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1990. isbn:
0716710455.

[13] HongYun Cai, Vincent Wenchen Zheng, and Kevin Chen-Chuan Chang. “A Com-
prehensive Survey of Graph Embedding: Problems, Techniques, and Applications.”
In: TKDE (2018).

[14] Genet Asefa Gesese, Russa Biswas, Mehwish Alam, and Harald Sack. “A Survey
on Knowledge Graph Embeddings with Literals: Which Model Links Better Literal-
Ly?” In: Semantic Web 12.4 (2021), 617–647. issn: 1570-0844. doi: 10.3233/SW-200404.
url: https://doi.org/10.3233/SW-200404.

[15] Kristina Toutanova and Danqi Chen. “Observed versus latent features for knowl-
edge base and text inference.” In: Proceedings of the 3rd Workshop on Continuous Vec-
tor Space Models and their Compositionality. Beijing, China: Association for Computa-
tional Linguistics, July 2015, pp. 57–66. doi: 10.18653/v1/W15-4007. url: https:
//www.aclweb.org/anthology/W15-4007.

[16] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. “Con-
volutional 2d knowledge graph embeddings.” In: Thirty-Second AAAI Conference on
Artificial Intelligence. 2018.

[17] Genet Asefa Gesese, Mehwish Alam, and Harald Sack. “LiterallyWikidata - A Bench-
mark for Knowledge Graph Completion Using Literals.” In: The Semantic Web –
ISWC 2021. Cham: Springer International Publishing, 2021, pp. 511–527. isbn: 978-3-
030-88361-4.

[18] Daniel Daza, Michael Cochez, and Paul T. Groth. “Inductive Entity Representations
from Text via Link Prediction.” In: Proceedings of the Web Conference 2021 (2021).

http://dl.acm.org/citation.cfm?id=2900423.2900470
http://dl.acm.org/citation.cfm?id=2900423.2900470
https://doi.org/10.3233/SW-200404
https://doi.org/10.3233/SW-200404
https://doi.org/10.18653/v1/W15-4007
https://www.aclweb.org/anthology/W15-4007
https://www.aclweb.org/anthology/W15-4007

bibliography 149

[19] Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhiyuan Liu, Juan-Zi Li, and Jian
Tang. “KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Lan-
guage Representation.” In: Transactions of the Association for Computational Linguistics
9 (2021), pp. 176–194.

[20] Aditya Grover and Jure Leskovec. “Node2vec: Scalable Feature Learning for Net-
works.” In: KDD ’16. San Francisco, California, USA: Association for Computing
Machinery, 2016, 855–864. isbn: 9781450342322. doi: 10.1145/2939672.2939754.
url: https://doi.org/10.1145/2939672.2939754.

[21] Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato.
“Unsupervised Machine Translation Using Monolingual Corpora Only.” In: arXiv
preprint arXiv:1711.00043 (2017).

[22] Leonhard Euler. “Solutio problematis ad geometriam situs pertinentis.” In: Commen-
tarii academiae scientiarum Petropolitanae (1741), pp. 128–140.

[23] Edward W Schneider. “Course Modularization Applied: The Interface System and
Its Implications For Sequence Control and Data Analysis.” In: (1973).

[24] Heiko Paulheim. “Knowledge graph refinement: A survey of approaches and eval-
uation methods.” In: Semantic Web 8.3 (2017), pp. 489–508. doi: 10.3233/SW-160218.
url: https://doi.org/10.3233/SW-160218.

[25] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo
N Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef, Sören Auer,
et al. “DBpedia–A Large-scale, Multilingual Knowledge Base Extracted from Wikipedia.”
In: Semantic Web (2015).

[26] Farzaneh Mahdisoltani, Joanna Biega, and Fabian M Suchanek. “Yago3: A Knowl-
edge Base from Multilingual Wikipedias.” In: CIDR. 2013.

[27] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. “Yago: A Core of Se-
mantic Knowledge.” In: Proceedings of the 16th International Conference on World Wide
Web. WWW ’07. Banff, Alberta, Canada: ACM, 2007, pp. 697–706. isbn: 978-1-59593-
654-7. doi: 10.1145/1242572.1242667. url: http://doi.acm.org/10.1145/1242572.
1242667.

[28] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. “YAGO: A Large On-
tology from Wikipedia and WordNet.” In: Journal of Web Semantics 6.3 (2008). World
Wide Web Conference 2007Semantic Web Track, pp. 203–217. issn: 1570-8268. doi:
https://doi.org/10.1016/j.websem.2008.06.001. url: https://www.sciencedirect.
com/science/article/pii/S1570826808000437.

[29] George A Miller. “WordNet: a lexical database for English.” In: Communications of
the ACM 38.11 (1995), pp. 39–41.

[30] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas immanent in
nervous activity.” In: The bulletin of mathematical biophysics 5 (1943), pp. 115–133.

https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.3233/SW-160218
https://doi.org/10.3233/SW-160218
https://doi.org/10.1145/1242572.1242667
http://doi.acm.org/10.1145/1242572.1242667
http://doi.acm.org/10.1145/1242572.1242667
https://doi.org/https://doi.org/10.1016/j.websem.2008.06.001
https://www.sciencedirect.com/science/article/pii/S1570826808000437
https://www.sciencedirect.com/science/article/pii/S1570826808000437

150 bibliography

[31] Kunihiko Fukushima. “Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position.” In: Biological
cybernetics 36.4 (1980), pp. 193–202.

[32] David H. Hubel and Torsten N. Wiesel. “Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex.” In: The Journal of Physiology 160

(1962).

[33] Wei Wang and Jianxun Gang. “Application of convolutional neural network in nat-
ural language processing.” In: 2018 international conference on information Systems and
computer aided education (ICISCAE). IEEE. 2018, pp. 64–70.

[34] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.
“On the Properties of Neural Machine Translation: Encoder–Decoder Approaches.”
In: Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statis-
tical Translation. Doha, Qatar: Association for Computational Linguistics, Oct. 2014,
pp. 103–111. doi: 10.3115/v1/W14-4012. url: https://aclanthology.org/W14-
4012.

[35] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang.
“Pre-trained models for natural language processing: A survey.” In: Science China
Technological Sciences 63.10 (2020), pp. 1872–1897.

