
Leveraging Neural Language Models
for Knowledge Graph Completion

Master Thesis

by

Vjola Cili
Degree Course: Industrial Engineering and Management M.Sc.

Matriculation Number: 1810833

Institute of Applied Informatics and Formal Description
Methods (AIFB)

KIT Department of Economics and Management

First Supervisor: Prof. Dr. Harald Sack
Second Supervisor: Prof. Dr. Michael Färber
Advisor: Dr. Russa Biswas
Submitted: 04.08.2023

KIT – The Research University in the Helmholtz Association www.kit.edu

www.kit.edu




Abstract

Knowledge Graphs (KGs) provide a valuable framework for encoding data and its rela-
tionships, facilitating efficient structuring and understanding of large amounts of infor-
mation. Despite their potential, KGs’ inherent incompleteness undermines the quality of
KG-based applications, necessitating the development of Knowledge Graph Completion
(KGC) techniques. Predominantly, Knowledge Graph Embedding (KGE) methods are
employed, which focus on the KG structure yet disregard the linguistic context. Recently,
pretrained Neural Language Models (NLMs) have gained momentum due to their ad-
vanced language processing capabilities. By leveraging their ability to capture complex
linguistic context, pretrained NLMs have the potential to boost KGC performance.

This thesis explores the applicability of pretrained NLMs in KGC by using two distinct
approaches. The first approach involves infusing knowledge from pretrained NLMs, specif-
ically Word2Vec and BERT, into the learning process of KGE models. This is achieved by
employing NLM-generated embeddings of entities and relations as initialization vectors
for a KGE model, followed by an evaluation on link prediction. The second approach,
termed KG-NLM, fine-tunes three pretrained NLMs, namely RoBERTa, DistilBERT, and
BLOOM, on KG triples for triple classification. Both approaches are evaluated on two
benchmark datasets. According to the experimental results in line with the first approach,
initializing KGE models with pretrained NLM-generated embeddings does not signifi-
cantly enhance the models’ performance. Conversely, the KG-NLM approach, notably
KG-RoBERTa and KG-DistilBERT, show substantial performance across both datasets,
surpassing the baseline model for one dataset. Ultimately, these findings support the use
of pretrained NLMs for KGC tasks, as demonstrated by the promising outcomes of the
KG-NLM approach.





CONTENTS i

Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theoretical Background 4

2.1 Knowledge Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Knowledge Graph Completion . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Knowledge Graph Embedding Methods . . . . . . . . . . . . . . . . 7

2.2 Neural Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Related Work 14

4 Methodology 15

4.1 NLM-enhanced Knowledge Graph Embedding Models . . . . . . . . . . . . 15

4.2 Pretrained NLMs for Knowledge Graph Completion . . . . . . . . . . . . . 17

5 Evaluation 19

5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3.1 NLM-enhanced Knowledge Graph Embedding Models . . . . . . . . 22

5.3.2 Pretrained NLMs for Knowledge Graph Completion . . . . . . . . . 27

6 Conclusion 30

A Appendix 33

A.1 RotatE Relation Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 33

A.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34





LIST OF ABBREVIATIONS iii

List of Abbreviations

AI Artificial Intelligence.

BERT Bidirectional Encoder Representations from Transformers.

CBOW Continuous Bag-of-Words.

CWA Closed World Assumption.

IRI Internalised Resource Identifier.

KB Knowledge Base.

KGC Knowledge Graph Completion.

KGEs Knowledge Graph Embeddings.

KGs Knowledge Graphs.

KR Knowledge Representation.

KRL Knowledge Representation Learning.

MLM Masked Language Modeling.

MLP Multi-Layer Perceptron.

MR Mean Rank.

MRR Mean Reciprocal Rank.

NLMs Neural Language Models.

NLP Natural Language Processing.

NSP Next Sentence Prediction.

OWA Open World Assumption.

PCA Principal Component Analysis.

RDF Resource Description Framework.

RDFS Resource Description Framework Schema.





LIST OF FIGURES v

List of Figures

1 Example of KGC: Inferring new relations . . . . . . . . . . . . . . . . . . . 2

2 Example of a KG’s entity names and descriptions . . . . . . . . . . . . . . 5

3 Visualization of a subgraph from WordNet . . . . . . . . . . . . . . . . . . 6

4 Visualization of a subgraph from Freebase . . . . . . . . . . . . . . . . . . 6

5 Geometric visualization of TransE (a) and RotatE (b) . . . . . . . . . . . . 8

6 Visualization of the ConvE approach . . . . . . . . . . . . . . . . . . . . . 9

7 The Word2Vec model architecture . . . . . . . . . . . . . . . . . . . . . . . 11

8 BERT input representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

9 Generation of pretrained Word2Vec embeddings . . . . . . . . . . . . . . . 16

10 Generation of pretrained BERT embeddings . . . . . . . . . . . . . . . . . 17

11 Visualization of the KG-NLM approach for KGC . . . . . . . . . . . . . . . . 18

12 ConvE performance over the number of epochs . . . . . . . . . . . . . . . . 25

13 TuckER performance over the number of epochs . . . . . . . . . . . . . . . 26

14 RotatE performance over the number of epochs . . . . . . . . . . . . . . . 26

15 Performance of the KG-NLM models on the FB15k-237 dataset . . . . . . . . 29

16 Visualization of precision, recall and f1-score of the KG-NLM models on
FB15k-237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36





LIST OF TABLES vii

List of Tables

1 Overview of embedding strategies for KGE model initialization . . . . . . . 15

2 Datasets overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Overview of pretrained embeddings for KGE model initialization . . . . . . 20

4 Hyperparameter selection for the KG-NLM models . . . . . . . . . . . . . . . 22

5 WN18RR - Evaluation results of NLM-enhanced KGE models . . . . . . . 23

6 FB15k-237 - Evaluation results of NLM-enhanced KGE models . . . . . . . 24

7 WN18RR - Evaluation results of the KG-NLM approach on triple classification 27

8 FB15k-237 - Evaluation results of the KG-NLM approach on triple classification 28

9 Hyperparameter selection benchP . . . . . . . . . . . . . . . . . . . . . . . 34

10 Hyperparameter selection hpoP . . . . . . . . . . . . . . . . . . . . . . . . 34

11 Hyperparameter selection paperP . . . . . . . . . . . . . . . . . . . . . . . 35

12 Additional evaluation results of TransE and ConvE . . . . . . . . . . . . . 35





1 INTRODUCTION 1

1 Introduction

Knowledge Graphs (KGs) have emerged as a powerful tool in the field of Artificial In-
telligence (AI) providing a structured and semantically rich representation of data. By
encoding data and its relationships in a network of nodes and edges, KGs offer an in-
terpretable and flexible framework that facilitates the discovery of hidden patterns and
inference in data. Specifically, a KG is comprised of entities, which refer to real-world
objects or concepts, and relations, that represent the connections between entities [1].
Paired with machine learning techniques, KGs can be used to develop real-world appli-
cations such as recommender systems or intelligent question answering [2]. In addition
to open-source KGs like Freebase [3], DBpedia [4] or Wikidata [5], numerous corpora-
tions including Amazon [6], Siemens [7] and Bosch [8, 9] have developed company-specific
KGs. Utilizing these proprietary KGs, companies strive to transform their operations and
workforces and improve customer interaction [10].

1.1 Motivation

Most KGs are automatically constructed from various data sources such as websites,
databases or text corpora, which can only cover a fraction of all the possible information
about a specific domain. Therefore, the resulting KG can only reflect the information
available in these resources. Furthermore, due to the dynamic nature of knowledge, KGs
can quickly become outdated or incomplete once new information arises. As a result, they
often face the challenge of incompleteness. Incomplete KGs can impair the extraction of
valuable insights or reduce the accuracy of search and recommender systems. In an effort
to tackle this issue, various machine learning techniques are applied. These fall under the
topic of Knowledge Graph Completion (KGC), which aims at inferring knowledge from
an existing KG by predicting missing links [11]. Figure 1 visualizes the idea behind KGC.

Knowledge Graph Embeddings (KGEs) are commonly employed to perform KGC. These
aim at representing KG entities and relations in continuous vector space, such that the
geometric relations in space reflect the semantic relationships in the graph. This vec-
tor representation allows machine learning techniques to infer knowledge from the KG
[11]. Numerous KGE models such as TransE [12], ConvE [13] or TuckER [14] have been
proposed, each employing different embedding strategies. Nevertheless, most KGE ap-
proaches capture only the relationships between entities, missing out on the word context
within these relationships.



1 INTRODUCTION 2

Figure 1: An example of KGC on a Freebase KG: Inferring a new relation (red) from
existing ones (green), adapted from [15]

On the other hand, Neural Language Models (NLMs) have gained significant attention
recently due to their superior performance in understanding, generating, and translating
human language [16]. Their ability to capture complex linguistic contexts within large-
scale data makes them essential for numerous applications, such as sentiment analysis,
speech recognition and conversational AI. The pretrained NLMs such as BERT [17] or
GPT-2 [18] are able to generate word representations that capture a word’s various mean-
ings depending on the context [19]. These pretrained NLMs can be used to generate rich,
context-aware embeddings for entities and relationships. The embeddings can then be
used as input for KGE models, providing a potentially superior starting point compared
to random initialization. Furthermore, pretrained NLMs can be fine-tuned directly on a
downstream KGC task by receiving as input KG triples, comprised of two entities linked
by a relationship. This approach enables NLMs to learn the information contained in
KGs’ structure and assess the plausibility of a given triple. Although pretrained NLMs
achieve state-of-the-art performance in many natural language processing tasks, their ap-
plication in KGC remains relatively unexplored, presenting a significant opportunity for
further research.

1.2 Objectives

Motivated by the great performance of pretrained NLMs in understanding and modelling
human language and the need to handle KG incompleteness, this thesis explores the
possibilities of employing pretrained NLMs to perform KGC. To accomplish this, the



1 INTRODUCTION 3

following research questions are to be answered:

• RQ1: How can the information encoded in pretrained NLMs be incorporated into
the learning process of KGE models?

• RQ2: What is the impact of combining different pretrained NLMs and KGEs for
KGC?

• RQ3: How do pretrained NLMs fine-tuned on a downstream KGC task perform?

To answer the research questions, this thesis considers two different approaches. The first
approach exploits pretrained NLMs to generate entity and relation embeddings, which
subsequently serve as initialization vectors for existing KGE models. The aim is to assess
whether the information encapsulated in the pretrained embeddings enhances the per-
formance of the KGE models on the task of link prediction. Alternatively, the second
approach, named KG-NLM, evaluates the ability of pretrained NLMs to learn the infor-
mation captured in a KG to perform KGC. Specifically, various pretrained NLMs are
fine-tuned and evaluated on triple classification, as a subtask of KGC.

