
Image2Type: Entity Type Prediction
via Image Analysis

Master Thesis

by

Patrick Eisele
Degree Course: Information Systems M.Sc.

Matriculation Number:

FIZ Karlsruhe & AIFB

KIT Department of Economics and Management

Primary Examiner: Prof. Dr. Harald Sack
Secondary Examiner: Prof. J. Marius Zöllner
Supervisors: Dr. Mehwish Alam

Russa Biswas
Submitted: January 14, 2022

KIT – The Research University in the Helmholtz Association www.kit.edu

www.kit.edu

Abstract

Entity type prediction is the task to assign an entity in a Knowledge Graph (KG) its
semantic type. However, the type information in most open KGs such as DBpedia or
Wikidata are incomplete and noisy. Thereby the type of an entity is a fundamental infor-
mation. Currently, most state-of-the-art entity type prediction models use only structured
data to perform entity type prediction. This reduces prediction accuracy, creates incom-
plete and noisy type information. At the same time 51.1% of entities in the data set
DBpedia630k have at least one associated image. Hence it is obvious to extract the
additional information incorporated in these images to improve accuracy of entity type
prediction to complete type information. This thesis presents an approach which creates
a combined entity representation consisting of image features and structural information.
On top of it a fully connected neural network is deployed for classification. The model
performance is measured on two newly created real-world benchmark datasets. The re-
sults suggest that the approach is suitable to perform entity type prediction, however
optimization is needed to improve performance.

CONTENTS iii

Contents

1 Introduction 1

2 Fundamentals 3

2.1 Knowledge Graphs . 3

2.2 Knowledge Graph Embeddings . 3

2.3 Entity Type Prediction . 5

2.4 Evaluation . 6

2.4.1 Hits @ K . 6

2.4.2 Adjusted Mean Rank Index . 6

2.4.3 Mean Reciprocal Rank . 7

2.4.4 Early Stopping . 7

3 Related Work 8

3.1 Representation Learning . 8

3.1.1 Translational distance models . 8

3.1.2 Models with image information . 9

3.2 Entity Type Prediction . 10

4 Methodology 13

4.1 Data Preprocessing . 13

4.2 Entity Type Prediction . 16

4.2.1 Structural Classification . 16

4.2.2 Combined Classification . 18

5 Evaluation 20

5.1 Experimental setup . 20

5.1.1 Structural Model . 20

5.1.2 Classification . 20

5.2 Datasets . 21

5.2.1 Dataset for Structural Model . 21

CONTENTS iv

5.2.2 Datasets for Classification . 21

5.3 Analysis of Structural Model . 23

5.4 Analysis of Classification . 24

5.4.1 Structural Classification . 25

5.4.2 Combined Classification . 28

6 Conclusion 32

7 Future Work 33

A Appendix 34

LIST OF ABBREVIATIONS v

List of Abbreviations

AC accuracy.

AMRI Adjuested Mean Rank Index.

CC Combined Classification.

CC-P Combined Classification pretrained TransE embeddings.

KG Knowledge Graph.

KGE Knowledge Graph Embedding.

Ma-F1 Macro-averaged F1.

Mi-F1 Micro-averaged F1.

MRR Mean Reciprocal Rank.

SC Structural Classification.

SC-P Structural Classification pretrained TransE embeddings.

URI Uniform Resource Identifier.

LIST OF FIGURES vi

List of Figures

1 Exempted subgraph from DBpedia . 1

2 Different families of Knowledge Graph Embeddings (KGEs) models. Dot-
ted arrows indicate that the target method builds on the source method,
based on [28] . 3

3 Illustration of TransE embedding method 9

4 Pipeline to create DBpedia630kunambiguous from DBpedia630kimage 15

5 DBpedia630k after preprocessing and remaining derived entities used to
create TransE embeddings and used for classification 16

6 Visualization of structural classification . 18

7 Visualization of combined classification . 19

8 Visualization of DBpedia630kimage used for classification with respective
subclasses of all entities (a) and balanced (b) 22

9 Evolution of accuracy over epochs for Structural Classification pretrained
TransE embeddings (SC-P) (a) and Structural Classification (SC) (b) . . . 28

10 Evolution of accuracy for SC over epochs for pretrained TransE embeddings
(a) and own TransE embeddings (b) . 31

LIST OF TABLES vii

List of Tables

1 DBpedia splits used to create TransE embeddings 21

2 DBpedia splits used for classification . 23

3 Link prediction performance of TransE embeddings created on DBpedia630kimage 23

4 Classification performance of baseline approaches on DBpedia630k, taken
from [7] . 25

5 Entity type prediction performance of structural classification (SC), struc-
tural classification pretrained TransE embeddings (SC-P), combined classi-
fication (CC), combined classification pretrained TransE embeddings (CC-
P) on DBpedia630k variants . 25

6 Comparison of structural classification performance for balanced and un-
balanced splits of DBpedia630kimage, DBpedia630kunambiguous 26

7 Comparison of combined classification performance for balanced and un-
balanced splits of DBpedia630kimage, DBpedia630kunambiguous 29

8 Comparison of image classification performance for balanced and unbal-
anced splits of DBpedia630kimage and several similarity levels of DBpedia630kunambiguous 30

1 INTRODUCTION 1

1 Introduction

Over the past few years, a large number of Knowledge Graphs (KGs) have been published

which are either or domain-specific cross-domain such as DBpedia [4] or Wikidata [30].

KGs represent information in a structured form, i.e., in the form of entities and relations.

However, the type information in most of the open KGs are incomplete and noisy.

Thereby the type of an entity is a fundamental information and plays an important role in

various knowledge-driven applications, for instance, entity linking [14], relation extraction

[35] and question answering [21]. For example, an user could be interested in the question

whether an airline flies to the city of Yakutsk (Russia). This question can be answered

with the help of a KG by querying for entities of the type Airline which are associated

with the entity Yakutsk or the entity Yakutsk Airport.

Figure 1: Exempted subgraph from DBpedia

Currently, most state-of-the-art entity type prediction models use only structured data,

e.g., textual description, category or property of an entity to predict its type. This reduces

prediction accuracy, creates incomplete and noisy type information [26, 8] as the main

source for DBpedia [4] is Wikipedia where the information is extracted from info boxes.

These texts are human-created and faulty in some cases.

1 INTRODUCTION 2

At the same time 51.1% of entities in the data set DBpedia630k [19] (a subset of DB-

pedia) have at least one associated image. Hence it is obvious to extract the additional

information incorporated in these images to improve accuracy of entity type prediction

to complete type information in DBpedia.

To answer the question in the example previously introduced with the help of DBpedia:

there are two Airlines in Yakutsk, Yakutia Airlines and Polar Airlines, both have an

associated image. This image can be used in combination with structural information

contained in the KG to increase the accuracy of entity type prediction.

However, the included images are also created by humans and can therefore be ambiguous

which would cause an image classifier to learn wrong predictions. An illustration of this

problem is the entity Polar Airlines whose image displays a plane that an image classi-

fier would classify as the type MeanOfTransportation (Aircraft) instead of Organisation

(Airline). Therefore, given the information the main goals of this thesis are:

• RQ1: How to filter out misleading images from which an image classifier would

learn wrong entity type predictions?

• RQ2: How to learn distributed representations of entities using their structural

information?

• RQ3: How to perform classifications of the entities into their types using structural

as well as image information?

The remainder of this thesis is structured as follows: We will first look at necessary

fundamentals regarding KGs, families of embeddings models along with metrics needed

for evaluation in Chapter 2 before we present representation learning and entity type

prediction in Chapter 3. The following Chapter 4 presents the approaches developed for

entity type prediction. Following Chapter 5 where we discuss the results and compare

them with other approaches. The thesis is concluded with a conclusion in Chapter 6 along

with future work in Chapter 7.