[36] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. “Dis-
tributed Representations of Words and Phrases and Their Compositionality.” In:
NIPS’13. Lake Tahoe, Nevada: Curran Associates Inc., 2013, 3111–3119.

[37] Jeffrey Pennington, Richard Socher, and Christopher Manning. “Glove: Gobal Vec-
tors for Word Representation.” In: EMNLP. 2014.

[38] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. “Enriching
Word Vectors with Subword Information.” In: Transactions of the Association for Com-
putational Linguistics 5 (2017), pp. 135–146. issn: 2307-387X.

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan
N Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is all you need.” In: Ad-
vances in neural information processing systems 30 (2017).

[40] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. “Network representa-
tion learning: A survey.” In: IEEE transactions on Big Data 6.1 (2018), pp. 3–28.

[41] Chaozhuo Li, Zhoujun Li, Senzhang Wang, Yang Yang, Xiaoming Zhang, and Jian-
she Zhou. “Semi-Supervised Network Embedding.” In: Database Systems for Ad-
vanced Applications. Ed. by Selçuk Candan, Lei Chen, Torben Bach Pedersen, Lijun
Chang, and Wen Hua. Cham: Springer International Publishing, 2017, pp. 131–147.

https://doi.org/10.3115/v1/W14-4012
https://aclanthology.org/W14-4012
https://aclanthology.org/W14-4012

bibliography 151

[42] Suhang Wang, Jiliang Tang, Charu Aggarwal, and Huan Liu. “Linked Document
Embedding for Classification.” In: CIKM ’16. Indianapolis, Indiana, USA: Associa-
tion for Computing Machinery, 2016, 115–124. isbn: 9781450340731. doi: 10.1145/
2983323.2983755. url: https://doi.org/10.1145/2983323.2983755.

[43] Xiao Huang, Jundong Li, and Xia Hu. “Label Informed Attributed Network Em-
bedding.” In: WSDM ’17. Cambridge, United Kingdom: Association for Computing
Machinery, 2017, 731–739. isbn: 9781450346757. doi: 10.1145/3018661.3018667. url:
https://doi.org/10.1145/3018661.3018667.

[44] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “DeepWalk: Online Learning of
Social Representations.” In: Proceedings of the 20th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. KDD ’14. New York, New York,
USA: Association for Computing Machinery, 2014, 701–710. isbn: 9781450329569.
doi: 10.1145/2623330.2623732. url: https://doi.org/10.1145/2623330.2623732.

[45] Joshua Tenenbaum, Vin Silva, and John Langford. “A Global Geometric Framework
for Nonlinear Dimensionality Reduction.” In: Science (New York, N.Y.) 290 (Jan. 2001),
pp. 2319–23. doi: 10.1126/science.290.5500.2319.

[46] Tomas Mikolov, Kai Chen, G.s Corrado, and Jeffrey Dean. “Efficient Estimation of
Word Representations in Vector Space.” In: Proceedings of Workshop at ICLR 2013 (Jan.
2013).

[47] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. “A Sur-
vey on Knowledge Graphs: Representation, Acquisition, and Applications.” In: IEEE
Transactions on Neural Networks and Learning Systems 33.2 (2022), pp. 494–514. doi:
10.1109/TNNLS.2021.3070843.

[48] Takuma Ebisu and Ryutaro Ichise. “TorusE: Knowledge Graph Embedding on a
Lie Group.” In: AAAI’18/IAAI’18/EAAI’18. New Orleans, Louisiana, USA: AAAI
Press, 2018. isbn: 978-1-57735-800-8.

[49] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. “Translating Embeddings for Modeling Multi-Relational Data.”
In: NIPS. 2013.

[50] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. “Embedding
Entities and Relations for Learning and Inference in Knowledge Bases.” In: 3rd Inter-
national Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings. 2015. url: http://arxiv.org/abs/1412.6575.

[51] Ni Lao and William Cohen. “Relational Retrieval Using a Combination of Path-
Constrained Random Walks.” In: Machine Learning 81 (Oct. 2010), pp. 53–67. doi:
10.1007/s10994-010-5205-8.

https://doi.org/10.1145/2983323.2983755
https://doi.org/10.1145/2983323.2983755
https://doi.org/10.1145/2983323.2983755
https://doi.org/10.1145/3018661.3018667
https://doi.org/10.1145/3018661.3018667
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1109/TNNLS.2021.3070843
http://arxiv.org/abs/1412.6575
https://doi.org/10.1007/s10994-010-5205-8

152 bibliography

[52] Christian Meilicke, Manuel Fink, Yanjie Wang, Daniel Ruffinelli, Rainer Gemulla,
and Heiner Stuckenschmidt. “Fine-Grained Evaluation of Rule- and Embedding-
Based Systems for Knowledge Graph Completion.” In: International Workshop on the
Semantic Web. 2018.

[53] Mehdi Ali, Max Berrendorf, Charles Hoyt, Laurent Vermue, Mikhail Galkin, Sahand
Sharifzadeh, Asja Fischer, Volker Tresp, and Jens Lehmann. Bringing Light Into the
Dark: A Large-scale Evaluation of Knowledge Graph Embedding Models Under a Unified
Framework. June 2020.

[54] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge Graph Embed-
ding by Translating on Hyperplanes. 2014. url: https://www.aaai.org/ocs/index.
php/AAAI/AAAI14/paper/view/8531.

[55] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning Entity
and Relation Embeddings for Knowledge Graph Completion. 2015. url: https://www.
aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571.

[56] Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. “Knowledge Graph
Embedding via Dynamic Mapping Matrix.” In: Jan. 2015, pp. 687–696. doi: 10.3115/
v1/P15-1067.

[57] Guoliang Ji, Kang Liu, Shizhu He, and Jun Zhao. Knowledge Graph Completion with
Adaptive Sparse Transfer Matrix. 2016. url: https://www.aaai.org/ocs/index.php/
AAAI/AAAI16/paper/view/11982.