While the concept of initializing a KGE model with pretrained NLM-generated embed-
dings has been previously explored by Zhang et al. [20], this thesis builds upon this
groundwork, extending the experimental analysis in several ways. This includes using
both context-independent and context-aware pretrained NLMs, and the evaluation of
two additional KGE models that have not been previously investigated in this context.
Moreover, the second approach builds upon the work of Yao et al. [21], who intro-
duced a BERT-based model for KGC. This thesis contributes to current research by
fine-tuning and evaluating three pretrained NLMs, namely RoBERTa [22], DistilBERT
[23] and BLOOM [24], on the task of triple classification across two datasets. As per the
current understanding, such a combination of models, task and datasets has not been
previously explored in literature.

1.3 Structure of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 introduces the fundamental
concepts, KGE models and pretrained NLMs needed for the understanding of this thesis.
A review of relevant literature is provided in chapter 3. Furthermore, chapter 4 outlines
the methodology employed in this thesis, including a description of the two approaches:
NLM-enhanced KGE and KG-NLM for KGC. Subsequently, the used datasets, the conducted
experiments and the respective results are discussed in chapter 5. To conclude, chapter 6
summarizes the principal findings and elaborates on limitations as well as opportunities
for future research.



2 THEORETICAL BACKGROUND 4

2 Theoretical Background

This chapter aims to create a shared understanding of the key concepts to this thesis.
To facilitate this, a description of KGs accompanied by examples is provided in section
2.1. This section also includes an overview of KGC and several KGE methods employed
in this thesis. Furthermore, section 2.2 explaines relevant NLMs. To conclude, a short
description of the evaluation metrics used to assess the performance of both approaches
is provided in section 2.3.

2.1 Knowledge Graphs

The concept of knowledge graphs can be traced back to the field of Knowledge Represen-
tation (KR), which emerged in the 1960s as a subfield of AI [2]. KR is concerned with
finding a suitable way to represent knowledge so that machines are able to understand it
and reason over it [25]. A central concept in KR is the Knowledge Base (KB), a collection
of facts aiming to build a model of the world or of a slice of reality [26]. One early ap-
proach to KR are semantic networks, proposed by Richens in 1956 [27], which consist of
nodes representing concepts and edges representing semantic relations between the con-
cepts [28]. This graphical KR approach gained prominence with the introduction of the
Semantic Web by Sir Tim Berners Lee [29]. The latter aimed at extending the World
Wide Web with machine-readable descriptions of the web content enabling machines to
process the information.

However, for machines to attain a true understanding of the added information, a stan-
dardized framework that conveys meaning is required [29]. This led to the development of
the Resource Description Framework (RDF) as an abstract data model, used to represent
and exchange data on the Web and the Resource Description Framework Schema (RDFS)
providing meaning to the RDF data [29, 30]. RDF employs a triple structure, <subject,
predicate, object>, also referred to as an RDF statement, to represent resources and
the relationships that exist between them [31]. The subject denotes the resource the
statement is about and is typically an Internalised Resource Identifier (IRI), but can also
be a blank node representing an unnamed resource. An IRI consists of a sequence of
characters that unambiguously identifies a resource [32]. The predicate is a property or
a relationship attributed to the subject and is always an IRI. Lastly, the object refers to
an entity the subject is related to and can be an IRI, a blank node or a literal. The latter
is used for specific data types such as strings, numerical values and dates. As a result,
knowledge is represented as a collection of RDF statements, forming an RDF Graph.

The term "Knowledge Graph" was initially introduced by Google in 2012 with the launch
of their KB, the Google Knowledge Graph. Shortly after, the term gained great popularity



2 THEORETICAL BACKGROUND 5

in both academia and industry, becoming a widely accepted reference to any graph-
based KB [33]. Ehrlinger et al. [34] provide a comprehensive analysis of the different
KG definitions available in the literature. In the scope of this thesis, the following KG
definition by Wang et al. is adopted [1]:

A Knowledge Graph is a multi-relational graph, where entities (nodes) refer to real world
objects or concepts and relations (edges) denote the relationship between entities.

Therefore, the core structure of a KG can be formally described as a triple <head,

relation, tail>, similar to the RDF statement, with head and tail denoting KG
entities and relation denoting a KG relation. As a result, a KG provides structured in-
formation about a certain domain by connecting entities with each other. In addition to
the entity and relation names, KGs often include textual entity and relation descriptions.
Figure 2 provides an illustration of these descriptions, represented by the red framed
boxes, accompanying the entity names. Throughout this work, the term "labels" is used
for entity and relation names, while the corresponding textual descriptions are referred
to as "descriptions."

Figure 2: Example of a KG’s entity names and descriptions, taken from [35]

In the following, two KBs, from which the KG datasets used in this thesis are extracted,
are introduced.

WordNet [36] is a lexical KB of the English language that expresses semantic relations
between words, as depicted in figure 3. It accomplishes this by organizing nouns, verbs,
adverbs, and adjectives into groups called cognitive synonyms or synsets. These synsets
are then interconnected through conceptual-semantic and lexical relationships. WordNet
was established at Princeton University in the 1980s and has since been continuously
developed and maintained [37].



2 THEORETICAL BACKGROUND 6

Figure 3: Visualization of a subgraph from WordNet, taken from [38]

Freebase [3] was an open, collaborative KB aimed at facilitating the development of
web-based data-driven applications [39]. It included data from various sources such as
Wikipedia, MusicBrainz and community contributions over the years. After being ac-
quired by Google, the entire Freebase KB was eventually transferred to Wikidata before
it was ultimately shut down in 2016 [40]. Figure 4 demonstrates a fragment of the Freebase
KB.

Figure 4: Visualization of a subgraph from Freebase, taken from [41]

2.1.1 Knowledge Graph Completion

Real-life KGs often suffer from incomplete knowledge due to missing information. Knowl-
edge Graph Completion (KGC) addresses the incompleteness and sparsity of KGs by
predicting missing links or discovering new facts, thereby augmenting the overall struc-
ture of the graph [11, 42]. In their comprehensive analysis of KGC methods, Chen et
al. [11] distinguish between traditional KGC methods and Knowledge Representation
Learning (KRL) methods. Traditional KGC methods infer knowledge by applying rule
reasoning, probabilistic graph models or graph calculation. Alternatively, KRL based



2 THEORETICAL BACKGROUND 7

methods rely on machine learning techniques to transform a KG’s entities and relations
into low-dimensional vectors in a continuous vector space, also referred to as Knowledge
Graph Embeddings (KGE) [43]. Being a central concept in this thesis, KGEs are dis-
cussed in detail in the following section. Furthermore, depending on the way of treating
unknown facts, literature differentiates between the Closed World Assumption (CWA) and
the Open World Assumption (OWA) [44, 11]. CWA considers only existing KG triples
as true, thus treating non-existing triples directly as false. Hence, KGC relies solely on
predicting relationships between the existing entities and relations. On the other hand,
OWA considers non-existing KG triples as unknown, indicating that the absence of a
triple in a KG does not necessarily imply its falsehood.

KGC tasks include link prediction and triple classification. Link prediction exploits ex-
isting facts in a KG to predict missing links. It does so by inferring the missing instance
(head, relation, or tail) of a KG triple given the other two instances [45]. Triple classifi-
cation refers to the task of determining if a given triple is part of a given KG. Hence, it
is a binary classification problem, assessing whether a triple is true or not [2].

2.1.2 Knowledge Graph Embedding Methods

As previously explained, KGEs encode the entities and relations of a KG into low-
dimensional vectors that can be processed by machine learning algorithms while cap-
turing the semantic relationships and structure of the KG. For instance, if two entities
often have similar relationships in the KG, their embeddings should be close together in
the embedding space [12]. Typical KGE methods usually consist of the following three
steps [1]:

1. Representing entities and relations in a continuous space. Entities are commonly
represented as deterministic points in the vector space while relations are viewed as
operations in the vector space.

2. Defining a scoring function that assesses the likelihood of a triple formation.

3. Learning entitiy and relation representations by solving an optimization problem
that maximizes the total plausibility of the correct triples.

In their extensive analysis of KGE approaches, Ferrari et al. [45] differentiate between
three primary embedding techniques: translational models, semantic matching models and
neural network models.

Translational models employ distance-based scoring functions to assess the plausibility
of a triple. This is determined by the distance between two entities, typically after a
translation performed by the relation is applied [1]. TransE [12] is the most prominent



2 THEORETICAL BACKGROUND 8

translational KGE model, whereby entities and relations are represented as vectors into
the same embedding space. Given a KG triple (h, r, t), the relation r is modelled as a
translation vector between the head h and tail t entities, such that the assumption h +
r ≈ t holds. The scoring function is defined as follows, whereby l1/l2 denote the norm
constraint:

fr(h, t) = − ∥ h+ r − t ∥l1/l2 (2.1)

Sun et al. [46] suggest that the overarching goal of KGE methods is to model and
deduce a KG’s connectivity patterns based on the observed knowledge. Such connectivity
patterns include symmetry/antisymmetry, inversion and composition. To achieve this,
they introduce the RotatE model, which represents entities and relations in the complex
vector space and models each relation r as an element-wise rotation from the head entity
h to the tail entity t, as illustrated in figure 5 (b). Therefore, the scoring function can be
defined as:

fr(h, t) = − ∥ h ◦ r − t ∥ (2.2)

Overall, the idea behind both TransE and RotatE models depicted in figure 5 (a) and
(b), is to minimize the distance |h+ r − t| or |h ◦ r − t| respectively for the observed KG
triples (true triples) and maximize it for false triples.

(a) (b)

Figure 5: Geometric visualization of TransE (a) from [45] and RotatE (b) from [46], for
an embedding dimension equal to one.

Semantic matching models rely on a similarity-based scoring function to estimate the
similarity between different entities and relations [45, 1]. The scoring function is calculated
as a bilinear product, where the relation embedding is a bi-dimensional matrix r [45]. It
can be generally defined as follows:

fr(h, t) = h× r × t (2.3)



2 THEORETICAL BACKGROUND 9

The intuition behind the matrix r is that it captures how a head entity is related to the
tail entity under the considered relation. RESCAL [47] is a bilinear model that follows the
described logic to capture interactions between a KG’s entities. The DistMult model [48]
is introduced in an effort to reduce the complexity of RESCAL by restricting the relation
matrix r from a general asymmetric matrix to a diagonal square matrix [1]. Furthermore,
the ComplEX model [49] extends DistMult by representing entities and relations in the
complex space.