2 FUNDAMENTALS 3

2 Fundamentals

In this Section we introduce the necessary fundamentals. First, we define the term KG,

then we discuss how to create KGEs, discuss the downstream application of entity type

prediction and finally introduce the metrics used in thesis for evaluation.

2.1 Knowledge Graphs

The term KG is used ubiquitously and there is no single commonly accepted definition

[11]. Therefore, in the context of this thesis the following definition shall be used: A KG

is represented as G = (E,R, T), where E is the set of entities, R is the set of relations,

and T is the set of triples with T = E ×R× E [37].

2.2 Knowledge Graph Embeddings

The task of creating KGEs aims to learn a low-dimensional vector space representation

for each entity and relation in the KG while preserving their semantic meaning [17]. It

is a critical research issue as it enables many downstream applications, like entity linking

[14], relation extraction [35], and question answering [21] which would otherwise not be

possible due to data sparsity and growing computational inefficiency in big KGs [22].

Figure 2: Different families of KGEs models. Dotted arrows indicate that the target
method builds on the source method, based on [28]

2 FUNDAMENTALS 4

Since we utilize only structural information to create KGEs in this thesis, we focus on

comparison on models that learn soly from KG structure. A comparison of further models

which combine different literals, for instance text, images or numerical values see [13].

Rossi et. al propose to differentiate between three main families of KGEs models [28]:

Tensor decomposition models. This group is called matrix factorization models in

Figure 2. They use a three-dimensional adjacency matrix that can be decomposed in

several low-dimensional vectors for entity and relation embedding. The adjacency matrix

is only partially existent due to incompleteness and noise. Bilinear models take only

single facts into consideration when computing the embedded representation. They define

the relational embedding as a bidimensional matrix R ∈ Rd×d for given head embedding

h ∈ Rd, tail embedding t ∈ Rd. Their scoring function is the linear product

φ (h,R, t) = htRt

Geometric models. This family of models describe the relation as a geometric trans-

formation between head and tail in the latent space. To compute the embedding of the

tail entity, a spatial transformation τ is applied. As scoring function they use the distance

between the tail vector and the resulting vector φ (h,R, t) = δ (τ (h, r) , t). Similar to

Tensor decomposition models, these family of models computes backpropagation usually

direct on entities and does not share parameters. [28] identify three groups of models

within this family: Pure translational models rely on the assumption that the rela-

tional embedding added to the head embedding is expected to be spatially close to the tail

embedding. Translational models with additional embeddings learn several em-

beddings for each element in the KG. Roto-translational models employ in addition

to or instead of translational operations a rotation-like transformation.

Deep learning models. This model family uses different types of deep neural networks

to learn patterns from the KG’s input data. Each layer of a Convolutional Neural

Networks applies a low-dimensional filter to its input data, like embedding KG elements

in a fact. Capsulate Neural Networks are composed of convolutional layers as well.

They solve a weakness of convolutional neural networks by being able to recognize features

without loss of spatial information what leads to a more stable representation. Recurrent

Neural Networks use recurrent layers to analyze complete paths in a KG instead of just

individual facts.

2 FUNDAMENTALS 5

It should be noted that the term KG representation learning is often used synonymously

with KGE in the literature.

2.3 Entity Type Prediction

In this thesis we consider entity typing as a classification task with the entity types as

classes. For this purpose a prediction function P (t|e) that infers the type based on an

entity representation v (e) is learned [34]. Based on the entity representation, different

types of neural networks are deployed for the classification. In this Section entity typ-

ing models are categorized into three parts depending on how they construct the entity

representation v (e):

Feature-based methods exploit various kinds of information, such as textual descrip-

tion, property and category, to create the feature representation of an entity.

KYLIN [32] is one of the first papers to perform type prediction for Wikipedia infoboxes.

It searches for classes of Wikipedia pages with similar infoboxes and determines their

common attributes in order to learn a CRF extractor.

MuLR [34] learns multilevel representations of entities by combining the complementary

information of character, word, and entity embeddings followed by a hierarchical multi-

label classification for fine-grained entity typing.

Structure-based methods are based on annotated corpus to learn low-dimensional

entity representations:

SDType [26] is a statistical heuristic link-based type prediction mechanism to take care

of noisy and incorrect data. It exploits links between instances to infer their types using

weighted voting. The model assumes that certain relations occur only with particular

types. Therefore, an instance has heuristically certain types if it is connected to other

instances with some particular relations.

Methods that combine both information:

Jin et. al [19] propose the GCN-based model HMGCN to predict the entity types based

on textual entity descriptions, its relations and Wikipedia categories.

Yogatama et al. [36] developed an embedding-based model taking features of structural

information and labels from textual descriptions into account. Their model uses a ranking

loss to be more robust against noisy labels due to fine-grained type predictions. Then a

deep neural network is used to first learn entity representation and secondly predict the

type hierarchy.

2 FUNDAMENTALS 6

APE [18] constructs a partially-labeled attributed entity network that consists of struc-

tural, attribute and type information followed by deep neural network for representation

learning. This enables them to combine three types of information without the need for

large annotated corpuses.

Further, a distinction can be made between entity typing and fine-grained entity typing.

Entity typing focuses on small sets of types like Person, Organization or Animal, while

fine-grained entity typing assigns an entity more specific types, between which there is a

hierarchical relationship in the form of a tree or directed acyclic graph [18, 19]. In partic-

ular, methods for fine-grained type prediction combine (several) feature representations

with low-dimensional structural representations to utilize various kinds of information in

order to improve accuracy.

Our model, on the other hand, combines structural information from TransE embeddings

with images features for entity type prediction.

2.4 Evaluation

2.4.1 Hits @ K

Hits@K =
1

|I|
∑
r∈I

‖ [r ≤ k] (2.1)

Hits @ K describes the portion of true entities which appear in an ordered rank of the first

k entities. The value range is [0, 1] where the closer to 1 the better [5]. Hits @ 1 represents

a special case and corresponds to precision [37]. This metric does not differentiate between

ranks larger than k, what means that all r > k have the same influence on the final score

Hits @ K. Consequently, other metrics are more suitable to compare different models.

2.4.2 Adjusted Mean Rank Index

The Adjuested Mean Rank Index (AMRI) was introduced by [5] and is defined as following:

MR =
1

|I|
∑
r∈I

r (2.2)

AMRI = 1− MR− 1

E [MR]
=

2
∑n

i=1 ri∑n
i=1 (|Si|+ 1)

(2.3)

2 FUNDAMENTALS 7

It’s value range is [−1, 1], whereby 1 is equal to the optimal performance and a value of

0 is equal to assigning random values.

2.4.3 Mean Reciprocal Rank

[5] The reciprocal rank is the multiplicative inverse rank of the first true type prediction.

Thus the Mean Reciprocal Rank (MRR) is the average of the reciprocal ranks for a series

of type predictions. It has a value range of (0, 1] with the closer to 1 the better and is

defined as follows:

MRR =
1

|I|
∑
r∈I

1

r
(2.4)

At the moment there is a controversy whether to use the MRR and if it has some theo-

retical flaws [12, 29]

2.4.4 Early Stopping

During supervised training of a neural network, validation data can be used to detect

when overfitting starts to occur, in this case training is stopped early before convergence

to avoid overfitting [27]. It used to speed up the training time or to improve generalization

of a neural network.

Despite the above mentioned controversy the MRR is often used during the creation of

KG embeddings for early stopping due to its ability to be more influenced by changes in

low rank values in comparison to high rank values, without ignoring them completely like

Hits @ K when the rank is larger than k [2].