[58] Yantao Jia, Yuanzhuo Wang, Hailun Lin, Xiaolong Jin, and Xueqi Cheng. “Locally
Adaptive Translation for Knowledge Graph Embedding.” In: Proceedings of the Thirti-
eth AAAI Conference on Artificial Intelligence. AAAI’16. Phoenix, Arizona: AAAI Press,
2016, pp. 992–998. url: http://dl.acm.org/citation.cfm?id=3015812.3015960.

[59] Yanrong Wu and Zhichun Wang. “Knowledge Graph Embedding with Numeric
Attributes of Entities.” In: Rep4NLP@ACL. 2018.

[60] Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and Maosong Sun. “Representa-
tion Learning of Knowledge Graphs with Entity Descriptions.” In: Proceedings of the
AAAI Conference on Artificial Intelligence 30.1 (2016). url: https://ojs.aaai.org/
index.php/AAAI/article/view/10329.

[61] Ruobing Xie, Zhiyuan Liu, Tat-Seng Chua, Huan-Bo Luan, and Maosong Sun. “Image-
embodied Knowledge Representation Learning.” In: IJCAI. 2017.

[62] Huaping Zhong, Jianwen Zhang, Zhen Wang, Hai Wan, and Zheng Chen. “Aligning
knowledge and text embeddings by entity descriptions.” In: Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing. 2015, pp. 267–272.

https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531
https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571
https://doi.org/10.3115/v1/P15-1067
https://doi.org/10.3115/v1/P15-1067
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11982
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11982
http://dl.acm.org/citation.cfm?id=3015812.3015960
https://ojs.aaai.org/index.php/AAAI/article/view/10329
https://ojs.aaai.org/index.php/AAAI/article/view/10329

bibliography 153

[63] Jiacheng Xu, Xipeng Qiu, Kan Chen, and Xuanjing Huang. “Knowledge Graph
Representation with Jointly Structural and Textual Encoding.” In: Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17. 2017,
pp. 1318–1324. doi: 10.24963/ijcai.2017/183. url: https://doi.org/10.24963/
ijcai.2017/183.

[64] Han Xiao, Minlie Huang, Lian Meng, and Xiaoyan Zhu. “SSP: semantic space projec-
tion for knowledge graph embedding with text descriptions.” In: Thirty-First AAAI
Conference on Artificial Intelligence. 2017.

[65] Muhao Chen, Yingtao Tian, Kai-Wei Chang, Steven Skiena, and Carlo Zaniolo. “Co-
training Embeddings of Knowledge Graphs and Entity Descriptions for Cross-Lingual
Entity Alignment.” In: arXiv preprint arXiv:1806.06478 (2018).

[66] Bayu Distiawan Trsedya, Jianzhong Qi, and Rui Zhang. “Entity Alignment between
Knowledge Graphs Using Attribute Embeddings.” In: AAAI. 2019.

[67] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. “A Three-Way Model for
Collective Learning on Multi-Relational Data.” In: ICML. 2011.

[68] Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. “Holographic Embed-
dings of Knowledge Graphs.” In: Proceedings of the Thirtieth AAAI Conference on Arti-
ficial Intelligence. AAAI’16. Phoenix, Arizona: AAAI Press, 2016, pp. 1955–1961. url:
http://dl.acm.org/citation.cfm?id=3016100.3016172.

[69] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. “Complex Embeddings for Simple Link Prediction.” In: Proceedings of
the 33rd International Conference on International Conference on Machine Learning - Vol-
ume 48. ICML’16. New York, NY, USA: JMLR.org, 2016, pp. 2071–2080. url: http:
//dl.acm.org/citation.cfm?id=3045390.3045609.

[70] Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. “A semantic
matching energy function for learning with multi-relational data.” In: Machine Learn-
ing 94.2 (2014), pp. 233–259. issn: 1573-0565. doi: 10.1007/s10994-013-5363-6. url:
https://doi.org/10.1007/s10994-013-5363-6.

[71] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. “Reasoning
With Neural Tensor Networks for Knowledge Base Completion.” In: Advances in
Neural Information Processing Systems 26. Ed. by C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger. Curran Associates, Inc., 2013, pp. 926–934.

[72] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Mur-
phy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. “Knowledge Vault: A Web-
scale Approach to Probabilistic Knowledge Fusion.” In: Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’14.
New York, New York, USA: ACM, 2014, pp. 601–610. isbn: 978-1-4503-2956-9. doi:
10.1145/2623330.2623623. url: http://doi.acm.org/10.1145/2623330.2623623.

https://doi.org/10.24963/ijcai.2017/183
https://doi.org/10.24963/ijcai.2017/183
https://doi.org/10.24963/ijcai.2017/183
http://dl.acm.org/citation.cfm?id=3016100.3016172
http://dl.acm.org/citation.cfm?id=3045390.3045609
http://dl.acm.org/citation.cfm?id=3045390.3045609
https://doi.org/10.1007/s10994-013-5363-6
https://doi.org/10.1007/s10994-013-5363-6
https://doi.org/10.1145/2623330.2623623
http://doi.acm.org/10.1145/2623330.2623623

154 bibliography

[73] Agustinus Kristiadi, Mohammad Asif Khan, Denis Lukovnikov, Jens Lehmann, and
Asja Fischer. “Incorporating Literals into Knowledge Graph Embeddings.” In: ISWC2019.
2019.

[74] Pouya Pezeshkpour, Liyan Chen, and Sameer Singh. “Embedding Multimodal Re-
lational Data for Knowledge Base Completion.” In: Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing (EMNLP). 2018, pp. 3208–3218.

[75] Yi Tay, Anh Tuan Luu, Minh C. Phan, and Siu Cheung Hui. “Multi-task Neural
Network for Non-discrete Attribute Prediction in Knowledge Graphs.” In: CoRR
(2017).

[76] Michael Cochez, Martina Garofalo, Jérôme Lenßen, and Maria Angela Pellegrino. “A
First Experiment on Including Text Literals in KGloVe.” In: arXiv preprint arXiv:1807.11761
(2018).

[77] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. “Factorizing Yago: Scal-
able Machine Learning for Linked Data.” In: Proceedings of the 21st international con-
ference on World Wide Web. ACM. 2012.

[78] G. de Assis Costa and J. M. P. de Oliveira. “Towards Exploring Literals to Enrich
Data Linking in Knowledge Graphs.” In: AIKE. 2018.