Unlike the previous semantic matching models, which use a bilinear product, the TuckER
model [14] relies on the Tucker decomposition [50], a popular method in machine learning
used for dealing with multidimensional data [51]. Specifically, TuckER considers each
triple as a 3-way tensor that is factorized into a core tensor multiplied by a matrix along
each mode. Entity and relation embeddings are represented in the rows of the matrices,
while the core tensor captures the level of interaction between entities and relations [14].
The scoring function can be defined as follows:

fr(h, t) = W ×1 h×2 r ×3 t (2.4)

where W denotes the core tensor, h and t refer to the rows of the entity embedding matrix,
r refers to the rows of the relation embedding matrix and xi indicates the tensor product
along the i-th mode.

Figure 6: Visualization of the ConvE approach, taken from [13]

Neural network models utilize deep learning architectures to model and learn KG
embeddings. ConvE [13] applies a multi-layer convolutional architecture to learn KG
embeddings and perform link prediction. The approach is illustrated in figure 6. In
particular, the head h and relation r embeddings are initially reshaped into a 2D repre-
sentation (denoted as h̄, r̄) and concatenated. Afterwards, the resulting matrix is passed
through a 2D convolution layer equipped with several filters w that yield a feature map
tensor. The tensor is vectorized and projected into a k-dimensional space using linear
transformation. To conclude, it is compared with the embeddings of all potential tail



2 THEORETICAL BACKGROUND 10

entities. The scoring function of ConvE can be defined as follows:

fr(h, t) = g(vec(g(concat(h̄, r̄) ∗ w))W )t (2.5)

where g refers to a nonlinear function, vec(·) denotes the tensor vectiorization, ∗ represents
convolution and W refers to the linear transformation matrix [45].

Other neural network-based KGE methods include R-GCN [52] and CompGCN [53] which
apply Graph Convolution Networks (GCN) to learn representations for entities and rela-
tions considering their neighbour connections in the KG [54].

2.2 Neural Language Models

Natural Language Processing (NLP) is a subfield of computer science that is concerned
with enabling computers to understand and represent human languages [55]. Converting
human language into numerical form, while capturing its meaning, is essential to applying
machine learning algorithms to textual data. This numerical vector representation is
known as word embedding. Word embeddings can be defined as fixed-length numerical
vectors in a predefined vector space representing individual words [56]. Within the scope
of this thesis, the terms word embedding, KG embedding and vector representation

are used interchangeably. According to Almedia et al. [56], word embedding methods can
be broadly categorized into count-based models and prediction-based models depending
on the embedding generation strategy. Count-based models analyze word co-occurrence
statistics, whereas predictive models leverage a word’s context. This thesis focuses on
predictive methods, specifically on neural network-based language models.

Neural Language Models (NLM) employ neural networks to learn the distributed repre-
sentation of words as low-dimensional vectors and use these to estimate the probability
of word sequences [57]. NLMs are widely used across many NLP applications such as
speech recognition, question answering and sentiment analysis [58]. NLM-generaled word
embeddings can be categorized into non-contextual and contextual embeddings [59]. Non-
contextual embeddings are static in nature, maintaining the same representation regard-
less of the context in which the word is used. In contrast, contextual embeddings dy-
namically adjust the representations based on the surrounding context, allowing multiple
embeddings for the same word. NLMs are typically trained on vast amounts of unlabeled
text data, substantially increasing the number of the model’s parameters. This can of-
ten lead to overfitting or limited generalization capabilities. To address these challenges,
pre-training of NLMs is carried out on extensive text corpora, focusing on general tasks.
The knowledge captured in pretrained NLMs has proven to be beneficial for a variety
of downstream tasks. Therefore, it is a common practice to fine-tune a pretrained NLM
for a specific task, enabling the model to adapt and perform effectively in task-specific
scenarios [60].



2 THEORETICAL BACKGROUND 11

Word2Vec

Word2Vec [61] is a prominent technique that utilizes a shallow neural network to learn
non-contextual word embeddings. It employs two different approaches, illustrated in figure
7, namely the Continuous Bag-of-Words (CBOW) and the Continuous Skip-gram. Both
approaches share a similar structure, consisting of an input layer, an output layer, and a
single hidden layer. The input layer represents the one-hot encoded word vectors. The
hidden layer performs a linear transformation by computing the dot product between the
input vectors and the weight matrix connecting the input and hidden layer. The output
layer is a softmax layer that calculates the probabilities of predicting each word in the
vocabulary. The CBOW model predicts the target word wt by considering the surrounding
context words within a fixed-length window. The Continuous Skip-gram model reverses
the task by predicting the context words within a fixed-length window given a target
word.

Figure 7: The Word2Vec model architecture, taken from [61]

BERT

Bidirectional Encoder Representations from Transformers (BERT) is a context-aware
NLM introduced by Devlin et al. [17]. It employs a transformer architecture that re-
lies on self-attention mechanisms to model dependencies between words in a sentence.
The attention mechanism was introduced by Vaswani et al. [62] and enables a neural net-
work to weigh the importance of different input elements when processing sequential data,
allowing the model to focus more on relevant information. BERTbase consists of 12 Trans-
former encoder layers with a hidden dimension of 768 and a total of 110 million parameters
[17]. The key novelty of BERT lies in its bidirectional training approach, allowing it to
capture contextual information from both left and right contexts simultaneously, leading



2 THEORETICAL BACKGROUND 12

to a deeper understanding of language.

BERT is able to represent as input both single sentences and pairs of sentences within a
single token sequence. In the context of BERT, Devlin et al. define a sentence as any
continuous span of text and sequence as the token sequence given as input to BERT, which
can be a single sentence or two sentences combined. BERT uses WordPiece embeddings
[63] including a 30.000 token vocabulary. The model’s input is processed as follows.
Firstly, the input text is divided into individual tokens or subwords using WordPiece
tokenization. A special classification [CLS] token is inserted at the beginning of every
sequence. Sentence pairs are combined into a single sequence. A [SEP] token is inserted
between the two sentences to separate them. Furthermore, every token of the input
sequence is associated with a so-called segment embedding that indicates to which sentence
the token belongs. Additionally, a positional embedding is included with each token to
indicate its position in the sequence. To conclude, the input embeddings are calculated as
the sum of the token embeddings, the segment embeddings and the position embeddings,
as shown in figure 8.

Figure 8: BERT input representation, taken from [17]

The BERT model is pretrained on large amounts of unlabeled data sourced from the
BooksCorpus and the English Wikipedia on two unsupervised tasks: Masked Language
Modeling (MLM) and Next Sentence Prediction (NSP). The idea behind MLM is to
randomly mask a percentage of the input tokens and then predict these masked tokens
based on the context provided by the other, non-masked words in the sequence. For
BERT specifically, 15% of all tokens in each sequence at random are masked. In NSP,
BERT learns to understand relationships between sentences by predicting whether the
second sentence in the pair is the subsequent sentence in the original document.

RoBERTa is an optimized variant of the BERT model introduced by Liu et al [22]. It
employs a similar architecture to BERT but incorporates modifications in the training
process. RoBERTa is trained longer, over more data and longer sequences, and it utilizes
dynamic masking during pre-training. DistilBERT, developed by Sanh et al. [23], is a
distilled version of the BERT model. It aims to retain most of the performance of BERT



2 THEORETICAL BACKGROUND 13

while reducing the model’s size and computational requirements. DistilBERT achieves
this by applying a knowledge distillation technique, where it is trained to mimic the
behaviour of the larger BERT model.

BLOOM

BLOOM [24] is an open-access multilingual language model that employs a causal decoder-
only Transformer architecture. It is trained with the objective of predicting the next token
that will follow in a sentence. BLOOM is trained on the ROOTS corpus [64], a collection
of datasets covering 46 natural languages and 13 programming languages. The BLOOM
tokenizer is learned using byte pair encoding, whereby frequent words are tokenized as
single tokens, while less frequent words are split into subwords and represented by multiple
tokens. The tokenizer comprises of a vocabulary of 250680 words.

2.3 Evaluation Metrics

Commonly applied evaluation metrics for link prediction are Hits@k and Mean Reciprocal

Rank (MRR) [11]. Hits@k measures the proportion of correct triples within the top k
ranked predictions and is calculated as follows:

H@k =
|{q ∈ Q : q < k}|

|Q|
, (2.6)

where q refers to the current prediction and Q denotes all the predictions made by the
model. It indicates the accuracy of the model by considering if a true prediction is among
the top k predictions. Typically, Hits@k is reported for k = 1, 3, 10. MRR grades the
predicted triples depending on whether these are true or not and is computed as follows:

MRR =
1

|Q|
∑
q∈Q

1

q
(2.7)

To evaluate the performance of AI models on classification tasks, metrics such as Accuracy,
F1-Score, Precision and Recall are used [65]. Accuracy measures the proportion
of correct predictions (both true positives and true negatives) among the total number
of instances evaluated. It gives a general measure of the model’s overall performance.
Precision denotes the ratio of correctly predicted positive instances to the total pre-
dicted positives. Recall refers to the ratio of correctly predicted positive instances to the
total positive instances, indicating how well the positive class is predicted. The F1-Score
is the harmonic mean of precision and recall.



3 RELATED WORK 14

3 Related Work

To handle the incompleteness of KGs, research exploits machine learning techniques and
low-dimensional representation of KG entities and relations. For this purpose, numerous
approaches, such as TransE [12], DistMult [48] or ComplEx [49] have been proposed.
These models rely predominantly on the structural information inherent in the KG to
perform KGC tasks such as link prediction and triple classification.

With the emergence of pretrained NLMs such as BERT [17], RoBERTa [22] or GPT-2
[18] research is gradually shifting towards leveraging the knowledge present in these lan-
guage models for KGC. Aiming to integrate the contextual information captured in word
embeddings generated by pretrained NLMs, Ma et. al [66] suggest a novel KGE approach
that forms KG embeddings as a linear combination of NLM-derived word embeddings,
achieving promising results in detecting unknown facts, link prediction and triple classi-
fication. Alam et. al [67] propose integrating NLM-generated word embeddings into the
loss function of an existing KGE model. The plausibility of triples based on the word
embeddings serves as guidance during the learning process of the KGE. Specifically, the
loss function is modified in such way that it not only penalizes the KGE model for pre-
dicting incorrect relationships between entities but also for generating entity and relation
embeddings that are too dissimilar from the respective NLM embeddings. In contrast,
Zhang et al. [20] present a different strategy: they initialize a KGE model using word
embeddings of KG entities and relations generated by a pretrained NLM, thereby explor-
ing a novel way to enhance the performance of KGEs in KGC tasks. Their approach
is evaluated for the KGE models TransE, DistMult, ComplEX, QuatE, RotatE on the
task of link prediction. Through numerous experiments on multiple benchmark datasets
such WN18RR and FB15K237, Zhang et al. demonstrate that the proposed approach
outperforms traditional KGE models that use random initialization.