3 RELATED WORK 8

3 Related Work

After discussing some general concepts, we will investigate representation learning and

entity type prediction in more detail. In Section 3.1 we discuss one pure translational

model along with a translational based model that additional embeds image literals. Next,

we will discuss entity type prediction based on embeddings in Section 4.2.

3.1 Representation Learning

Representation learning models encode KGs into vector spaces to create embeddings.

With the help of the learned embeddings relation semantics can be evaluated. In this

subsection two transnational distance-based models shall be presented.

3.1.1 Translational distance models

[9] TransE models entities and relations into the same low-dimensional vector space. It is

based on the assumption that for a given triple (h, r, t) the embedding of the tail entity

t should be similar to the head entity’s embedding h plus some relation r which leads to

the following energy function:

E (h, r, t) = ||h+ r − t|| (3.1)

h+ r ≈ t lasts if both entities h, t are near neighbors, under other conditions h+ r is very

different from t. The assumption can be visualized in vector representation as a vector

sum of h, t and measures the distance to t (see Figure 3).

TransE utilizes a margin-based ranking loss to learn embeddings and consists out of two

parts. The first part prefers lower values for given training triples while the second part

of corrupted triples is generated by swapping the head or tail entity with another random

entity. Since these are artificial entities, a high value is expected for this part of the loss.

L =
∑

(h,r,t)∈S

∑
(h′ ,r,t′)∈S′

h,r,t

[
γ + d (h+ r, t)− d

(
h

′
+ r, t

′
)]

+
(3.2)

TransE is an effective, efficient and at the same time simple approach to model entities and

relations between them. But its simplicity is also its weakness as TransE only considers

one-to-one relations, which can create conflicts when complicated one-to-many, many-to-

3 RELATED WORK 9

Entity and Relation Space

h

t

r

Figure 3: Illustration of TransE embedding method

many relations are modelled. Therefore, several extensions based on the same assumption

have been created: TransH [31] models relations in a hyperplane with a translation-specific

operation. TransR [23] uses separate vector spaces for entities and relations. TransD [16]

extends TransR by considering the diversity of relations and entities.

However, all these models only utilize structural information from KGs and do not take

additional information like images into account, although 51.1% of entities have at least

one associated (see Section 4.1).

3.1.2 Models with image information

[33] IKRL extends structural embedding models like TransE [9] by jointly combining

structural information and image information into the same vector space. Therefore they

propose two representations for every entity: Structure-based representations hS, tS that

are conventionally learned in representation learning (see Section 3.1.1) and image-based

representations hI ,hI constructed from constructed the head and tail entity‘s associated

images.

The overall energy function follows the approach of other translation approaches.

E (h, r, t) = ESS + ESI + EIS + EII (3.3)

TransE’s energy function is extended by combining all structure-based representations

and image-based representations into the same vector space for every triplet. ESS only

uses structure-based representations hS, tS and has the same energy function as proposed

3 RELATED WORK 10

in TransE. E.g., the energy function ESI = ||hS + r − tI || depends on the structure-based

representation from the head entity and image-based representation from the tail entity.

To encode images they utilizes the neural network AlexNet [20] to create the image rep-

resentation. Then the extracted features are projected from image space to entity space

to extract discriminative features. For every image i, the image-based representation pi

is computed as following:

pi = M · f (img
i
) (3.4)

with the projection matrix M ∈ Rdi×ds of dimension di which stands for the dimension

of image features and ds representing the dimension of entities.

IKRL combines structural information and image information for representation learning

of KGs. However, IKRL assumes that every image is associated with exactly one entity.

Indeed, an image could inherit information of two entities, but its information is in this

case only utilized for the representation of one entity [13]. This could lead to a decrease

of performance in representation learning as 48.9% have no associated image (see Section

4.1). Moreover, IKRL requires due to Formula 3.3 the head entity as well as the tail entity

of a given triplet to have an associated image [13].

Furthermore, the authors propose an attention mechanism to aggregate all image repre-

sentations of an entity into an aggregated image-based representation. Since we assume

that every entity has at most image representation, we skip its explanation at this point.

Those who are interested can read about it at [33].

3.2 Entity Type Prediction

All the papers presented in this Section use different types of embeddings but the classifi-

cation part should now be discussed. Therefore, the embeddings are only briefly discussed.

[7] Cat2Type creates Wikipedia category embeddings based on textual information in the

category names with the help of widely used language models like Word2Vec, Glove or

Wikipedia2Vec in combination with structural features of Wikipedia categories by training

Node2Vec on a category-category network. The final entity representation derived from

category name features is formally given by

EModelLM
i =

1

m

m∑
j=1

CLM
j (3.5)

3 RELATED WORK 11

where the entity representation EModelLM
i is the average of category representations CLM

j

generated by m language models. The same applies accordingly to the node embedding

models. On top of the entity representation a fully connected neural network with two

hidden layers is deployed for classification. The authors show state of the art results in

entity type prediction for 14 non-overlapping types in comparison with other approaches.

However, the question arises whether the created entity representation can be used for

fine-grained typing as well. Especially averaging all category representations in Equation

3.5 instead of using all available features for classification could introduce noise.

[34] Schütze, Yaghoobzadeh on the other hand create a joint entity representation by com-

bining three complementary entity representations for fine-grained entity typing. They

create the vector representation by concatenating character, word, and entity level repre-

sentations as input for a multilayer perceptron with one hidden layer. Since fine-grained

entity prediction is performed, an entity can be assigned to multiple types. Therefore, to

set up a binary classification problem a binary cross-entropy loss is used in the last layer,

formally given by

CEloss =
∑
i

−
(
tilogpi + (1− ti) log (1− pi)

)
(3.6)

where ti is the ground truth and pi the prediction that an entity is assigned.

This approach achieves consistently good results especially when combining all three levels

of embeddings, but needs a large, annotated corpus to be trained on.

A solution to this problem is proposed by Jin et. al [18] to reduce the size of the annotated

corpus needed to learn a joint representation consisting of low-dimensional structural,

entity attribute and entity type representations.

Based on a concatenated feature vector consisting of structural and attributed represen-

tation, the entity type is predicted here with the help of a multilayer perceptron but only

for the share of entities with type information. For an unlabeled entity its combined

structural and attribute information is used for neighbor prediction.

This approach allows them to use the information of all entities contained in the network to

improve the accuracy of the classification and combines the advantages of semi-supervised

learning as well as attributed embeddings.

[19] A completely different approach is taken by Jin et. al. They construct three undi-

rected entity graphs, namely co-occurrence graph, category-based graph and property-

3 RELATED WORK 12

based graph to capture different semantic correlations between entities. Every entity

graph is fed to its corresponding GCN model, which consists of several stacked GCN

layers, formally given by

Z(i) = σ

(
D̃
− 1

2 ÃD̃
− 1

2Z(i−1)W (i)

)
(3.7)

Ã = A+In is the adjacency matrix with selfloops, In the identity matrix. D̃ii =
∑
j

Ãij,

for all types j and entity i. Due to the definition of a GCN layer in Equation 3.7,

the feature vectors of all directly connected neighbor entities are linearly combined per

layer. So two layers recursively add the features of two distant neighbors using Z. With

more than three hidden layers, more noise than useful information is added to an entity

representation even when using an attention function [37].

These three GCN models share parameters such as model weight W (i) and unsupervised

consistency regularization what enables them to decide together based on three differ-

ent semantic perspectives. To optimize the jointly entity type prediction the difference

between two GCN predictions Ẑ
cat

, Ẑ
co

for all entities N is minimized, formally given

by:

Lc1 =
N∑
i=1

‖ Ẑcat

i,: − Ẑ
co

i,: ‖
2

(3.8)

In detail, the regularization differs, but the basic idea is the same for all threee GCN

models. The overall loss is the sum of the supervised loss Ls (from predicting the type of

labeled entities) and all regularizations.