[79] Shu Guo, Quan Wang, Bin Wang, Lihong Wang, and Li Guo. “SSE: Semantically
Smooth Embedding for Knowledge Graphs.” In: IEEE Transactions on Knowledge and
Data Engineering PP (Dec. 2016), pp. 1–1. doi: 10.1109/TKDE.2016.2638425.

[80] Ruobing Xie, Zhiyuan Liu, and Maosong Sun. “Representation Learning of Knowl-
edge Graphs with Hierarchical Types.” In: IJCAI. 2016.

[81] Denis Krompaβ, Stephan Baier, and Volker Tresp. “Type-Constrained Representa-
tion Learning in Knowledge Graphs.” In: Proceedings of the 14th International Confer-
ence on The Semantic Web - ISWC 2015 - Volume 9366. Berlin, Heidelberg: Springer-
Verlag, 2015, pp. 640–655. isbn: 978-3-319-25006-9.

[82] Quan Wang, Bin Wang, and Li Guo. “Knowledge Base Completion Using Embed-
dings and Rules.” In: Proceedings of the 24th International Conference on Artificial Intel-
ligence. IJCAI’15. Buenos Aires, Argentina: AAAI Press, 2015, pp. 1859–1865. isbn:
978-1-57735-738-4. url: http://dl.acm.org/citation.cfm?id=2832415.2832507.

[83] Kai-Wei Chang, Wen-tau Yih, Bishan Yang, and Christopher Meek. “Typed Tensor
Decomposition of Knowledge Bases for Relation Extraction.” In: Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha,
Qatar: Association for Computational Linguistics, Oct. 2014, pp. 1568–1579. doi:
10.3115/v1/D14-1165. url: https://www.aclweb.org/anthology/D14-1165.

https://doi.org/10.1109/TKDE.2016.2638425
http://dl.acm.org/citation.cfm?id=2832415.2832507
https://doi.org/10.3115/v1/D14-1165
https://www.aclweb.org/anthology/D14-1165

bibliography 155

[84] Zhiting Hu, Poyao Huang, Yuntian Deng, Yingkai Gao, and Eric Xing. “Entity Hi-
erarchy Embedding.” In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Beijing, China: Association for Computational
Linguistics, July 2015, pp. 1292–1300. doi: 10 . 3115 / v1 / P15 - 1125. url: https :

//www.aclweb.org/anthology/P15-1125.

[85] Yankai Lin, Zhiyuan Liu, and Maosong Sun. “Modeling Relation Paths for Repre-
sentation Learning of Knowledge Bases.” In: EMNLP. 2015.

[86] Kelvin Guu, John Miller, and Percy Liang. “Traversing Knowledge Graphs in Vector
Space.” In: Proceedings of the 2015 Conference on Empirical Methods in Natural Lan-
guage Processing. Lisbon, Portugal: Association for Computational Linguistics, Sept.
2015, pp. 318–327. doi: 10.18653/v1/D15-1038. url: https://www.aclweb.org/
anthology/D15-1038.

[87] Alberto García-Durán, Antoine Bordes, and Nicolas Usunier. “Composing Relation-
ships with Translations.” In: Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing. Lisbon, Portugal: Association for Computational Lin-
guistics, Sept. 2015, pp. 286–290. doi: 10.18653/v1/D15-1034. url: https://www.
aclweb.org/anthology/D15-1034.

[88] Arvind Neelakantan, Benjamin Roth, and Andrew Mccallum. “Compositional Vec-
tor Space Models for Knowledge Base Completion.” In: 1 (Apr. 2015). doi: 10.3115/
v1/P15-1016.

[89] Rajarshi Das, Arvind Neelakantan, David Belanger, and Andrew Mccallum. “Chains
of Reasoning over Entities, Relations, and Text using Recurrent Neural Networks.”
In: Jan. 2017, pp. 132–141. doi: 10.18653/v1/E17-1013.

[90] Yuanfei Luo, Quan Wang, Bin Wang, and Li Guo. “Context-Dependent Knowledge
Graph Embedding.” In: Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing. Lisbon, Portugal: Association for Computational Lin-
guistics, Sept. 2015, pp. 1656–1661. doi: 10.18653/v1/D15-1191. url: https://www.
aclweb.org/anthology/D15-1191.

[91] Alberto García-Durán and Mathias Niepert. “KBlrn: End-to-End Learning of Knowl-
edge Base Representations with Latent, Relational, and Numerical Features.” In:
UAI. 2018.

[92] Zhuoyu Wei, Jun Zhao, Kang Liu, Zhenyu Qi, Zhengya Sun, and Guanhua Tian.
“Large-scale Knowledge Base Completion: Inferring via Grounding Network Sam-
pling over Selected Instances.” In: CIKM. 2015.

[93] Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. “Jointly Embedding
Knowledge Graphs and Logical Rules.” In: Jan. 2016, pp. 192–202. doi: 10.18653/
v1/D16-1019.

https://doi.org/10.3115/v1/P15-1125
https://www.aclweb.org/anthology/P15-1125
https://www.aclweb.org/anthology/P15-1125
https://doi.org/10.18653/v1/D15-1038
https://www.aclweb.org/anthology/D15-1038
https://www.aclweb.org/anthology/D15-1038
https://doi.org/10.18653/v1/D15-1034
https://www.aclweb.org/anthology/D15-1034
https://www.aclweb.org/anthology/D15-1034
https://doi.org/10.3115/v1/P15-1016
https://doi.org/10.3115/v1/P15-1016
https://doi.org/10.18653/v1/E17-1013
https://doi.org/10.18653/v1/D15-1191
https://www.aclweb.org/anthology/D15-1191
https://www.aclweb.org/anthology/D15-1191
https://doi.org/10.18653/v1/D16-1019
https://doi.org/10.18653/v1/D16-1019

156 bibliography

[94] Tim Rocktäschel, Sameer Singh, and Sebastian Riedel. “Injecting Logical Background
Knowledge into Embeddings for Relation Extraction.” In: Proceedings of the 2015 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. Denver, Colorado: Association for Computational Lin-
guistics, 2015, pp. 1119–1129. doi: 10.3115/v1/N15-1118. url: https://www.aclweb.
org/anthology/N15-1118.