Furthermore, Yao et al. [21] propose a novel framework that relies solely on the pretrained
BERT model to model triples’ plausibility, named KG-BERT. It is fine-tuned with KG
triples to perform triple classification, link prediction and relation prediction tasks. In
particular, each triple <head, relation, tail> is treated as a separate input sequence
and the model is trained with entity and relation labels and descriptions. When evaluated
on three benchmark datasets for link prediction, KG-BERT notably improves Mean Rank
(MR) and achieves comparable Hits@10 results to conventional KGE models such as
TransE. Similar to KG-BERT, Biswas et al. [68] introduce a GPT -2-based approach for
KGC. GPT-2 is fine-tuned on KG triples and finalized with a sigmoid scoring function on
top of the model’s final layer to enable sequence classification. The approach is evaluated
on the task of triple classification for two benchmark datasets.



4 METHODOLOGY 15

4 Methodology

This chapter outlines the methodology used to investigate the applicability of pretrained
NLMs for KGC. Two distinct approaches are explored: (1) utilizing pretrained NLM
embeddings of entities and relations as initialization vectors for a given KGE model, and
(2) fine-tuning a pretrained NLM with KG triples for triple classification. Both approaches
are applied in the context of KGC tasks.

4.1 NLM-enhanced Knowledge Graph Embedding Models

The first approach consists of using pretrained NLM-generated embeddings of KG entities
and relations as initialization vectors for a given KGE model, rather than the commonly
applied random initialization. The core idea of this approach suggests that the con-
textual information drawn from pretrained NLMs, as reflected in the word embeddings,
could potentially result in superior KG embeddings when compared to randomly initial-
ized vectors. In broad terms, the approach can be summarized as follows. For a given
KG, the entity and relation labels together with the respective textual descriptions are ex-
tracted. Entity and relation embeddings are generated for two different scenarios: labels
only and labels & descriptions. For this purpose, the context-independent Word2Vec
model and the context-aware BERT model are used. The resulting entity and relation
embeddings are used as initialization vectors to train a KGE model. To conclude, the
KGE model is evaluated on the task of link prediction. Table 1 summarizes the explored
embedding initialization strategies.

Method Labels Labels & descriptions

Word2Vec yes no
BERT yes yes
BERT PCA yes no

Table 1: Overview of embedding strategies for KGE model initialization

In the following, the process of generating pretrained embeddings, which varies depending
on the employed NLM, is described.

Pretrained Word2Vec Embeddings

Since Word2Vec is a context-independent language model, individual words need to be
matched against the pretrained Word2Vec embeddings to retrieve the corresponding vec-
tor representation. Therefore, to obtain the embeddings for the KG entities and relations,



4 METHODOLOGY 16

their labels are split into individual words, as depicted in the first two steps in figure 9.
The embeddings of the respective separate words are retrieved and averaged, resulting
in a vector representation of dimension (1, embedding dimension) for each entity and
relation. Following the example provided in figure 9, the embedding of the entity "ger-
man shepherd dog" is computed by averaging the embeddings of the individual words
"german", "shepherd", and "dog". Words lacking a Word2Vec embedding are excluded.
Furthermore, for entity or relation labels without any match to the pretrained embed-
dings, the first five words of the corresponding textual description are included in order
to compute the averaged embedding.

Figure 9: Generation of pretrained Word2Vec embeddings

Pretrained BERT Embeddings

As a powerful context-aware language model, BERT effectively encodes meaningful in-
formation about a word and its surrounding context within the word embeddings. For a
given KG, the BERT entity and relations embeddings are computed for both scenarios:
labels only and labels & descriptions. Figure 10 illustrates the BERT embedding
retrieval process within the context of KGE model initialization.

For every entity and relation, labels (labels & descriptions) are treated as separate in-
put sequences and are tokenized accordingly. However, since textual descriptions often
surpass the limit of 512 tokens imposed by the BERT model, the tokenized descriptions
are restricted to the first 512 tokens. Moreover, the tokenized entities and relations are
fed to the pretrained BERT model to retrieve the embeddings. BERT outputs embed-
dings of dimension (#layers, #batches, #tokens, embedding dimension) requiring
some adjustment to match the input format of the KGE models, since these work on di-
mensionalities of (#entities, embedding dimension) for entities, and (#relations,

embedding dimension) for relations. Firstly, the batch dimension is resolved by stacking
the embeddings across all batches for each layer. Secondly, only the CLS token embedding
is further considered, since it is used as the aggregate sequence representation for classi-
fication tasks [17]. Lastly, to achieve the desired format of the an entity’s or relation’s
embedding, the CLS token embeddings of the last four hidden layers are averaged.



4 METHODOLOGY 17

Figure 10: Generation of pretrained BERT embeddings

In commonly used state-of-the-art KGE models, the employed embedding dimensions
are smaller, generally ranging from 200 to 500, when compared to BERT’s dimension-
ality, which is 768 [14, 13, 12]. Therefore, an additional initialization strategy involving
the application of a dimensionality reduction technique to the already computed BERT
embeddings is evaluated.

4.2 Pretrained NLMs for Knowledge Graph Completion

The second approach, named KG-NLM, explores the capability of pretrained contextual
NLMs to perform KGC. To accomplish this, several pretrained NLMs with an added linear
layer for sequence classification are fine-tuned on the task of triple classification using a
KG’s triples. In the context of NLMs, the triple classification task can be understood
as a sequence classification task. Hence, each KG triple (head, relation, tail) is
considered as one input sequence. Therefore, the triples are extracted in textual form
(labels only) and are adjusted to string sequences. The extracted triples represent the
positive samples in the classification dataset, while the negative triples are generated using
a negative sampling technique. The latter generates a negative triple for each positive
triple by corrupting either the head or the tail entity. Due to the randomized nature
of the negative sampling process, positive triples might be generated, however, these are
excluded from the final dataset. The positive and the negative triples are joined into one
dataset and shuffled to ensure a random distribution of both classification labels.

Figure 11 visualizes the entire process of training the KG-NLM models with KG triples. As
depicted, a KG triple, for example (Albert Einstein, place of birth, Germany), is
arranged into a string sequence. The start of a sequence is identified with a special
token, denoted here as BOS, inserted before the head entity. Similarly, an additional
special token is used to mark the end of a sequence, denoted as EOS, placed after the
tail entity. Specifically, for classification tasks, a special classification token, denoted as
CLS, is inserted either at the beginning of the sentence or at the end, depending on the
selected tokenizer. In this case, the CLS token replaces the BOS or EOS token. During



4 METHODOLOGY 18

tokenization, the input sequence is split into full forms, where each word is assigned a
token, or into word pieces, where one word can be split into multiple tokens. Consequently,
the tokenized input sequence, along with the respective classification label is inputted to
the pretrained NLM. To perform classification, a classification head is introduced, which
comprises a compact Multi-Layer Perceptron (MLP) featuring two dense layers with a
non-linear activation function. This classification head is appended to the CLS-token
embeddings to generate a probability distribution through a softmax layer, enabling the
determination of class probabilities.

Figure 11: Visualization of the KG-NLM approach for KGC

For training the KG-NLM models, two strategies are used: the end-to-end training approach
and the frozen NLM layers approach. In the former, backpropagation is permitted through
all model layers, including those of the pretrained NLM, allowing the update of weights
across the entire model. Conversely, in the approach where the layers of the pretrained
NLM are frozen, the weights within these specific layers remain static and are not subject
to updates.



5 EVALUATION 19

5 Evaluation

This chapter presents the datasets utilized in this thesis and delves into the experimental
setup of the methodology introduced in chapter 4, covering the explored KGE models
and pretrained NLMs. The chapter concludes with the presentation and discussion of the
results associated with both approaches.

5.1 Datasets

The datasets utilized in this thesis include WN18RR [13] and FB15k-237 [69]. WN18RR
is a modified version of the WN18 dataset [12], which is a subset of the WordNet KB.
The WN18 dataset faces the issue of test leakage due to inverse relations, meaning that
in many triples of the test set, the head and tail entities are swapped. To address this
problem, Dettmers et al. [13] introduce the WN18RR dataset, which mitigates the is-
sue by eliminating such inverse relations. The WN18RR dataset is formed by extracting
WordNet triples in the format (synset, relation, synset) to represent the informa-
tion contained in WordNet, as described in chapter 2.1.

FB15k-237, a widely recognized dataset in KGC, contains triples that capture relation-
ships between entities in a KG derived from the Freebase KB. Originally introduced by
Bordes et al. in the FB15k dataset [12], FB15k-237 is a modified version restricted to
the most frequently used relations while excluding near-duplicates and inverse ones. The
statistics of both datasets are provided in table 2. For every dataset, the pre-computed
train, validation and test sets available at PyKEEN Datasets1 are used. As described in
chapter 4.1, the pretrained entity and relation embeddings are generated for labels and
descriptions respectively. The labels and descriptions in textual form are extracted from
Yao et. al2 [21].

Dataset Nr. Entities Nr. Relations Nr. Triples
Train Validation Test Total

WN18RR 40559 11 86835 2924 2824 92583
FB15k-237 14505 237 272115 17526 20438 310079

Table 2: Datasets overview

1PyKEEN Datasets: https://pykeen.readthedocs.io/en/stable/reference/datasets.html
2Git Repository : https://github.com/yao8839836/kg-bert/tree/master/data



5 EVALUATION 20

5.2 Experimental Setup

In the following, the implementation choices related to the explored approaches described
in chapter 4 are discussed. This chapter provides an overview on the selected KGE
models and NLMs, including the choice of the hyperparameters and the necessary dataset
preprocessing steps tailored to each approach. All code is implemented in Python (3.9.7)
and run on a NVIDIA Tesla V100.

NLM-enhanced KGE Models

To carry out the experiments related to the first approach (see chapter 4.1), the PyKEEN3

package is used. To generate the word embeddings, the following pretrained models are
employed:

• Word2Vec pretrained on approximately 100 billion words from the Google News
dataset, including 300-dimensional embeddings for about 3 million words and phrases.

• BERT pretrained on a vast amount of data from BooksCorpus and the English
Wikipedia as described in section 2.2. The pretrained BERT model outputs word
embeddings with a dimensionality of 768 for each of the model’s hidden layers.

The impact of incorporating NLMs into KGE models is evaluated on the following models:
TransE, TuckER, ConvE and RotatE. Table 3 provides an overview of the pretrained
embedding strategies employed for each KGE model.