Loss = Ls + λ (t) (Lc1 + Lc2) + λ
′
Lhie (3.9)

HMGCN can outperform all other in this Section discussed approaches. However, its

performance is highly dependent on the optimal weighting by λ′ and the chosen function

λ (t) of the different regularization terms in the combined loss function for the data set.

4 METHODOLOGY 13

4 Methodology

This Chapter describes the necessary data pre-processing in Section 4.1 to be able to

create TransE embeddings based on the dataset DBpedia630kimage and be able to carry

out entity type prediction. Therefore, we present two approaches in Section 4.2, one

baseline and our newly developed approach.

4.1 Data Preprocessing

Along with structural information, each entity in DBpedia [4] also contains textual infor-

mation in the form of an abstract as well as an associated image. 51.1% of entities in the

data set DBpedia630k [19] (a subset of DBpedia) have at least one image.

In order to extract the additional information incorporated in these images to develop a

classifier for the task of entity type prediction to complete type information in DBpedia

the data set must be pre-processed.

The original data set DBpedia630k is from 2019 and as most KGs are incomplete and lack

of type information, we expect outdated entities. So, the first step is to update as well as

to complete type information, names and DBpedia Uniform Resource Identifiers (URIs)

where possible. Furthermore, outdated entities which do not exist anymore, without type

information, or changed type information that is not considered in this subset of DBpedia

are excluded. That includes 13.5% of data. For 1.8% of the entities the type information

was updated during this process, of which 0.8% remain in the dataset since their updated

type information belongs to the 14 coarse grained types considered. Most of the changes

could be determined for the fine-grained type of Plant to Insect or Animal.

In the next step we extract the main Wikipedia image for every of the remaining enti-

ties, if possible, with the help of the web scraper Beautiful Soup1 to create the subset

DBpedia630kimage. Images whose width or height is not greater than 200 are not con-

sidered, as they are standard images that can be found in a large part of the Wikipedia

articles, without relevance for a specific entity. We extract the main Wikipedia image

under the assumption that it is the most accurate entity representation and therefore

contains the most information. DBpedia encodes its entity URIs in UTF-8 what includes

chars that are not supported by most operating systems as file names. To avoid this

restriction, we developed a function that replaces all special characters in image names
1https://www.crummy.com/software/BeautifulSoup/bs4/doc/

https://www.crummy.com/software/BeautifulSoup/bs4/doc/

4 METHODOLOGY 14

with ASCII conform symbols and maps them to given entity URI.

Wikipedia supports images in different formats2 in any size. However ResNet-50 [15], the

image analyzer used for classification expects images to be in the format JPEG with the

shape 224 x 224 along with exactly three colour channels of RGB. The same requirements

apply to Vision Transformer [10] with the difference that images of shape 224 x 224

and 384 x 284 are supported. All images are transformed so that they meet the stated

requirements for classification.

This new dataset is called DBpedia630kimage as it contains all valid entities with one

associated image.

As already introduced in Chapter 1 there are two types of complications associated with

the newly created dataset are expected: An entity is labelled wrong if its label does not

match the content of the associated image. Further an image is considered as ambiguous

if it displays the correct entity but from a context which would cause an image classifier

to learn wrong predictions. An illustration of this problem is the entity Polar Airlines

in Figure 1 whose image displays a plane that an image classifier would classify as the

type Aircraft (MeanOfTransportation) instead of Airline (Company). There is still a

certain semantic connection between the predicted Aircraft (MeanOfTransportation) and

its actual type Airline (Company). However, the difference between the actual type and

the type predicted with the help of the image can assign a completely wrong type to the

entity. For example, the main Wikipedia image of the entity Yakutsk TV Tower shows a

map of Russia since the city of Yakutsk is located in Russia, although the correct type of

Yakutsk TV Tower is Building.

At this point it must be mentioned that a fine grained hierarchically type prediction was

originally planned, but due to problems with the data set, ultimately only a flat type

prediction is pursued, see Section 5.3. Hence the following methods are implemented for

fine grained DBpedia types. Moreover, at the beginning of the thesis we had problems with

the application for computing capacity at the BWUniCluster 2.03. To avoid this problem,

we did not use ResNet-50 [15] in this step, as in the further course of this thesis but rather

Vision Transformer for image analysis. There is a very high-performance implementation

for Vision Transformer [10] that runs in Google Colab4.

To filter out misleading entities and ambiguous images, Vision Transformer [10] pre-
2https://www.mediawiki.org/wiki/Help:Images
3https://wiki.bwhpc.de/e/Category:BwUniCluster_2.0
4https://research.google.com/colaboratory/

https://www.mediawiki.org/wiki/Help:Images
https://wiki.bwhpc.de/e/Category:BwUniCluster_2.0
https://research.google.com/colaboratory/

4 METHODOLOGY 15

Figure 4: Pipeline to create DBpedia630kunambiguous from DBpedia630kimage

trained on ImageNet-21k5 is used in combination with Word2Vec [25] to calculate the

strength of the semantic relation between the actual type of an entity by Vision Trans-

former extracted image information. In detail we proceed as follows: First Vision Trans-

former predicts the ten most likely labels for the associated image of an entity. Next it is

checked whether the one the labels equal one type in its type-path, whereby a type-path

corresponds to all types which are contained in the type hierarchy of the DBpedia, subset

DBpedia630k from coarse-grained to fine-grained. For example, Polar Airlines type path

is

Organization→ Company→ PublicTransitSystem→ Airline

If one of the ten most likely contents of the image (predicted by Vision Transformer)

corresponds to an element of the entity’s type- path, we assume the highest semantic

relation of one. If not, Word2Vec is used to calculate the semantic relation of the predicted

ten types and all elements in the entity’s type-path since there does not exist a mapping

between the classes from ImageNet-21k and types from DBpedia. With the help of this

procedure, we create several variants of DBpedia630kunambiguous with a base score of at

least 0.5 to measure the influence of images on entity typing performance in Section 5.4.2

We call the second new dataset DBpedia630kunambiguous due to the fact that it is a subset

of DBpedia630kimage and contains only entities with an associated unambiguous image.

The following sankey diagram in Figure 5 gives an overview about the number of entities

in each created dataset.

KGs are dynamic structures whose entity URI along with relations change over time.

This can lead to version conflicts between entity URIs in different models depending on

the DBpedia version the model is trained on. To compare entity typing performance we

use pretrained TransE embeddings which are based on entities of the DBpedia 2016-10

dataset, but DBpedia630k was created 2019. It is therefore necessary to create a mapping
5https://image-net.org/index.php

https://image-net.org/index.php

4 METHODOLOGY 16

between revisions of an entities URI to be able to compare the results.

Figure 5: DBpedia630k after preprocessing and remaining derived entities used to create
TransE embeddings and used for classification

4.2 Entity Type Prediction

As already mentioned in 2.3 we consider entity typing as a classification task in which

entity types represent the classes. All definitions introduced in the following Section 4.2.1

also apply to Section 4.2.2 without further mentioning unless otherwise specified.

4.2.1 Structural Classification

Entity representation. The in Section 3.1.1 discussed translational model TransE

generates a low-dimensional entity and relation representation called embedding based on

the geometrical structure of the KG. Since we only want to determine the entity type, we

discard the relation vectors and use only the entity representation for classification.