[95] Tingsong Jiang, Tianyu Liu, Tao Ge, Lei Sha, Sujian Li, Baobao Chang, and Zhi-
fang Sui. “Encoding Temporal Information for Time-Aware Link Prediction.” In:
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.
Austin, Texas: Association for Computational Linguistics, Nov. 2016, pp. 2350–2354.
doi: 10.18653/v1/D16-1260. url: https://www.aclweb.org/anthology/D16-1260.

[96] C. Esteban, V. Tresp, Y. Yang, S. Baier, and D. Krompaß. “Predicting the co-evolution
of event and Knowledge Graphs.” In: 2016 19th International Conference on Information
Fusion (FUSION). 2016, pp. 98–105.

[97] Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. “Know-evolve: Deep Tem-
poral Reasoning for Dynamic Knowledge Graphs.” In: Proceedings of the 34th Interna-
tional Conference on Machine Learning - Volume 70. ICML’17. Sydney, NSW, Australia:
JMLR.org, 2017, pp. 3462–3471. url: http : / / dl . acm . org / citation . cfm ? id =

3305890.3306039.

[98] Jun Feng, Minlie Huang, Yang Yang, and Xiaoyan Zhu. “GAKE: Graph Aware
Knowledge Embedding.” In: Proceedings of COLING 2016, the 26th International Con-
ference on Computational Linguistics: Technical Papers. Osaka, Japan: The COLING 2016

Organizing Committee, Dec. 2016, pp. 641–651. url: https://www.aclweb.org/
anthology/C16-1062.

[99] Xueyan Jiang, Volker Tresp, Yi Huang, and Maximilian Nickel. “Link Prediction in
Multi-relational Graphs Using Additive Models.” In: Proceedings of the 2012 Interna-
tional Conference on Semantic Technologies Meet Recommender Systems & Big Data -
Volume 919. SeRSy’12. Boston: CEUR-WS.org, 2012, pp. 1–12. url: http://dl.acm.
org/citation.cfm?id=2887638.2887639.

[100] Hatem Mousselly-Sergieh, Teresa Botschen, Iryna Gurevych, and Stefan Roth. “A
multimodal translation-based approach for knowledge graph representation learn-
ing.” In: Proceedings of the Seventh Joint Conference on Lexical and Computational Seman-
tics. 2018, pp. 225–234.

[101] Russa Biswas, Harald Sack, and Mehwish Alam. “MADLINK: Attentive multihop
and entity descriptions for link prediction in knowledge graphs.” In: Semantic Web
(2022).

[102] Palash Goyal and Emilio Ferrara. “Graph Embedding Techniques, Applications, and
Performance: A Survey.” In: Knowl.-Based Syst. (2018).

https://doi.org/10.3115/v1/N15-1118
https://www.aclweb.org/anthology/N15-1118
https://www.aclweb.org/anthology/N15-1118
https://doi.org/10.18653/v1/D16-1260
https://www.aclweb.org/anthology/D16-1260
http://dl.acm.org/citation.cfm?id=3305890.3306039
http://dl.acm.org/citation.cfm?id=3305890.3306039
https://www.aclweb.org/anthology/C16-1062
https://www.aclweb.org/anthology/C16-1062
http://dl.acm.org/citation.cfm?id=2887638.2887639
http://dl.acm.org/citation.cfm?id=2887638.2887639

bibliography 157

[103] Yankai Lin, Zhiyuan Liu, and Maosong Sun. “Knowledge Representation Learning
with Entities, Attributes and Relations.” In: ethnicity (2016).

[104] Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. “You CAN Teach an Old
Dog New Tricks! On Training Knowledge Graph Embeddings.” In: International Con-
ference on Learning Representations. 2020. url: https://openreview.net/forum?id=
BkxSmlBFvr.

[105] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. “Knowledge graph and
text jointly embedding.” In: Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP). 2014, pp. 1591–1601.

[106] Michael Cochez, Petar Ristoski, Simone Paolo Ponzetto, and Heiko Paulheim. “Global
RDF Vector Space Embeddings.” In: International Semantic Web Conference. Springer.
2017.

[107] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. “Sequence to Sequence Learning
with Neural Networks.” In: Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2. NIPS’14. Montreal, Canada: MIT Press,
2014, 3104–3112.

[108] Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings using
Siamese BERT-Networks.” In: Jan. 2019, pp. 3973–3983. doi: 10.18653/v1/D19-1410.

[109] Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M Suchanek. “Fast Rule
Mining in Ontological Knowledge Bases with AMIE+.” In: VLDB (2015).

[110] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification
with deep convolutional neural networks.” In: Advances in neural information process-
ing systems. 2012, pp. 1097–1105.

[111] G. de Assis Costa and J. M. P. de Oliveira. “A Blocking Scheme for Entity Resolution
in the Semantic Web.” In: AINA. 2016.

[112] Moritz Blum, Basil Ell, and Philipp Cimiano. “Exploring the impact of literal trans-
formations within Knowledge Graphs for Link Prediction.” In: The 11th International
Joint Conference on Knowledge Graphs (IJCKG). 2022.

[113] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for
large-scale image recognition.” In: International Conference on Learning Representations
(ICLR). 2015.

[114] Matthew Francis-Landau, Greg Durrett, and Dan Klein. “Capturing semantic sim-
ilarity for entity linking with convolutional neural networks.” In: arXiv preprint
arXiv:1604.00734 (2016).

[115] Jake Zhao, Yoon Kim, Kelly Zhang, Alexander M Rush, and Yann LeCun. “Adver-
sarially regularized autoencoders.” In: arXiv preprint arXiv:1706.04223 (2017).

[116] David Berthelot, Thomas Schumm, and Luke Metz. “Began: Boundary equilibrium
generative adversarial networks.” In: arXiv preprint arXiv:1703.10717 (2017).

https://openreview.net/forum?id=BkxSmlBFvr
https://openreview.net/forum?id=BkxSmlBFvr
https://doi.org/10.18653/v1/D19-1410

158 bibliography

[117] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. “Image-to-image
translation with conditional adversarial networks.” In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. 2017, pp. 1125–1134.