KGE Model Embedding Method Dimension

TransE, ConvE, TuckER BERT (labels) 768
BERT (labels & descriptions) 768
BERT PCA (labels) 200
Word2Vec 300

RotatE BERT (labels) 768
Word2Vec 150

Table 3: Overview of pretrained embeddings for KGE model initialization

As outlined in chapter 4.1, BERT embeddings are generated for KG labels and labels with
descriptions by averaging the last four hidden layer embeddings of the CLS token. For
the initialization employing BERT embeddings with reduced dimensionality, the Principal
Component Analysis (PCA) method is utilized. PCA is a statistical technique used to

3PyKEEN [70] is an open-source Python library that provides a comprehensive framework for KGE
including various KGE models, datasets, and evaluation metrics.



5 EVALUATION 21

reduce the dimension of datasets while preserving as much information as possible. It
achieves this by generating new uncorrelated variables that successively maximize vari-
ance [71]. PCA is applied to both entity and relation embeddings, which are derived by
averaging the embeddings from the last four hidden layers of BERT. Prior to inputting
the NLM-generated embeddings into the KGE model, they are aligned to the sequence
order of the entities and relations in the built-in PyKEEN datasets.

In the case of RotatE, where entities and relations are mapped to a complex vector space
(see chapter 2.1.2), additional processing of the pretrained embeddings is required. For
RotatE, the default initialization of entity and relation representations involves generating
random real number vectors twice the length of the predefined dimension. This means
that if an embedding of length 100 is needed for a word like "dog" RotatE would generate
a randomized vector of size 200. The first 100 entries represent the real part of the
complex vector, while the second 100 entries represent the imaginary part. As a result,
it is not possible to directly apply pretrained embeddings of length 300 (Word2Vec) or
768 (BERT), which consist of real numbers, to the RotatE model. Therefore, Word2Vec
entity embeddings are transformed into complex vectors by splitting them into the first
150 entries as the real part and the second 150 entries as the imaginary part, resulting
in a complex vector of length 150. The Word2Vec relation embeddings are dimensionally
reduced to 150 using the PCA method. The resulting embedding vector is used to compute
the real and the imaginary part of the complex relation representation, as described in
the appendix section A.1. In the case of pretrained BERT embeddings, the CLS token is
once again employed. The last hidden layer of BERT is utilized as the real part of the
complex vector, while the second-to-last hidden layer is utilized as the imaginary part.

The models are trained with the hyperparameters reported in the papers corresponding
to the baseline models. This is the case for the models ConvE, TuckER and RotatE. As
for TransE, the original paper hyperparameters are not available, thus the hyperparam-
eters used in this thesis are taken from Ali et al.’s [72], who conduct a comprehensive
benchmarking study on multiple datasets and KGE models, providing the best achieved
hyperparameters for each model-dataset combination. Furthermore, a limited-resource
hyperparameter optimization is carried out for the models TransE and ConvE. Compu-
tational resources are limited to 24 hours run time or a maximum of 10 trials per model.
The employed hyperparameter configurations are denoted as follows:

• paperP denotes hyperparameters from the original papers.

• benchP refers to hyperparameters derived from Ali et al.’s [72] study.

• hpoP refers to a set of hyperparameters acquired through limited resource hyperpa-
rameter optimization within the scope of this thesis.



5 EVALUATION 22

The detailed hyperparameter selection is provided in the appendix section A.2. To con-
clude, the performance of the KGE models on the task of link prediction is measured
using the following metrics: Hits@k for k = 1, 3, 10 and MRR. All the models are trained
using early stopping on Hits@10, evaluated every 50 epochs and with a patience of 3.

KG-NLM

The KG-NLM approach consists of evaluating different NLMs for KGC on the task of
triple classification, resulting in the following models: KG-RoBERTa, KG-DistilBERT and
KG-BLOOM. The pretrained NLMs explored in this thesis include roberta-base, bloom-560m
and distilbert-base-uncased. Each dataset is preprocessed as described in chapter 4.2
using a uniform negative sampling technique4. The models are trained for 1 and 3 epochs
respectively, employing AdamW optimization and a learning rate of 5e−5. The complete
list of the selected hyperparameters is presented in table 4.

Hyperparameter Value

Nr. of epochs 1, 3
Train batch size 8
Gradient accumulation steps 32
Evaluation batch size 8
Evaluation strategy steps
Warmup steps 500
Learning rate 5e-5
Learning rate scheduler linear

Table 4: Hyperparameter selection for the KG-NLM models

The model’s performance on triple classification is evaluated using the metrics accuracy,
recall, precision and f1-score.

5.3 Results

5.3.1 NLM-enhanced Knowledge Graph Embedding Models

To investigate the influence of pretrained NLM-generated embeddings in the learning
process of existing KGE methods, several experiments following the approach described
in chapter 4.1, are conducted. The evaluation results for each model and the selected
initialization strategies are presented in table 5 for WN18RR and table 6 for FB15k-
237. The displayed results represent the best-performing hyperparameter choice for each

4Negative sampling from PyKEEN: https://pykeen.readthedocs.io/en/stable/reference/negative_sampling.html



5 EVALUATION 23

model and dataset. Additional results are presented in table 12 in the appendix. The
hyperparameter notation is defined in section 5.2, while the hyperparameter selection is
provided in detail in the appendix chapter A.2.

Model Initialization Hyper Nr. Metric
Embeddings -parameters epochs Hits@1 Hits@3 Hits@10 MRR

TransE baseline [73] 0.043 0.441 0.532 0.243
TransE Word2Vec benchP 100* 0.067 0.375 0.57 0.249

BERT (labels) benchP 500 0.056 0.323 0.536 0.222
BERT PCA (labels) benchP 500 0.074 0.389 0.571 0.256
BERT (labels benchP 500 0.044 0.319 0.529 0.214
& descriptions)

ConvE baseline [13] 0.4 0.44 0.52 0.43
ConvE Word2Vec hpoP 700* 0.190 0.294 0.360 0.253

BERT (labels) hpoP 500 0.025 0.068 0.121 0.058
BERT PCA (labels) hpoP 1000 0.15 0.235 0.314 0.206
BERT (labels hpoP 500 0.035 0.088 0.149 0.074
& descriptions)

TuckER baseline [14] 0.443 0.482 0.526 0.47
TuckER Word2Vec paperP 1000 0.453 0.491 0.522 0.478

BERT PCA (labels) paperP 1000 0.46 0.491 0.511 0.485

RotatE baseline [46] 0.428 0.492 0.571 0.476
RotatE Word2Vec paperP 1500 0.427 0.487 0.564 0.472

BERT (labels) paperP 500 0.187 0.315 0.358 0.259

Table 5: WN18RR - Evaluation results of NLM-enhanced KGE models. Number of epochs
marked with * signifies early stopping.

For the WN18RR dataset, TransE shows a better performance compared to the base-
line in terms of Hits@1, Hits@10 and MRR for three of the initialization strategies:
Word2Vec, BERT (labels) and BERT PCA (labels). Using BERT embeddings gener-
ated for both labels and descriptions to initialize TransE produces comparable results
to the baseline. Similar results can be observed for TuckER, where initialization with
Word2Vec and BERT PCA (labels) embeddings leads to slightly better performance than
the baseline concerning Hits@1, Hits@3 and MRR. The utilization of pretrained NLM-
generated embeddings for ConvE seems to lead to a decline in the model’s performance
in the case of the WN18RR dataset. Experimental results highlight that ConvE’s per-
formance is significantly affected by the embedding dimensionality. Initializing ConvE
with BERT (labels) of 768 dimensions results in poor performance across all metrics
when compared to initializing it with BERT PCA (labels) of dimension 200. In terms
of RotatE, the initialization using either Word2Vec or BERT (labels) embeddings yields



5 EVALUATION 24

comparable outcomes in the long run. However, it is important to highlight that RotatE
utilizing Word2Vec embeddings is trained over a greater number of epochs relative to the
model initialized with BERT (labels).

Model Initialization Hyper Nr. Metric
Embeddings -parameters epochs Hits@1 Hits@3 Hits@10 MRR

TransE baseline [73] 0.198 0.376 0.441 0.279
TransE Word2Vec hpoP 250* 0.148 0.245 0.373 0.223

BERT (labels) hpoP 250* 0.115 0.184 0.274 0.17
BERT PCA (labels) hpoP 500 0.165 0.266 0.402 0.245
BERT (labels hpoP 100* 0.126 0.206 0.306 0.188
& descriptions)

ConvE baseline [13] 0.237 0.356 0.501 0.325
ConvE Word2Vec paperP 350* 0.144 0.212 0.297 0.196

BERT (labels) paperP 500 0.128 0.188 0.265 0.174
BERT PCA (labels) paperP 500 0.147 0.212 0.295 0.172
BERT (labels paperP 500 0.125 0.186 0.264 0.197
& descriptions)

TuckER baseline [14] 0.266 0.394 0.544 0.358
TuckER Word2Vec paperP 500 0.185 0.273 0.377 0.250

BERT (labels) paperP 500 0.197 0.293 0.396 0.265
BERT PCA (labels) paperP 500 0.176 0.257 0.351 0.235
BERT (labels paperP 500 0.198 0.291 0.395 0.265
& descriptions)

RotatE baseline [46] 0.241 0.357 0.533 0.338
RotatE Word2Vec paperP 2000 0.229 0.35 0.496 0.318

BERT (labels) paperP 500 0.213 0.328 0.471 0.299

Table 6: FB15k-237 - Evaluation results of NLM-enhanced KGE models. Number of
epochs marked with * signifies early stopping.

For the FB15k-237 dataset, all models and initialization strategies demonstrate lower
performance compared to the baselines. With the exception of TransE, it is evident
that the embedding dimensionality has less impact on the model’s performance for this
dataset. For every model, the employed initialization strategies result in highly similar
performances across all metrics.

Discussion

While the performance of TransE on the WN18RR dataset surpasses the baseline, the
majority of the results indicate no improvement in model performance when initializing
with pretrained NLM-generated embeddings. It appears that the knowledge encapsulated



5 EVALUATION 25

by pretrained NLMs within the entity and relation embeddings do not assist the KGE
models explored in this thesis in learning better KG embeddings compared to random
initialization vectors. This could be attributed to the distinct learning methods employed
by KGE models and NLMs. KGE models learn KG embeddings through patterns inher-
ent in the graph structure, rather than through language understanding as in the case
of NLMs. This divergence in the generation of KG embeddings could potentially explain
the difficulty in transferring the knowledge between the two. Another reason could be
the choice of the hyperparameters. In this thesis, restricted hyperparameter optimization,
limited to 24 hours run time or a maximum of 10 trials per model, has been carried out.
However, achieving a high-quality set of hyperparameters requires more extensive compu-
tational resources. The right hyperparameter configuration, tailored to the initialization
with pretrained embeddings could lead to higher KGE model performance.