4 METHODOLOGY 17

Classifier. Following [7, 6] we deployed a fully connected neural connected network

consisting of two linear layers with ReLU as activation function on top of the entity

representation for classification. Figure 6 shows a visualization of the network in which

the numbers represent the shape of the tensor. The shape of the TransE vectors is either

175 or 200, depending which TransE vectors are used in the classification (see Section

5.3). The output layer’s size 7 is the |type| in which each element t of this layer outputs

the probability for type t. At the last layer a SoftMax function in combination with cross

entropy loss is used to calculate the probability of an entity belonging to one class. This

step is formally given by:

S (xi) =
exi∑
j

exj

(4.1)

CEloss = −
∑
i

tilog (S (xi)) (4.2)

The SoftMax function, shown in Equation 4.1 normalizes the outputs (predicted entity

types) from the fully connected neural network to a probability distribution ∈ [0, 1] over

the predicted output labels, where xi is the label of class i whose probability shall be

calculated. xj are the inferred labels for each the j classes.

With the help of Equation 4.2 the difference between the probability distribution of the

true entity types and the predicted ones is calculated to propagate the loss back to optimize

the weights of the fully connected neural network, where ti is the ground truth and S (xi)

probability for all i given classes.

4 METHODOLOGY 18

Figure 6: Visualization of structural classification

4.2.2 Combined Classification

Image feature extraction. In order to extract image features from the associated

image of the entity, we utilize ResNet-50 [15] pretrained an ImageNet, an established state

of the art residual neural network. It consists of two max pooling layers, 50 convolutional

layers, one fully connected layer and a SoftMax layer. To deal with degrading gradients

what is often a problem for very deep neural networks, the authors introduce identity

mappings that are skip connections between one or more layers. We take the 1000-

dimensional image feature as one of the two inputs for entity type prediction.

Combined feature vector. Since the structural TransE features and image features

are from different vector spaces the extracted features are projected into a unified vector

space. To ensure that the TransE vector as well as the image feature vector have the

same influence on subsequent classification of the combined feature vector by the fully

connected neural network, both vectors have the same dimension of 200 each before being

concatenated.

4 METHODOLOGY 19

Figure 7: Visualization of combined classification

5 EVALUATION 20

5 Evaluation

In Chapter 4 we discussed different approaches to predict the type of an entity. Now in this

Section, we want to present the results and compare them with different approaches. First,

we will introduce the experimental setup along with the data used in the experiments.

Afterwards, the results of the structural model and the developed classifiers are shown in

Section 5.3 and 5.4 as well as compared with different approaches.

5.1 Experimental setup

We implement all experiments using Python6 in version 3.9 as programming language

and Anaconda7 as development environment. For creation of the KG embeddings, we

use the KG embedding framework PyKEEN [3] which extends Pytorch8. Following we

use Pytorch to implement the different classifications. All experiments are performed on

BWUniCluster 2.09 with 30GB RAM with NVIDIA Tesla V100 GPU.

5.1.1 Structural Model

We search among the following values for hyper-parameters: The embedding dim in {100,

125, 150, 175, 200}, the learning rate between values in {0.001, 0.1}, the batch size in

{64, 200} with a step size of 16. We created inverse triples, used early stopping and a

rank-based evaluator. The selected setting is that embedding dim is 175, the learning rate

is 0.08 and the batch size is 192. We run the embedding experiment with a time limit of

48 hours to find the presented configuration.

5.1.2 Classification

For the task of classification, we search among the following configurations: The learning

rate in {0.01, 0.05, 0.1}, the number of epochs in {10, 20, 50, 100}. In the final setting we

use learning rate = 0.05, number of epochs is 20 for the structural classification along with

10 for the combined classification and select a batch size of 64. We used this batch size

because [24] found smaller batch sizes generalize better than larger batch sizes. Further
6https://www.python.org/
7https://www.anaconda.com/
8https://pytorch.org/
9https://wiki.bwhpc.de/e/Category:BwUniCluster_2.0

https://www.python.org/
https://www.anaconda.com/
https://pytorch.org/
https://wiki.bwhpc.de/e/Category:BwUniCluster_2.0

5 EVALUATION 21

the activation function is ReLU, Adam the optimization algorithm and cross entropy loss

the loss function.

5.2 Datasets

Following the results of [7, 6] the created subsets DBpedia630kimage and

DBpedia630kunambiguous of DBpedia630k are used to evaluate the results. DBpedia630k

[38] consist of 14 non-overlapping classes and was originally constructed for text classifi-

cation. It contains 630000 entities with type, 5191887 triples and 570 different relations

(see Table 1). The constructed subsets DBpedia630kimage, DBpedia630kunambiguous are the

resulting datasets with an image for every entity, for more information on how these splits

were generated see Section 4.1. There are no entities shared between the train, test, and

validation set in none of the created DBpedia630k variants.

5.2.1 Dataset for Structural Model

The split DBpedia630kimage is used to create TransE embeddings. It contains 350000

entities from every of the 280249 entities have an associated image. The entities of

DBpedia630kimage are randomly splitted into a train set which consists of 50% of the

entities, a test set with 30% and a validation set with 20% of the overall entities.

Split purpose Triples Entities Entities Entities Entities Different
Train Test Validation with type relations

DBpedia630k 5191887 315000 189000 126000 630000 570

DBpedia630k TransE 1753724 140125 84074 56050 280249 372image embedding

Table 1: DBpedia splits used to create TransE embeddings

5.2.2 Datasets for Classification

To evaluate the performance of the different classifications two subsets of DBpedia630k,

DBpedia630kimage and DBpedia630kunambiguous each containing a balanced and an unbal-

anced variant (with additional variants for DBpedia630kunambiguous) are created. DBpedia630kimage

is used to create TransE embeddings and consequently the structural classification is based

5 EVALUATION 22

on these embeddings. In addition to that we measure the extent to which an image recog-

nition algorithm can learn from the with entities associated images with the help of three

variants each for the balanced and the unbalanced version of DBpedia630kunambiguous. See

Section 4.1 for how these different subsets based on DBpedia630k are created and Section

4.2.2 for the analysis. Unless otherwise mentioned, we always refer to the DBpedia630kunambiguous

the base variant with a semantic relationship of 0.5 in the following sections.

Every split is divided randomly into 95% training data and 5% test data and consist

of 7 non-overlapping coarse-grained classes. These are created by going up on level in

DBpedia’s type hierarchy in comparison with the 14 classes in DBpedia630k.

(a) (b)

Figure 8: Visualization of DBpedia630kimage used for classification with respective sub-
classes of all entities (a) and balanced (b)

The unbalanced version of a split contains all available entities of a class whereas the

balanced version contains 4000 of each of the 7 coarse-grained classes with an equal

distribution of the corresponding subclasses. For example, in Figure 8, there are 14000

different entities of the type of OfficeHolder in the unbalanced version of the DBpediaimage

5 EVALUATION 23

dataset, whereas the balanced version of the same dataset contains 1334 entities due to

the required equal distribution of sub types.

Accordingly, every balanced subset based on DBpedia630k subset contains 26600 entities

for training and 1400 to test. For more detailed information about the different splits, see

Table 2.

Split purpose Triples Entities Entities Different
Train Test relations

DBpedia630k classification 1753724 266237 14012 372image
DBpedia630k classification 1753724 26600 1400 372image balanced
DBpedia630k classification 1262376 200017 10527 356unambiguous
DBpedia630k classification 1262376 26600 1400 356unambiguous balanced

Table 2: DBpedia splits used for classification

5.3 Analysis of Structural Model

Table 3 displays the link prediction performance of the created TransE embeddings for

DBpedia630kimage. Link predictions means during this thesis the ability of the embed-

dings to predict the tail entity of a relation based on the head entity. The results are very

poor, and each metric indicates the same fact, that the learned embedding cannot capture

the relationships of any triple from DBpedia630kimage. This is surprising as TransE is an

embedding model which is known to be easy to train because of the small number of

parameters.