[118] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum. “YAGO2:
A spatially and temporally enhanced knowledge base from Wikipedia.” In: Arti-
ficial Intelligence 194 (2013). Artificial Intelligence, Wikipedia and Semi-Structured
Resources, pp. 28–61. issn: 0004-3702. doi: https://doi.org/10.1016/j.artint.
2012 . 06 . 001. url: https : / / www . sciencedirect . com / science / article / pii /

S0004370212000719.

[119] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka,
and Tom M. Mitchell. “Toward an Architecture for Never-Ending Language Learn-
ing.” In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence.
AAAI Press, 2010.

[120] Yanrong Wu and Zhichun Wang. “Knowledge Graph Embedding with Numeric
Attributes of Entities.” In: Proceedings of The Third Workshop on Representation Learning
for NLP. Association for Computational Linguistics, 2018, pp. 132–136.

[121] Tara Safavi and Danai Koutra. “CoDEx: A Comprehensive Knowledge Graph Com-
pletion Benchmark.” In: Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Nov. 2020.

[122] Farahnaz Akrami, Mohammed Samiul Saeef, Qingheng Zhang, Wei Hu, and Chengkai
Li. “Realistic Re-Evaluation of Knowledge Graph Completion Methods: An Experi-
mental Study.” In: Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data. 2020. isbn: 9781450367356.

[123] Tara Safavi, Danai Koutra, and Edgar Meij. “Improving the Utility of Knowledge
Graph Embeddings with Calibration.” In: arXiv preprint arXiv:2004.01168 (2020).

[124] Wenhan Xiong, Thien Hoang, and William Yang Wang. “DeepPath: A Reinforcement
Learning Method for Knowledge Graph Reasoning.” In: Proceedings of the Conference
on Empirical Methods in Natural Language Processing (EMNLP). 2017.

[125] F. Maxwell Harper and Joseph A. Konstan. “The MovieLens Datasets: History and
Context.” In: ACM Trans. Interact. Intell. Syst. 5.4 (Dec. 2015). issn: 2160-6455.

[126] Lucas van Berkel and Victor de Boer. “kgbench: A Collection of Knowledge Graph
Datasets for Evaluating Relational and Multimodal Machine Learning.” In: ESWC.
2021.

[127] Haseeb Shah, Johannes Villmow, A. Ulges, U. Schwanecke, and F. Shafait. “An Open-
World Extension to Knowledge Graph Completion Models.” In: AAAI. 2019.

https://doi.org/https://doi.org/10.1016/j.artint.2012.06.001
https://doi.org/https://doi.org/10.1016/j.artint.2012.06.001
https://www.sciencedirect.com/science/article/pii/S0004370212000719
https://www.sciencedirect.com/science/article/pii/S0004370212000719

bibliography 159

[128] Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng. “Reason-
ing with Neural Tensor Networks for Knowledge Base Completion.” In: Proceedings
of the 26th International Conference on Neural Information Processing Systems - Volume 1.
2013.

[129] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. “Knowledge Graph Em-
bedding by Translating on Hyperplanes.” In: Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence. AAAI’14. Québec City, Québec, Canada: AAAI
Press, 2014, 1112–1119.

[130] Yankai Lin, Zhiyuan Liu, and Maosong Sun. “Knowledge Representation Learning
with Entities, Attributes and Relations.” In: Proceedings of the Twenty-Fifth Interna-
tional Joint Conference on Artificial Intelligence. IJCAI’16. New York, New York, USA:
AAAI Press, 2016, 2866–2872. isbn: 9781577357704.

[131] Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. “Knowledge Graph
Embedding with Iterative Guidance from Soft Rules.” In: Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence. 2018.

[132] T. Mitchell et al. “Never-Ending Learning.” In: Commun. ACM 61.5 (Apr. 2018),
103–115. issn: 0001-0782.

[133] Stanley Kok and Pedro Domingos. “Statistical Predicate Invention.” In: Proceedings
of the 24th International Conference on Machine Learning. Association for Computing
Machinery, 2007.

[134] A. McCray. “An Upper-Level Ontology for the Biomedical Domain.” In: Comparative
and Functional Genomics 4 (2003), pp. 80 –84.

[135] Charles Kemp, Joshua B. Tenenbaum, Thomas L. Griffiths, Takeshi Yamada, and
Naonori Ueda. “Learning Systems of Concepts with an Infinite Relational Model.”
In: Proceedings of the 21st National Conference on Artificial Intelligence - Volume 1. AAAI’06.
Boston, Massachusetts: AAAI Press, 2006, 381–388. isbn: 9781577352815.

[136] Rudolph J. Rummel. “Dimensionality of Nations Project: Attributes of Nations and
Behavior of Nation Dyads, 1950-1965. [distributor], 1992-02-16.” In: ().

[137] Guillaume Bouchard, Sameer Singh, and T. Trouillon. “On Approximate Reasoning
Capabilities of Low-Rank Vector Spaces.” In: AAAI Spring Symposia. 2015.

[138] Alberto García-Durán, Antoine Bordes, and Nicolas Usunier. “Effective Blending
of Two and Three-Way Interactions for Modeling Multi-Relational Data.” In: Pro-
ceedings of the European Conference on Machine Learning and Knowledge Discovery in
Databases - Volume Part I. ECMLPKDD’14. Nancy, France, 2014, 434–449.

[139] Geoffrey E Hinton et al. “Learning distributed representations of concepts.” In: Pro-
ceedings of the eighth annual conference of the cognitive science society. Vol. 1. Amherst,
MA. 1986, p. 12.

160 bibliography

[140] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. “RotatE: Knowledge
Graph Embedding by Relational Rotation in Complex Space.” In: International Con-
ference on Learning Representations. 2019.

[141] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek. “AMIE:
Association Rule Mining under Incomplete Evidence in Ontological Knowledge
Bases.” In: Proceedings of the 22nd International Conference on World Wide Web. WWW
’13. Rio de Janeiro, Brazil: Association for Computing Machinery, 2013, 413–422.
isbn: 9781450320351. doi: 10.1145/2488388.2488425. url: https://doi.org/10.
1145/2488388.2488425.