Figure 12: ConvE performance over the number of epochs

Among the explored BERT embedding strategies: BERT (labels), BERT PCA (labels)

and BERT (labels & descriptions), the results show that most models perform better
with BERT PCA (labels) embeddings. Figure 12 makes this observation more explicit by
displaying the Hits@10 curves for the ConvE model’s training phase under different ini-
tialization strategies. While ConvE is trained for 500 epochs for most of the initialization
strategies, the combinations wn18rr_word2vec and wn18rr_bert_pca are trained for 1000
epochs due to more promising results. For each dataset, the BERT PCA (labels) curve
lies well above the other BERT initialization curves, indicating a better performance since
the early training epochs. This can be attributed to the high dimensionality of BERT
embeddings, which adds to the complexity of the KGE models. Typically, these models
are designed to function optimally in lower dimensional spaces.



5 EVALUATION 26

Figure 13: TuckER performance over the number of epochs

Moreover, for the models TransE, ConvE and TuckER, no substantial difference is ob-
served in the model’s performance when using context-aware (BERT) or context-independent
(Word2Vec) embeddings. The performances of the BERT (labels) and BERT (labels &

descriptions) initialization strategies are comparable, visualized in figures 12 and 13.
This suggests that embedding additional context does not necessarily enhance the per-
formance of these models. In the case of RotatE, initialization with BERT embeddings
leads to a faster model convergence, as demonstrated in figure 14.

Figure 14: RotatE performance over the number of epochs



5 EVALUATION 27

5.3.2 Pretrained NLMs for Knowledge Graph Completion

To assess the performance of pretrained NLMs for KGC, several experiments employing
multiple NLMs for triple classification are conducted. The general approach is outlined
in section 4.2, while the experimental setup is described in section 5.2. The results are
presented in table 7 for the WN18RR dataset and table 8 for the FB15k-237 dataset. The
outcomes of the models trained with frozen layers of the pretrained NLM are omitted
due to their inferior performance. Based on existing literature, the pretrained NLMs
involved in this thesis have not been yet evaluated on the task of triple classification on
the WN18RR and FB15k-237 datasets. The selected baseline model, named AR-KGAT
[74], uses a neural attention mechanism, enhanced through association rules, to learn KG
embeddings. The model is evaluated with the WN18RR and FB15k-237 datasets on the
task of triple classification. The model’s accuracy is reported in the respective dataset
tables, the other metrics are not provided in the original paper.

Across both datasets, the KG-NLM approach demonstrates relatively high performance,
with over 80% on all metrics. While KG-RoBERTa and KG-DistilBERT, trained for 3 epochs
on FB15k-237, outperform the baseline model, they fail to surpass the baseline on the
WN18RR dataset. Notably, KG-DistilBERT outperforms the other two models, achiev-
ing over 90% accuracy and f1-score on both datasets. Furthermore, all models achieve
higher performance when trained for 3 epochs compared to 1 epoch, on both datasets.
KG-BLOOM shows the lowest performance on both datasets, however, it is noteworthy that
the employed pretrained version of BLOOM has the lowest number of parameters among
the available pretrained BLOOM models.

Model Epochs Metric
Accuracy F1-Score Precision Recall

Baseline AR-KGAT [74] - 0.973 - - -

Ours

KG-RoBERTa 1 0.877 0.880 0.859 0.903
3 0.904 0.905 0.894 0.917

KG-DistilBERT 1 0.864 0.866 0.855 0.876
3 0.917 0.919 0.900 0.939

KG-BLOOM 1 0.781 0.792 0.754 0.835
3 0.868 0.867 0.870 0.865

Table 7: WN18RR - Evaluation results of the KG-NLM approach on triple classification

Figure 15 illustrates the performance of the KG-NLM models during the training phase on
FB15k-237, in terms of training loss and accuracy (see figure 16 in the appendix for further
metrics). Instead of showing the number of training epochs, the x-axis represents the total
number of samples divided by the gradient accumulation step for both graphs. In the first



5 EVALUATION 28

Model Epochs Metric
Accuracy F1-Score Precision Recall

Baseline AR-KGAT [74] - 0.925 - - -

Ours

KG-RoBERTa 1 0.934 0.938 0.890 0.991
3 0.945 0.947 0.910 0.986

KG-DistilBERT 1 0.934 0.938 0.889 0.993
3 0.946 0.948 0.911 0.988

KG-BLOOM 1 0.868 0.87 0.865 0.867
3 0.924 0.928 0.883 0.977

Table 8: FB15k-237 - Evaluation results of the KG-NLM approach on triple classification

graph, which displays the training loss curves (in logarithmic scale) for the three models
over 3 training epochs, it is evident that KG-RoBERTa and KG-DistilBERT converge at
similar rates. Initially, KG-RoBERTa exhibits a lower loss during the early training steps,
but as training progresses, KG-DistilBERT surpasses KG-RoBERTa, achieving a lower loss.
The second graph showcases the accuracy curves of the three models on the FB15k-237
dataset, also considering training for 1 epoch. Similar to the loss function, the accuracy
curves mirror the behaviour observed in the first graph.

Both DistilBERT and RoBERTa have already proven to achieve very high performance
on general text classification tasks. In particular, Qasim et al. [75] report accuracy
and precision values of over 96% achieved by fine-tuning DistilBERT and RoBERTa on
binary text classification task with two datasets: fake-news detection and hate speech.
The task of triple classification, explored in this thesis, could be understood as a binary
text classification task. Specifically, an NLM input unit is formed by joining the KG’s
head entity, relation, and tail entity into one sequence to resemble a sentence. Each
sequence is accompanied by a classification label, indicating whether the sequence is part
of the KG (true) or not (false).

One possible reason for the strong performance of KG-DistilBERT and KG-RoBERTa on
the FB15k-237 dataset is their pretraining on the English Wikipedia data, from which
the FB15k-237 dataset is also derived (as discussed in chapter 2.1). Consequently, the
BERT-based models have already acquired some knowledge about the triples during their
pretraining phase and can leverage this knowledge for the current task. In a study con-
ducted by Lv et al. [76], they investigate the influence of prior knowledge in BERT on
its performance in a subset of FB15k-237. For each triple of the validation and test sets,
they count the number of sentences in Wikipedia that involve both head and tail enti-
ties and assume that BERT has been trained on these sentences as often as they occur
in Wikipedia. Lv et al. report that BERT’s performance improves as the number of
sentences per triple increases, while the performance of TuckER and ConvE remains rel-



5 EVALUATION 29

atively constant. This suggests that BERT benefits from its prior knowledge when the
entities in the triples are mentioned more frequently in the training data.

The relatively lower performance on the WN18RR dataset can be attributed to its specific
characteristics. In comparison to FB15k-237, WN18RR contains a significantly smaller
number of relations and less than half the training samples (refer to table 2 in chapter
5.1). Additionally, the relations in WN18RR are shorter, comprising a maximum of three
words, whereas FB15k-237 includes relations with a more extensive set of words, conveying
more contextual meaning that the models can leverage for better performance.

(a)

(b)

Figure 15: Performance of the KG-NLM models on the FB15k-237 dataset



6 CONCLUSION 30

6 Conclusion

Summary

This thesis aims to explore the potential of using pretrained NLMs for KGC tasks. Two
distinct approaches are investigated: (1) using pretrained NLM embeddings of entities
and relations as initialization vectors for KGE models, and (2) fine-tuning a pretrained
NLM with KG triples for triple classification.

In line with the first approach and targeting the first two research questions, a series
of experiments utilizing four KGE models is conducted. The experimental results in-
dicate that, on the WN18RR dataset, TransE surpasses the baseline models in terms
of Hits@1, Hits@10, and MRR. Similarly, TuckER exceeds the baseline on the same
dataset for Hits@1, Hits@3, and MRR. However, the remaining models do not exhibit any
performance improvement when initialized with pretrained NLM-generated embeddings.
Among the investigated BERT embedding strategies, which include BERT (labels), BERT
PCA (labels), and BERT (labels & descriptions), most models demonstrate superior
performance when initialized with BERT PCA (labels) embeddings. The performance
of the models initialized with BERT (labels) and BERT (labels & descriptions) is
largely similar. Furthermore, except for RotatE, no significant variation in model perfor-
mance is observed across both datasets when utilizing either context-aware (BERT) or
context-independent (Word2Vec) embeddings.

Addressing the third research question, experiments based on the KG-NLM approach are
carried out for the following NLM-based models: KG-RoBERTa, KG-DistilBERT, and
KG-BLOOM. These models exhibit significant performance on both datasets, achieving over
80% across all metrics. KG-RoBERTa and KG-DistilBERT, trained for three epochs on the
FB15k-237 dataset, exceed the baseline model, however falling short in outperforming the
baseline on the WN18RR dataset. Overall, KG-DistilBERT outperforms the other two
models, achieving over 90% accuracy and f1-score on both datasets. Conversely, KG-BLOOM
records the lowest performance on both datasets.

This thesis presents several contributions to current research. Firstly, it utilizes both
context-independent and context-aware NLM-generated embeddings to initialize estab-
lished KGE models. Secondly, it extends the exploration to include two KGE models,
TuckER and ConvE, that have not been previously assessed in this context. Lastly, it
introduces three pretrained NLM-based models for KGC: KG-RoBERTa, KG-DistilBERT,
and KG-BLOOM. These are evaluated on the task of triple classification, on two benchmark
datasets: WN18RR and FB15k-237.



6 CONCLUSION 31

Limitations and Future Work

This thesis, while enhancing the understanding of utilizing pretrained NLMs for KGC, ac-
knowledges certain limitations. The number of epochs used to train the KGE models with
pretrained NLM-generated embeddings is confined by computational resources. Training
for a larger amount of epochs could elevate the models’ performance. Additionally, a com-
prehensive hyperparameter optimization, tailored to the specific pretrained embeddings
and datasets, could yield superior performance. Moreover, it would be beneficial to con-
duct more in-depth research to understand why the knowledge transfer from pretrained
NLMs to KGE methods explored in this thesis is less effective than anticipated.

The proposed KG-NLM approach considers solely entity and relationship labels, neglecting
potentially valuable information from textual descriptions. Integrating this information
could provide a richer context and enhance model performance, presenting a noteworthy
direction for future exploration. While the KG-NLM models employed in this thesis are
evaluated on triple classification, extending their evaluation to the task of link prediction
could provide a comprehensive understanding of their utility in KGC tasks. Ultimately,
the applicability of the proposed method for real-world use cases, such as corporate KGs
featuring knowledge about more specific domains, is yet to be investigated. Further re-
search should examine whether the KG-NLM approach retains its effectiveness when applied
to these more specialized KGs.