Split Hits@1 Hits@3 Hits@5 Hits@10 AMRI MRR

DBpedia630k 0 1e-6 2.001e-6 8.005e-6 0.012 0.002image

Table 3: Link prediction performance of TransE embeddings created on DBpedia630kimage

Especially the AMRI score of 0.012 indicates that the model is returning random tail pre-

dictions, and this is in fact true for the case of this evaluation. In total, DBpedia630kimage

contains 683260 different entities URIs in its triples file from which 321420 entities (47%)

5 EVALUATION 24

appear only once and respectively 394722 entities (57.7%) are contained at most twice in

the dataset.

The result is that 66 - 70% of the entities in the train split are not in the test or validation

split. The difference is varying due to different random seeds from PyKEEN’s triple

factory10 we use to split the overall dataset in the three subsequent parts. However, in

order to perform a proper evaluation every entity must be included in the train, test

and validation split at least once to be a predictable tail entity of a relation. If not

TransE assigns a random entity as tail and consequently the evaluation results are of no

significance, and this is especially the case here.

To be still able to interpret the results, we compare the classification performance of our

own TransE embeddings based on DBpedia630image with the performance of TransE em-

beddings11 which were pretrained on whole DBpedia. However, the inherited problem of

DBpedia630image remains what makes it impossible to correctly learn the low-dimensional

vector representation of entities, relations since it is impossible to compute the gradient of

the loss function in backpropagation without correct test data. Further none of TransE’s

hyperparameters can be optimized due to the fact there is no correct validation data

either. We write about the effects on the classification performance in Sections 4.2.1,

4.2.2.

For the original split DBpedia630k is the same problem existent with comparable dif-

ferences between train, test, and validation splits: Of 1863230 different entities 818230

entities (43.39%) are included only once, respectively 1105652 entities (59.34%) are in-

cluded at most twice in the dataset what leads to a difference of 66% between the three

splits. Overall, we conclude that the data set is not suitable for creating embeddings and

tasks in general which need several occurrences of the identical entity URI.

5.4 Analysis of Classification

In order to evaluate the performance of the structural and combined classification Macro-

averaged F1 (Ma-F1), Micro-averaged F1 (Mi-F1) and accuracy (AC) are reported. Dif-

ferent variants of both classifiers are evaluated on several variants of DBpedia630k. It

must be noted that all baseline models, except for Cat2Type 7 (types), predict 14 types

on DBpedia630k and we only 7 types on two DBpedia630k subsets. All baseline results
10https://pykeen.readthedocs.io/en/stable/reference/triples.html
11https://github.com/nheist/KBE-for-Data-Mining

https://pykeen.readthedocs.io/en/stable/reference/triples.html
https://github.com/nheist/KBE-for-Data-Mining

5 EVALUATION 25

are taken from [7]. We use two subsets of DBpedia630k instead of the original dataset for

evaluation because every entity must have one associated image for a combined classifica-

tion based on structural information and image features. Since the data sets used for the

evaluation are each a subset of DBpedia630k and the difference in performance between

Cat2Type 14 and Cat2Type 7 is only 2.37%, the results are comparable.

Methods DBpedia630k

Ma-F1 Mi-F1

MuLR [34] 0.752 0.777
APE [18] 0.760 0.784
HMGCN [19] 0.790 0.816
Cat2Type 14 [7] 0.948 0.947

Cat2Type 7 [7] 0.971 0.972

Table 4: Classification performance of baseline approaches on DBpedia630k, taken from
[7]

Methods DBpedia630k DBpedia630k
image unambiguous

Ma-F1 Mi-F1 AC Ma-F1 Mi-F1 AC
SC 0.445 0.533 0.533 0.406 0.539 0.539
SC-P 0.985 0.987 0.987 0.994 0.994 0.994

CC 0.052 0.238 0.238 0.056 0.245 0.245
CC-P 0.050 0.232 0.232 0.054 0.234 0.234

Table 5: Entity type prediction performance of structural classification (SC), structural
classification pretrained TransE embeddings (SC-P), combined classification (CC), com-
bined classification pretrained TransE embeddings (CC-P) on DBpedia630k variants

5.4.1 Structural Classification

The SC-P variant of the proposed SC outperforms all baseline models with an average

improvement of 14.3% on Ma-F1, respectively 13% on Mi-F1 as shown in Table 5. In

the structural classification model, a fully connected neural network is deployed on top

of TransE embeddings. This shows that the combination of TransE embeddings and a

fully connected neural network is very capable of learning the underlying semantics and

predict the entity type. Especially the performance improvement of 1.5% on Ma-F1 and

1.6% on Mi-F1 in comparison to Cat2Type 7, the only model in comparison that predicts

seven types as well, confirms the performance results.

5 EVALUATION 26

Impact of TransE embeddings. The SC-P variant outperforms the SC variant with

a difference of 54.9% on Ma-F1, respectively 46% on Mi-F1. This expected big difference

in performance validates the results from Section 5.3 and shows that TransE is unable

to learn the semantic relationships in DBpedia630kimage due to faulty test and validation

data.

In comparison to SC-P, SC has poorer generalization properties. The 12% difference

between Ma-F1 and Mi-F1 for SC compared to only 4% for SC-P shows that not all 7

types are equally affected by the insufficiently learned TransE embeddings. This difference

results from the structure of DBpedia630kimage: For heterogeneous classes like Person with

a large number of different subtypes in the type hierarchy, missing test and validation

data have a significantly greater influence on learning the semantic structure than for

homogeneous classes like Plant in which 94.2% of the entities correspond to the identical

fine-grained type. Missing test and validation data can at least partially be compensated

for by the number of entities the class contains.

Impact of semantic similarity of the images. Further there is no performance differ-

ence observable for all metrics on average between DBpedia630kimage and DBpedia630kunambiguous.

This result is expected since the structural classification is based only on TransE embed-

dings.

Methods DBpedia630k DBpedia630kimage unambiguous

Ma-F1 Mi-F1 AC Ma-F1 Mi-F1 AC
SC 0.445 0.533 0.533 0.406 0.539 0.539
SC balanced 0.463 0.496 0.496 0.488 0.532 0.532

SC-P 0.985 0.987 0.987 0.993 0.994 0.994
SC-P balanced 0.978 0.987 0.987 0.994 0.994 0.994

Table 6: Comparison of structural classification performance for balanced and unbalanced
splits of DBpedia630kimage, DBpedia630kunambiguous

Impact of balanced dataset. The balanced variants of DBpedia630kimage as well as

DBpedia630kunambiguous contain 4000 entities per type with an equal distribution for every

respective subtype, whereas the unbalanced variants contain all entities. This results in

5 EVALUATION 27

a 6.9% diminution on AC for DBpedia630kimage balanced on SC.

We assume that the difference in the prediction performance is caused by the combination

of a different underlying distribution of entity types and an insufficient generalization abil-

ity of the classifier: The difference of SC between Ma-F1 and Mi-F1 for DBpedia630kimage

unbalanced is 16.6% in comparison to 6.7% for DBpedia630kimage balanced. A macro-

average will compute the F1 metric independently for each class and then takes the av-

erage, hence all classes are treated equally. This means a good precision of a few classes

contributes to a decent overall precision, what can be misleading due to imbalanced data.

A micro-average will aggregate the contributes of all classes to compute the average F1

metric, so classes are weighted with their relative frequency. Transferred to the data set

here, this means some types are predicted by SC with a significantly higher degree of

accuracy. For SC-P no significant change in performance can be observed.