[142] Fan Yang, Zhilin Yang, and William W. Cohen. “Differentiable Learning of Logical
Rules for Knowledge Base Reasoning.” In: Proceedings of the 31st International Confer-
ence on Neural Information Processing Systems. NIPS’17. Long Beach, California, USA:
Curran Associates Inc., 2017, 2316–2325. isbn: 9781510860964.

[143] Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang.
“DRUM: End-to-End Differentiable Rule Mining on Knowledge Graphs.” In: Red
Hook, NY, USA: Curran Associates Inc., 2019.

[144] William L. Hamilton, Rex Ying, and Jure Leskovec. “Inductive Representation Learn-
ing on Large Graphs.” In: Proceedings of the 31st International Conference on Neural
Information Processing Systems. NIPS’17. Long Beach, California, USA: Curran Asso-
ciates Inc., 2017, 1025–1035. isbn: 9781510860964.

[145] Aleksandar Bojchevski and Stephan Günnemann. “Deep Gaussian Embedding of
Graphs: Unsupervised Inductive Learning via Ranking.” In: 6th International Confer-
ence on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net, 2018. url: https://openreview.
net/forum?id=r1ZdKJ-0W.

[146] Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto. “Knowl-
edge Transfer for Out-of-Knowledge-Base Entities : A Graph Neural Network Ap-
proach.” In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI-17. 2017, pp. 1802–1808. doi: 10.24963/ijcai.2017/250. url:
https://doi.org/10.24963/ijcai.2017/250.

[147] Peifeng Wang, Jialong Han, Chenliang Li, and Rong Pan. “Logic Attention Based
Neighborhood Aggregation for Inductive Knowledge Graph Embedding.” In: Pro-
ceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First
Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence. AAAI’19/IAAI’19/EAAI’19. Hon-
olulu, Hawaii, USA: AAAI Press, 2019. isbn: 978-1-57735-809-1. doi: 10.1609/aaai.
v33i01.33017152. url: https://doi.org/10.1609/aaai.v33i01.33017152.

https://doi.org/10.1145/2488388.2488425
https://doi.org/10.1145/2488388.2488425
https://doi.org/10.1145/2488388.2488425
https://openreview.net/forum?id=r1ZdKJ-0W
https://openreview.net/forum?id=r1ZdKJ-0W
https://doi.org/10.24963/ijcai.2017/250
https://doi.org/10.24963/ijcai.2017/250
https://doi.org/10.1609/aaai.v33i01.33017152
https://doi.org/10.1609/aaai.v33i01.33017152
https://doi.org/10.1609/aaai.v33i01.33017152

bibliography 161

[148] Komal Teru, Etienne Denis, and Will Hamilton. “Inductive Relation Prediction by
Subgraph Reasoning.” In: Proceedings of the 37th International Conference on Machine
Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine
Learning Research. PMLR, 2020, pp. 9448–9457. url: https://proceedings.mlr.
press/v119/teru20a.html.

[149] Mehdi Ali, Max Berrendorf, Mikhail Galkin, Veronika Thost, Tengfei Ma, Volker
Tresp, and Jens Lehmann. “Improving Inductive Link Prediction Using Hyper-Relational
Facts.” In: SEMWEB. 2021.

[150] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. “A Comprehensive Survey on Graph Neural Networks.” In: IEEE Trans-
actions on Neural Networks and Learning Systems 32 (2019), pp. 4–24.

[151] Liang Yao, Chengsheng Mao, and Yuan Luo. “KG-BERT: BERT for knowledge graph
completion.” In: arXiv preprint arXiv:1909.03193 (2019).

[152] Louis Clouâtre, Philippe Trempe, Amal Zouaq, and Sarath Chandar. “MLMLM: Link
Prediction with Mean Likelihood Masked Language Model.” In: Findings of ACL/I-
JCNLP. Vol. ACL/IJCNLP 2021. Findings of ACL. Association for Computational
Linguistics, 2021, pp. 4321–4331.

[153] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. “A re-
view of relational machine learning for knowledge graphs.” In: Proceedings of the
IEEE 104.1 (2015), pp. 11–33.

[154] Genet Asefa Gesese, Mehwish Alam, and Harald Sack. “RAILD: Towards Lever-
aging Relation Features for Inductive Link Prediction In Knowledge Graphs.” In:
IJCKG. 2022.

[155] Xin Luna Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin
Murphy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. “Knowledge Vault: A
Web-Scale Approach to Probabilistic Knowledge Fusion.” In: The 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’14, New York,
NY, USA - August 24 - 27, 2014. Evgeniy Gabrilovich Wilko Horn Ni Lao Kevin
Murphy Thomas Strohmann Shaohua Sun Wei Zhang Geremy Heitz. 2014, pp. 601–
610. url: http://www.cs.cmu.edu/~nlao/publication/2014.kdd.pdf.

[156] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan
N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. “Attention is All you Need.” In:
Advances in Neural Information Processing Systems. Ed. by I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran
Associates, Inc., 2017. url: https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[157] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. “DistilBERT, a
distilled version of BERT: smaller, faster, cheaper and lighter.” In: CoRR abs/1910.01108

(2019). arXiv: 1910.01108. url: http://arxiv.org/abs/1910.01108.

https://proceedings.mlr.press/v119/teru20a.html
https://proceedings.mlr.press/v119/teru20a.html
http://www.cs.cmu.edu/~nlao/publication/2014.kdd.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108

162 bibliography

[158] Genet Asefa Gesese, Mehwish Alam, and Harald Sack. LiterallyWikidata - A Bench-
mark for Knowledge Graph Completion using Literals. Apr. 2021. doi: 10.5281/zenodo.
4701190. url: https://doi.org/10.5281/zenodo.4701190.

[159] Vladimir Batagelj and Matjaž Zaveršnik. “Fast algorithms for determining (general-
ized) core groups in social networks.” In: Advances in Data Analysis and Classification
5.2 (2011), pp. 129–145.

[160] Mingyang Li, Neng Gao, Chenyang Tu, Jia Peng, and Min Li. “Incorporating At-
tributes Semantics into Knowledge Graph Embeddings.” In: 2021 IEEE 24th Interna-
tional Conference on Computer Supported Cooperative Work in Design (CSCWD). 2021,
pp. 620–625. doi: 10.1109/CSCWD49262.2021.9437876.