A APPENDIX 33

A Appendix

A.1 RotatE Relation Initialization

The main novelty about the RotatE model lies in the fact that relations are modelled as
a rotation from the head entity the to tail entity in the complex vector space [46]. For
each relation, its complex vector representation is calculated using the phase of a complex
number, which refers to the angle it makes with the positive real axis in the complex plane.
It represents the direction of the complex number from the origin (0) to its location in
the complex plane. In RotatE, the phase of the complex relation vector is calculated as
shown in equation A.1, relying on the real part re_v of a given complex vector v:

phase = 2 ∗ π ∗ re_v (A.1)

As a result, the real part of the complex relation vector is determined by taking the
cosine of the phase, while the imaginary part is obtained by taking the sine of its phase.
In the standard initialization process of RotatE, the complex vector v, and thus re_v, is
randomly generated. In the case of initialization with pretrained embeddings, the same
logic as above is followed treating the pretrained embeddings as the vector v.



A APPENDIX 34

A.2 Evaluation

The hyperparameter configurations described in chapter 5.2 are provided in detail in table
9 (benchP), table 10 (hpoP) and table 11 (paperP).

Hyperparameter TransE
WN18RR FB15k-237

scoring norm 1 1
optimizer adam adam
learning rate 0.0011049153751436596 0.002256570208126583
weight decay 0.0 0.0
loss function softplus crossentropy
training approach lcwa lcwa
training batch size 512 128
label smoothing 0.00200051768009458 0.7644642800393661
evaluator rankbased rankbased
filtered true true

Table 9: Hyperparameter selection benchP sourced from [72].

Hyperparameter ConvE TransE
WN18RR FB15k-237

scoring function - 1
optimizer adam adam
learning rate 0.009330514459787512 0.00091246982681624
loss function bcewithlogits bcewithlogits
training approach lcwa lcwa
training batch size 128 256
label smoothing 0.004869831870660787 0.006091616913055568
evaluator rankbased rankbased
filtered true true
feature map dropout 0.5 -
input dropout 0.4 -
kernel height 3 -
kernel width 3 -

Table 10: Hyperparameter selection hpoP, acquired through hyperparameter optimization
in the scope of this thesis.



A APPENDIX 35

Hyperparameter ConvE TuckerE RotatE
both datasets WN18RR FB15k-237 both datasets

optimizer adam adam adam adam
learning rate 0.003 0.01 0.0005 0.00005
learning rate decay 0.995 1.0 1.0 -
weight decay 0.0 - - 0.0
loss function bcewithlogits bcewithlogits bcewithlogits NSSALoss
training approach lcwa lcwa lcwa lcwa
training batch size 128 128 128 -
label smoothing 0.1 0.1 0.1 -
evaluator rankbased rankbased rankbased rankbased
filtered true true true true
feature map dropout 0.2 - - -
input dropout 0.2 - - -
hidden dropout 0.3 - - -
dropout 0 - 0.2 0.3 -
dropout 1 - 0.2 0.4 -
dropout 2 - 0.3 0.5 -
margin - - - 9
adversarial temperature - - - 1.0

Table 11: Hyperparameter selection paperP, sourced from original papers ConvE [13],
TuckER [14] and RotatE [46].

The remaining experimental results from the first approach are provided in table 12.

Model Initialization Hyper Nr. Metric
Embeddings -parameters epochs Hits@1 Hits@3 Hits@10 MRR

Dataset: FB15k-237

TransE random benchP 500 0.141 0.216 0.309 0.198
BERT (labels) benchP 500 0.099 0.153 0.209 0.138
BERT (labels benchP 325* 0.114 0.162 0.217 0.149
& descriptions)

Dataset: WN18RR

ConvE random paperP 1000 0.333 0.448 0.507 0.399
Word2Vec paperP 500 0.034 0.097 0.149 0.075
BERT PCA (labels) paperP 500 0.1 0.172 0.247 0.149

Table 12: Additional evaluation results of TransE and ConvE. The number of epochs
marked with * signifies early stopping.



A APPENDIX 36

Figure 16 illustrates the precision, recall and f1-score curves during training phase for the
three KG-NLM models on the FB15k-237 dataset.

Figure 16: Visualization of precision, recall and f1-score of the KG-NLM models on FB15k-
237



REFERENCES 37

References

[1] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding:
A survey of approaches and applications. IEEE Transactions on Knowledge and Data
Engineering, 29(12):2724–2743, 2017.

[2] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. A
survey on knowledge graphs: Representation, acquisition and applications. CoRR,
abs/2002.00388, 2020.

[3] Kurt D. Bollacker, Patrick Tufts, Tom Pierce, and Robert Cook. A platform for
scalable, collaborative, structured information integration. 2007.

[4] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören
Auer, and Christian Bizer. Dbpedia - a large-scale, multilingual knowledge base
extracted from wikipedia. Semantic Web, 6(2):167–195, 2015.

[5] Denny Vrandečić and Markus Krötzsch. Wikidata: A free collaborative knowledge-
base. Commun. ACM, 57(10):78–85, sep 2014.

[6] Xin Luna Dong. Challenges and innovations in building a product knowledge graph.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’18, page 2869, New York, NY, USA, 2018. Associ-
ation for Computing Machinery.

[7] Thomas Hubauer, Steffen Lamparter, Peter Haase, and Daniel M. Herzig. Use cases
of the industrial knowledge graph at siemens. In International Workshop on the
Semantic Web, 2018.

[8] Dongzhuoran Zhou, Baifan Zhou, Zhuoxun Zheng, Egor V. Kostylev, Gong Cheng,
Ernesto Jiménez-Ruiz, Ahmet Soylu, and Evgeny Kharlamov. Enhancing knowledge
graph generation with ontology reshaping – bosch case. In Paul Groth, Anisa Rula,
Jodi Schneider, Ilaria Tiddi, Elena Simperl, Panos Alexopoulos, Rinke Hoekstra,
Mehwish Alam, Anastasia Dimou, and Minna Tamper, editors, The Semantic Web:
ESWC 2022 Satellite Events, pages 299–302, Cham, 2022. Springer International
Publishing.

[9] Irlán Grangel-González, Felix Lösch, and Anees ul Mehdi. Knowledge graphs for effi-
cient integration and access of manufacturing data. In 2020 25th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), volume 1,
pages 93–100, 2020.



REFERENCES 38

[10] Natasha Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson, and
Jamie Taylor. Industry-scale knowledge graphs: Lessons and challenges: Five diverse
technology companies show how it’s done. Queue, 17(2):48–75, apr 2019.

[11] Zhe Chen, Yuehan Wang, Bin Zhao, Jing Cheng, Xin Zhao, and Zongtao Duan.
Knowledge graph completion: A review. IEEE Access, 8:192435–192456, 2020.

[12] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. Translating embeddings for modeling multi-relational data. In
C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 26. Curran Associates,
Inc., 2013.

[13] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convo-
lutional 2d knowledge graph embeddings. CoRR, abs/1707.01476, 2017.

[14] Ivana Balazevic, Carl Allen, and Timothy Hospedales. TuckER: Tensor factorization
for knowledge graph completion. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 5185–5194, Hong Kong,
China, November 2019. Association for Computational Linguistics.

[15] Yankai Lin, Zhiyuan Liu, and Maosong Sun. Modeling relation paths for represen-
tation learning of knowledge bases. 06 2015.

[16] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent trends
in deep learning based natural language processing [review article]. IEEE Computa-
tional Intelligence Magazine, 13(3):55–75, 2018.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding. CoRR,
abs/1810.04805, 2018.

[18] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019.

[19] Fabio Petroni, Tim Rocktäschel, Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu,
Alexander H. Miller, and Sebastian Riedel. Language models as knowledge bases?
CoRR, abs/1909.01066, 2019.

[20] Zhiyuan Zhang, Xiaoqian Liu, Yi Zhang, Qi Su, Xu Sun, and Bin He. Pretrain-kge:
Learning knowledge representation from pretrained language models. In Findings,
2020.



REFERENCES 39

[21] Liang Yao, Chengsheng Mao, and Yuan Luo. KG-BERT: BERT for knowledge graph
completion. CoRR, abs/1909.03193, 2019.

[22] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly
optimized BERT pretraining approach. CoRR, abs/1907.11692, 2019.

[23] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a dis-
tilled version of BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108,
2019.

[24] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilic, Daniel
Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias
Gallé, Jonathan Tow, Alexander M. Rush, Stella Biderman, Albert Webson,
Pawan Sasanka Ammanamanchi, Thomas Wang, Benoît Sagot, Niklas Muennighoff,
Albert Villanova del Moral, Olatunji Ruwase, Rachel Bawden, Stas Bekman, An-
gelina McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile Saulnier, Samson Tan, Pe-
dro Ortiz Suarez, Victor Sanh, Hugo Laurençon, Yacine Jernite, Julien Launay, Mar-
garet Mitchell, Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri
Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou,
Chris Emezue, Christopher Klamm, Colin Leong, Daniel van Strien, David Ifeoluwa
Adelani, and et al. BLOOM: A 176b-parameter open-access multilingual language
model. CoRR, abs/2211.05100, 2022.

[25] Gerhard Lakemeyer and Bernhard Nebel. Foundations of knowledge representation
and reasoning. volume 810, pages 1–12, 01 1992.

[26] John Mylopoulos. An overview of knowledge representation. In Proceedings of the
1980 Workshop on Data Abstraction, Databases and Conceptual Modeling, page 5–12,
New York, NY, USA, 1980. Association for Computing Machinery.

[27] R. H. Richens. Preprogramming for mechanical translation. Mech. Transl. Comput.
Linguistics, 3:20–25, 1956.

[28] Fritz Lehmann. Semantic networks. Computers Mathematics with Applications,
23(2):1–50, 1992.

[29] TIM BERNERS-LEE, JAMES HENDLER, and ORA LASSILA. The semantic web.
Scientific American, 284(5):34–43, 2001.

[30] Dan Brickley, Ramanathan V Guha, and Andrew Layman. Resource description
framework (rdf) schema specification. Technical report, Technical report, W3C, 1999.
W3C Proposed Recommendation. http://www. w3 . . . , 1998.



REFERENCES 40

[31] Graham Klyne and Jeremy J. Carroll. Resource description framework (rdf): Con-
cepts and abstract syntax. W3C Recommendation, 2004.

[32] Martin Dürst and M. Suignard. Internationalized resource identifiers (iris). 01 2005.