Impact of number of epochs in training. Figure 9 visualizes the accuracy evolution

over 20 epochs for SC-P in (a) and SC in (b). Except for training on DBpedia630kimage

balanced all trainings show a very high consistency on AC, whereby the variation for

DBpedia630kimage balanced is also very small with a maximum of 1.5%. From epoch 4

the results are constant, and the model will start too overfit.

Figure 9 (b), on the other hand, shows a very different picture for SC: The AC is very in-

consistent depending on the epoch with a maximum reduction of 5.8% for DBpedia630kimage

balanced. We assume that the model underfits due to the insufficiently learned TransE

embeddings.

5 EVALUATION 28

(a)

(b)

Figure 9: Evolution of accuracy over epochs for SC-P (a) and SC (b)

5.4.2 Combined Classification

The developed Combined Classification (CC) along with the variation Combined Clas-

sification pretrained TransE embeddings (CC-P) in Table 5 perform significantly below

average in comparison to all baselines models with average decrease of 82.5% on Ma-F1

for both variants. The combined classification model, like the structural classification

5 EVALUATION 29

model, uses TransE vectors. In this case, they are concatenated with image features. The

classification performance of CC on Mi-F1 for DBpedia630kimage is only minimally better

than a random prediction with uniform distribution and gives the impression that CC has

not learned anything. However, as will become apparent in the remainder of this analysis,

this assumption is only partial true.

Datasets CC CC-P

Ma-F1 Mi-F1 AC Ma-F1 Mi-F1 AC
DBpedia630k 0.052 0.238 0.238 0.050 0.232 0.232image
balanced 0.039 0.157 0.157 0.038 0.156 0.156

DBpedia630k 0.056 0.245 0.245 0.054 0.234 0.234unambiguous 0.5
balanced 0.037 0.152 0.152 0.038 0.156 0.156

DBpedia630k 0.073 0.342 0.342 0.069 0.324 0.324unambiguous 0.6
balanced 0.043 0.177 0.177 0.044 0.184 0.184

DBpedia630k 0.078 0.372 0.372 0.075 0.356 0.356unambiguous 0.7
balanced 0.056 0.244 0.244 0.062 0.277 0.277

Table 7: Comparison of combined classification performance for balanced and unbalanced
splits of DBpedia630kimage, DBpedia630kunambiguous

Impact of TransE embeddings. The performance difference between SC and SC-P

is 14.3% on Ma-F1, respectively 13% on Mi-F1. With the implementation of CC it could

be reduced to less than 0.1% on average and can no longer be measured. Even though the

overall classification performance is poor, this confirms the influence of image features on

entity type prediction, as intended.

Surprisingly, with an average of 0,069 on Ma-F1, respectively 0,319 on Mi-F1 CC achieves

better classification results than CC-P with 0,066 on Ma-F1 and 0,305 on Mi-F1 on each

of the unbalanced datasets presented in Table 7. For CC-P it is the other way around,

which performs better for the balanced version of all datasets. The differences are small

overall but still consistent for all possibilities considered.

Influence of the combination of feature vectors Both SC, see Section 4.2.1, and

classification of an entity using only its image achieve substantially higher performance

5 EVALUATION 30

on Mi-F1 and Ma-F1 compared to CC.

To evaluate the theoretical performance of ResNet-50 in entity type prediction, a custom

fully connected layer was added. In the next step, we trained the model 10 epochs on

the respective data set from Table 8 to which the performance is to be compared. The

gradient of all layers, except the newly added, is frozen in order not to destroy the al-

ready learned features [1]. Predicting the type of an entity only by its associated image

performs only 15.5% worse in comparison to SC-P on Ma-F1 and Mi-F1. Moreover this

simple approach outperforms three of the five baseline approaches listed in Table 5.

Split similarity Ma-F1 Mi-F1 AClevel

DBpedia630k 0.832 0.834 0.834image
DBpedia630k 0.5 0.855 0.854 0.854unambiguous
DBpedia630k 0.6 0.801 0.871 0.871unambiguous
DBpedia630k 0.7 0.829 0.927 0.927unambiguous

Table 8: Comparison of image classification performance for balanced and unbalanced
splits of DBpedia630kimage and several similarity levels of DBpedia630kunambiguous

Thus, SC-P as well as classification only using images achieve significantly better results

than their combined classification. This leads to the conclusion that the inadequate clas-

sification performance is caused by the concatenation of the image features and structural

features in connection with the on top deployed fully connected neural network. However,

it is currently unclear which part is the cause of the problem. We assume that an ensem-

ble learning method based on stacking that combines SC-P and classification based on

images achieves significantly better results than CC and also outperforms the individual

classifiers [39].

Impact of semantic similarity of the images. With higher semantic similarity,

the classification accuracy increases by 58.4% when comparing DBpedia630kimage with

DBpedia630kunambiguous 0.7. For the balanced versions an improvement of 35.7% can be ob-

served. For the already very good qualification performance solely based on the associated

image, an improvement of 10.1% can be observed in the comparison of DBpedia630kimage

5 EVALUATION 31

to DBpedia630kunambiguous 0.7 in Table 8. Meanwhile, a large number of entities have more

than one associated image. Therefore, it should be considered to use the additional avail-

able information for entity type prediction as well, instead of simply assuming that the

main Wikipedia image is the most accurate entity representation and therefore contains

the most information. For this purpose, an attention mechanism could be integrated into

the classification to select the most accurate image.

(a) (b)

Figure 10: Evolution of accuracy for SC over epochs for pretrained TransE embeddings
(a) and own TransE embeddings (b)

Impact of balanced dataset. In contrast to SC, a difference of 78.4% on Ma-F1 for all

unbalanced data sets and 76.5% on Mi-F1 for all balanced data sets can be measured on

average for both CC and CC-P. Thus, the difference between Ma-F1 and Mi-F1 is almost

constant and independent of the data set used. Overall, this means that the accuracy of

the classification is strongly correlated with the predicted class, but is now independent

of the datasets tested.

6 CONCLUSION 32

6 Conclusion

While existing entity type prediction models achieve state-of-the-art results based on

given curated datasets, most of them use only structured data like textual description

or category to predict its type. Since the main source of this datasets from DBpedia is

Wikipedia where the information is extracted from by human created info boxes, this

reduces prediction accuracy, creates incompleteness and noisy type information in real

world applications.

In this thesis, we aim to perform classifications of the entities into their types using struc-

tural as well as image information. To achieve this, we investigate different possibilities

on how to create KGEs and perform entity typing based on literals along with structural

information.

Since the incorporation of images for entity type prediction is a new task, we first create

two new datasets to compare results. Both datasets are subsets of DBpedia630k and

contain 7 non-overlapping classes. The first dataset DBpedia630kimage contains all entities

with one associated image. In order to create DBpedia630kunambiguous, we developed an

approach to exclude entities whose associated image displays a scene from which a classifier

would learn false predictions.

The developed approach concatenates image features with structural information and

deploys a fully connected neural network on top of the combined feature vector.

We compare the approach with the help of the above-mentioned datasets with approaches

that utilize structural information, literals, or a combination of both. We find out that

our created structural baseline approach generates the best performance in entity type

prediction, outperforming the combined classification approach. Furthermore, we inves-

tigate the influence of the associated images on the classification performance and find

an improvement in the classification performance on DBpedia630kunambiguous. From this

we conclude that the combined classification can only learn the patterns to a limited ex-

tent at the moment and that the inadequate classification performance is caused by the

concatenation of the image features and structural features in connection with the on top

deployed fully connected neural network. Besides that, we find inherited problems in the

dataset DBpedia630k due to which it is not suitable for learning KGEs.