[161] Farshad Bakhshandegan Moghaddam, Carsten Draschner, Jens Lehmann, and Ha-
jira Jabeen. “Literal2feature: An automatic scalable rdf graph feature extractor.” In:
Further with Knowledge Graphs. IOS Press, 2021, pp. 74–88.

[162] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization.”
In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann
LeCun. 2015. url: http://arxiv.org/abs/1412.6980.

[163] Genet Asefa Gesese, Mehwish Alam, and Harald Sack. “Semantic Entity Enrichment
by Leveraging Multilingual Descriptions for Link Prediction.” In: DL4KG workshop
co-located with ESWC. 2020.

[164] Stephan Gouws, Yoshua Bengio, and Greg Corrado. “Bilbowa: Fast bilingual dis-
tributed representations without word alignments.” In: ICML. 2015.

[165] Xu Han, Shulin Cao, Lv Xin, Yankai Lin, Zhiyuan Liu, Maosong Sun, and Juanzi Li.
“OpenKE: An Open Toolkit for Knowledge Embedding.” In: Proceedings of EMNLP.
2018.

[166] Cristian Santini, Genet Asefa Gesese, Silvio Peroni, Aldo Gangemi, Harald Sack, and
Mehwish Alam. “A Knowledge Graph Embeddings Based Approach for Author
Name Disambiguation Using Literals.” In: Scientometrics 127.8 (2022), 4887–4912.
issn: 0138-9130. doi: 10.1007/s11192-022-04426-2. url: https://doi.org/10.
1007/s11192-022-04426-2.

https://doi.org/10.5281/zenodo.4701190
https://doi.org/10.5281/zenodo.4701190
https://doi.org/10.5281/zenodo.4701190
https://doi.org/10.1109/CSCWD49262.2021.9437876
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/s11192-022-04426-2
https://doi.org/10.1007/s11192-022-04426-2
https://doi.org/10.1007/s11192-022-04426-2

D E C L A R AT I O N

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, 02.08.2023

M.Sc. GENET ASEFA
GESESE

	Dedication
	Abstract
	Zusammenfassung
	Publications
	List of Publications
	Acknowledgments
	Contents

	List of Figures
	List of Figures

	List of Tables
	List of Tables
	Acronyms

	Acronyms
	Motivation and Foundations
	1 Introduction
	1.1 Motivation
	1.2 Research Objectives
	1.3 Thesis Outline and Contributions

	2 Foundations
	2.1 Graphs
	2.2 Knowledge Graphs
	2.3 Neural Networks
	2.3.1 Feed-Forward Neural Network
	2.3.2 Convolutional Neural Network
	2.3.3 Gated Recurrent Unit

	2.4 Language Models
	2.4.1 Non-contextual embeddings
	2.4.2 Contextual embeddings

	2.5 Network Embeddings
	2.6 Knowledge Graph Embedding
	2.7 Knowledge Graph Completion
	2.8 Evaluation Metrics

	Literature Review
	3 KGE Models with literals in Transductive Setting
	3.1 Introduction
	3.2 SOTA models
	3.2.1 Models with Text Literals
	3.2.2 Models with Numeric Literals
	3.2.3 Models with Images
	3.2.4 Models with Multi-modal Literals

	3.3 Applications
	3.4 Evaluation Benchmark Datasets
	3.5 Experiments on Link Prediction
	3.5.1 Datasets
	3.5.2 Experiments with Text Literals
	3.5.3 Experiment with Numeric Literals
	3.5.4 Experiment with Images
	3.5.5 Experiment with Multi-modal Literals

	3.6 Discussion and Outlook

	4 Leveraging Literals for the task of LP in Inductive Setting
	4.1 Introduction
	4.2 The SOTA Methods
	4.2.1 Rule-based methods
	4.2.2 Embedding-based methods
	4.2.3 Other Approaches

	4.3 Benchmarks in Inductive LP Settings
	4.4 Discussion and Outlook

	KGE with literals in Inductive setting
	5 Relation Aware Inductive Link Prediction
	5.1 Introduction
	5.2 Problem Formulation
	5.3 RAILD: Relation Aware Inductive Link Prediction
	5.3.1 Encoding Textual Descriptions using BERT
	5.3.2 Weighted and Directed Network of Relations (WeiDNeR)
	5.3.3 Node Embeddings
	5.3.4 Training Procedure
	5.3.5 Computational complexity

	5.4 Experiments
	5.4.1 Datasets
	5.4.2 Baselines
	5.4.3 Experimentation Setting
	5.4.4 Results

	5.5 Conclusion and Outlook

	KGE with literals in Transductive setting
	6 LP Benchmark with Literals
	6.1 Introduction
	6.2 Dataset Creation
	6.2.1 Extracting Attributive Triples
	6.2.2 Extracting Relational Triples
	6.2.3 Filtering the Triples
	6.2.4 Textual Information
	6.2.5 Domain of the Datasets

	6.3 Comparison with Existing Datasets
	6.4 Benchmarking Experiments on Link Prediction
	6.4.1 KGE Models
	6.4.2 Model Selection
	6.4.3 Results

	6.5 Conclusion and Outlook

	7 Improving Literal-based KGE models
	7.1 Introduction
	7.2 Preliminaries
	7.2.1 Problem Definition
	7.2.2 LiteralE

	7.3 LitKGE
	7.3.1 Generating features
	7.3.2 Incorporating features into KGE models
	7.3.3 Computational Complexity

	7.4 Experiments
	7.4.1 Datasets
	7.4.2 Experiment Setting
	7.4.3 Training
	7.4.4 Evaluation
	7.4.5 Results and Discussion

	7.5 Conclusion and Outlook

	8 Leveraging Multilingual Entity Descriptions
	8.1 Introduction
	8.2 Methodology
	8.3 Experimental Evaluation
	8.4 Conclusion and Outlook

	Conclusion AND Outlook
	9 Conclusion and Outlook
	9.1 Conclusions
	9.2 Open Issues and Outlook

	Appendix
	A Appendix
	A.1 Summary of Applications

	Bibliography
	Declaration