[33] Michael Färber, Frederic Bartscherer, Carsten Menne, and Achim Rettinger. Linked
data quality of dbpedia, freebase, opencyc, wikidata, and yago. Semantic Web, 9:77–
129, 2017.

[34] Lisa Ehrlinger and Wolfram Wöß. Towards a definition of knowledge graphs. In
International Conference on Semantic Systems, 2016.

[35] Liang Wang, Wei Zhao, Zhuoyu Wei, and Jingming Liu. SimKGC: Simple contrastive
knowledge graph completion with pre-trained language models. In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 4281–4294, Dublin, Ireland, May 2022. Association for Compu-
tational Linguistics.

[36] George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Kather-
ine J. Miller. Introduction to WordNet: An On-line Lexical Database*. International
Journal of Lexicography, 3(4):235–244, 12 1990.

[37] Christiane Fellbaum. A Semantic Network of English: The Mother of All WordNets,
page 137–148. Kluwer Academic Publishers, USA, 1998.

[38] Ruslan Mitkov. The Oxford Handbook of Computational Linguistics (Oxford Hand-
books). Oxford University Press, Inc., USA, 2005.

[39] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Free-
base: A collaboratively created graph database for structuring human knowledge. In
Proceedings of the 2008 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’08, page 1247–1250, New York, NY, USA, 2008. Association for
Computing Machinery.

[40] Thomas Pellissier Tanon, Denny Vrandečić, Sebastian Schaffert, Thomas Steiner,
and Lydia Pintscher. From freebase to wikidata: The great migration. WWW ’16,
page 1419–1428, Republic and Canton of Geneva, CHE, 2016. International World
Wide Web Conferences Steering Committee.

[41] Visualization of subgraph of freebase. https://colab.research.google.

com/drive/1Fcf8vkuaO6VCOB3MAZlpDebCAgyUnMBj?usp=sharing#scrollTo=

cHzhvBhbegPX. Accessed: 2023-07-13.

[42] Zhiqing Sun, Shikhar Vashishth, Soumya Sanyal, Partha Talukdar, and Yiming Yang.
A re-evaluation of knowledge graph completion methods, 2020.

https://colab.research.google.com/drive/1Fcf8vkuaO6VCOB3MAZlpDebCAgyUnMBj?usp=sharing#scrollTo=cHzhvBhbegPX
https://colab.research.google.com/drive/1Fcf8vkuaO6VCOB3MAZlpDebCAgyUnMBj?usp=sharing#scrollTo=cHzhvBhbegPX
https://colab.research.google.com/drive/1Fcf8vkuaO6VCOB3MAZlpDebCAgyUnMBj?usp=sharing#scrollTo=cHzhvBhbegPX


REFERENCES 41

[43] Chenchen Li, Aiping Li, Ye Wang, Hongkui Tu, and Yichen Song. A survey on
approaches and applications of knowledge representation learning. In 2020 IEEE
Fifth International Conference on Data Science in Cyberspace (DSC), pages 312–
319, 2020.

[44] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A re-
view of relational machine learning for knowledge graphs. Proceedings of the IEEE,
104(1):11–33, jan 2016.

[45] Ilaria Ferrari, Giacomo Frisoni, Paolo Italiani, Gianluca Moro, and Claudio Sartori.
Comprehensive analysis of knowledge graph embedding techniques benchmarked on
link prediction. Electronics, 11:3866, 11 2022.

[46] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge
graph embedding by relational rotation in complex space. CoRR, abs/1902.10197,
2019.

[47] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for col-
lective learning on multi-relational data. In Proceedings of the 28th International Con-
ference on International Conference on Machine Learning, ICML’11, page 809–816,
Madison, WI, USA, 2011. Omnipress.

[48] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and li Deng. Embedding
entities and relations for learning and inference in knowledge bases. 12 2014.

[49] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. Complex embeddings for simple link prediction. CoRR, abs/1606.06357,
2016.

[50] L. R. Tucker. The extension of factor analysis to three-dimensional matrices. In
H. Gulliksen and N. Frederiksen, editors, Contributions to mathematical psychology.,
pages 110–127. Holt, Rinehart and Winston, New York, 1964.

[51] Vineet Bhatt, Sunil Kumar, and Seema Saini. Tucker decomposition and applications.
Materials Today: Proceedings, 46:10787–10792, 2021. International Conference on
Technological Advancements in Materials Science and Manufacturing.

[52] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan
Titov, and Max Welling. Modeling relational data with graph convolutional networks.
In Aldo Gangemi, Roberto Navigli, Maria-Esther Vidal, Pascal Hitzler, Raphaël
Troncy, Laura Hollink, Anna Tordai, and Mehwish Alam, editors, The Semantic
Web, pages 593–607, Cham, 2018. Springer International Publishing.



REFERENCES 42

[53] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha P. Taluk-
dar. Composition-based multi-relational graph convolutional networks. CoRR,
abs/1911.03082, 2019.

[54] Zhanqiu Zhang, Jie Wang, Jieping Ye, and Feng Wu. Rethinking graph convolutional
networks in knowledge graph completion. In Proceedings of the ACM Web Confer-
ence 2022, WWW ’22, page 798–807, New York, NY, USA, 2022. Association for
Computing Machinery.

[55] K. R. Chowdhary. Natural Language Processing, pages 603–649. Springer India, New
Delhi, 2020.

[56] Felipe Almeida and Geraldo Xexéo. Word embeddings: A survey. CoRR,
abs/1901.09069, 2019.

[57] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural
probabilistic language model. J. Mach. Learn. Res., 3(null):1137–1155, mar 2003.

[58] Fu-Lian Yin, Xing-Yi Pan, Xiao-Wei Liu, and Hui-Xin Liu. Deep neural network
language model research and application overview. In 2015 12th International Com-
puter Conference on Wavelet Active Media Technology and Information Processing
(ICCWAMTIP), pages 55–60, 2015.

[59] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing
Huang. Pre-trained models for natural language processing: A survey. CoRR,
abs/2003.08271, 2020.

[60] Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong
Qiu, Liang Zhang, Wentao Han, Minlie Huang, Qin Jin, Yanyan Lan, Yang Liu,
Zhiyuan Liu, Zhiwu Lu, Xipeng Qiu, Ruihua Song, Jie Tang, Ji-Rong Wen, Jinhui
Yuan, Wayne Xin Zhao, and Jun Zhu. Pre-trained models: Past, present and future.
CoRR, abs/2106.07139, 2021.

[61] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. In Yoshua Bengio and Yann LeCun, editors,
1st International Conference on Learning Representations, ICLR 2013, Scottsdale,
Arizona, USA, May 2-4, 2013, Workshop Track Proceedings, 2013.

[62] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR,
abs/1706.03762, 2017.

[63] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff



REFERENCES 43

Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick,
Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural
machine translation system: Bridging the gap between human and machine transla-
tion. CoRR, abs/1609.08144, 2016.

[64] The bigscience roots corpus: A 1.6tb composite multilingual dataset, 2023.

[65] David Powers and Ailab. Evaluation: From precision, recall and f-measure to roc,
informedness, markedness correlation. J. Mach. Learn. Technol, 2:2229–3981, 01
2011.

[66] Lianbo Ma, Peng Sun, Zhiwei Lin, and Hui Wang. Composing knowledge graph
embeddings via word embeddings. CoRR, abs/1909.03794, 2019.

[67] Mirza Mohtashim Alam, Md Rashad Al Hasan Rony, Mojtaba Nayyeri, Karishma
Mohiuddin, M. S. T. Mahfuja Akter, Sahar Vahdati, and Jens Lehmann. Language
model guided knowledge graph embeddings. IEEE Access, 10:76008–76020, 2022.

[68] Russa Biswas, Radina Sofronova, Mehwish Alam, and Harald Sack. Contextual
language models for knowledge graph completion. In MLSMKG@PKDD/ECML,
2021.

[69] Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge
base and text inference. In Proceedings of the 3rd Workshop on Continuous Vector
Space Models and their Compositionality, pages 57–66, Beijing, China, July 2015.
Association for Computational Linguistics.

[70] Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Sahand Shar-
ifzadeh, Volker Tresp, and Jens Lehmann. Pykeen 1.0: A python library for training
and evaluating knowledge graph embeddings. CoRR, abs/2007.14175, 2020.

[71] Ian T. Jolliffe and Jorge Cadima. Principal component analysis: a review and recent
developments. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 374(2065):20150202, 2016.

[72] Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Mikhail Galkin,
Sahand Sharifzadeh, Asja Fischer, Volker Tresp, and Jens Lehmann. Bringing light
into the dark: A large-scale evaluation of knowledge graph embedding models under
a unified framework. CoRR, abs/2006.13365, 2020.



REFERENCES 44

[73] Deepak Nathani, Jatin Chauhan, Charu Sharma, and Manohar Kaul. Learning
attention-based embeddings for relation prediction in knowledge graphs. In Proceed-
ings of the 57th Annual Meeting of the Association for Computational Linguistics,
pages 4710–4723, Florence, Italy, July 2019. Association for Computational Linguis-
tics.

[74] Zhenghao Zhang, Jianbin Huang, and Qinglin Tan. Association rules enhanced knowl-
edge graph attention network. Knowledge-Based Systems, 239:108038, 2022.

[75] Rukhma Qasim, Waqas Bangyal, Mohammed Alqarni, and Abdulwahab Almazroi.
A fine-tuned bert-based transfer learning approach for text classification. Journal of
Healthcare Engineering, 2022:1–17, 01 2022.

[76] Xin Lv, Yankai Lin, Yixin Cao, Lei Hou, Juanzi Li, Zhiyuan Liu, Peng Li, and Jie
Zhou. Do pre-trained models benefit knowledge graph completion? a reliable evalu-
ation and a reasonable approach. In Findings of the Association for Computational
Linguistics: ACL 2022, pages 3570–3581, Dublin, Ireland, May 2022. Association for
Computational Linguistics.



Erklärung

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel
vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten
anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT
zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu
haben.

Karlsruhe, 04.08.2023 Vjola Cili


	Introduction
	Motivation
	Objectives
	Structure of the Thesis

	Theoretical Background
	Knowledge Graphs
	Knowledge Graph Completion
	Knowledge Graph Embedding Methods

	Neural Language Models
	Evaluation Metrics

	Related Work
	Methodology
	NLM-enhanced Knowledge Graph Embedding Models
	Pretrained NLMs for Knowledge Graph Completion

	Evaluation
	Datasets
	Experimental Setup
	Results
	NLM-enhanced Knowledge Graph Embedding Models
	Pretrained NLMs for Knowledge Graph Completion


	Conclusion
	Appendix
	RotatE Relation Initialization
	Evaluation