7 FUTURE WORK 33

7 Future Work

For this thesis we assumed that the main Wikipedia image is the most accurate entity

representation and therefore contains the most information. However, this statement

only applies to a part of the entities as shown in the course of this work when comparing

entity typing on DBpedia630kimage with DBpedia630kunambiguous 0.7. At the same time,

the majority of entities with an image associated have more than one image associated. It

should therefore be considered how all images can be used for entity type prediction and

what improvements in classification can be achieved with them. One possible approach

is to include an attention mechanism in the classification.

We performed experiments only on subsets of DBpedia630k, so experiments must be

validated on other datasets as well. The already existing dataset WN9-IMG could be

utilized for this task [33].

In this work it could be shown that images in combination with other KG information

(here TransE embeddings) can be used for entity type prediction. However, the achieved

performance is not sufficient and must be improved. In this context, the concatenation

of image features and TransE embeddings in combination with a fully connected neural

network has proven to be inadequate.

Entity-level representations are often uninformative for rare entities, so that using only

entity embeddings for fine-grained entity type prediction is likely to produce poor re-

sults[34]. Indeed, deep neural networks can distinguish between a wide variety of types

with high accuracy for the task of image classification. For example, ResNet-50 achieves

an AC of 79.26% on ImageNet[15]. This suggests to use images together with other literals

for fine-grained entity type prediction.

A APPENDIX 34

A Appendix

Link to Repository: https://git.scc.kit.edu/usdrz/master-thesis

https://git.scc.kit.edu/usdrz/master-thesis

REFERENCES 35

References

[1] Transfer learning and fine-tuning. https://www.tensorflow.org/guide/keras/

transfer_learning, 2022. Accessed: 2022-01-06.

[2] Understanding the evaluation. https://pykeen.readthedocs.io/en/latest/

tutorial/understanding_evaluation.html, 2022. Accessed: 2022-01-04.

[3] Ali, M., Berrendorf, M., Hoyt, C. T., Vermue, L., Sharifzadeh, S.,

Tresp, V., and Lehmann, J. PyKEEN 1.0: A Python Library for Training and

Evaluating Knowledge Graph Embeddings. Journal of Machine Learning Research

22, 82 (2021), 1–6.

[4] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and Ives,

Z. Dbpedia: A nucleus for a web of open data. The Semantic Web Lecture Notes in

Computer Science (2007), 722–735.

[5] Berrendorf, M., Faerman, E., Vermue, L., and Tresp, V. On the ambiguity

of rank-based evaluation of entity alignment or link prediction methods, 2021.

[6] Biswas, R., Sofronova, R., Alam, M., Heist, N., Paulheim, H., and Sack,

H. Do Judge an Entity by Its Name! Entity Typing Using Language Models. 07 2021,

pp. 65–70.

[7] Biswas, R., Sofronova, R., Sack, H., and Alam, M. Cat2type: Wikipedia

category embeddings for entity typing in knowledge graphs. In Proceedings of the

11th on Knowledge Capture Conference (New York, NY, USA, 2021), K-CAP ’21,

Association for Computing Machinery, p. 81–88.

[8] Biswas, R., Turker, R., Bakhshandegan Moghaddam, F., Koutraki, M.,

and Sack, H. Wikipedia infobox type prediction using embeddings.

[9] Bordes, A., Usunier, N., García-Durán, A., Weston, J., and Yakhnenko,

O. Translating embeddings for modeling multi-relational data. In NIPS (2013),

C. J. C. Burges, L. Bottou, Z. Ghahramani, and K. Q. Weinberger, Eds., pp. 2787–

2795.

[10] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.,

Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S.,

https://www.tensorflow.org/guide/keras/transfer_learning
https://www.tensorflow.org/guide/keras/transfer_learning
https://pykeen.readthedocs.io/en/latest/tutorial/understanding_evaluation.html
https://pykeen.readthedocs.io/en/latest/tutorial/understanding_evaluation.html

REFERENCES 36

Uszkoreit, J., and Houlsby, N. An image is worth 16x16 words: Transformers

for image recognition at scale, 2020.

[11] Fensel, D., Şimşek, U., Angele, K., Huaman, E., Kärle, E., Panasiuk, O.,

Toma, I., Umbrich, J., and Wahler, A. Introduction: What Is a Knowledge

Graph? Springer International Publishing, Cham, 2020, pp. 1–10.

[12] Fuhr, N. Some common mistakes in ir evaluation, and how they can be avoided.

SIGIR Forum 51, 3 (Feb. 2018), 32–41.

[13] Gesese, G. A., Biswas, R., Alam, M., and Sack, H. A survey on knowledge

graph embeddings with literals: Which model links better literal-ly?, 2020.

[14] Gupta, N., Singh, S., and Roth, D. Entity linking via joint encoding of types,

descriptions, and context. Proceedings of the 2017 Conference on Empirical Methods

in Natural Language Processing (2017).

[15] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image

recognition, 2015.

[16] Ji, G., He, S., Xu, L., Liu, K., and Zhao, J. Knowledge graph embedding

via dynamic mapping matrix. In Proceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics and the 7th International Joint Conference

on Natural Language Processing (Volume 1: Long Papers) (Beijing, China, July

2015), Association for Computational Linguistics, pp. 687–696.

[17] Ji, S., Pan, S., Cambria, E., Marttinen, P., and Yu, P. S. A survey on

knowledge graphs: Representation, acquisition, and applications. IEEE Transactions

on Neural Networks and Learning Systems (2021), 1–21.

[18] Jin, H., Hou, L., Li, J., and Dong, T. Attributed and predictive entity embedding

for fine-grained entity typing in knowledge bases. In Proceedings of the 27th Interna-

tional Conference on Computational Linguistics (Santa Fe, New Mexico, USA, Aug.

2018), Association for Computational Linguistics, pp. 282–292.

[19] Jin, H., Hou, L., Li, J., and Dong, T. Fine-grained entity typing via hierarchi-

cal multi graph convolutional networks. In Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing and the 9th International Joint

Conference on Natural Language Processing (EMNLP-IJCNLP) (Hong Kong, China,

Nov. 2019), Association for Computational Linguistics, pp. 4969–4978.

REFERENCES 37

[20] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification

with deep convolutional neural networks. In Proceedings of the 25th International

Conference on Neural Information Processing Systems - Volume 1 (Red Hook, NY,

USA, 2012), NIPS’12, Curran Associates Inc., p. 1097–1105.

[21] Lin, T., Mausam, and Etzioni, O. No noun phrase left behind: Detecting and

typing unlinkable entities. In Proceedings of the 2012 Joint Conference on Empir-

ical Methods in Natural Language Processing and Computational Natural Language

Learning (Jeju Island, Korea, July 2012), Association for Computational Linguistics,

pp. 893–903.

[22] Lin, Y., Han, X., Xie, R., Liu, Z., and Sun, M. Knowledge representation

learning: A quantitative review, 2018.

[23] Lin, Y., Liu, Z., Sun, M., Liu, Y., and Zhu, X. Learning entity and relation

embeddings for knowledge graph completion. In AAAI (2015).

[24] Masters, D., and Luschi, C. Revisiting small batch training for deep neural

networks, 2018.

[25] Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient estimation of

word representations in vector space, 2013.

[26] Paulheim, H., and Bizer, C. Type inference on noisy rdf data. Advanced Infor-

mation Systems Engineering Lecture Notes in Computer Science (2013), 510–525.

[27] Prechelt, L. Early Stopping - But When? Springer Berlin Heidelberg, Berlin,

Heidelberg, 1998, pp. 55–69.

[28] Rossi, A., Barbosa, D., Firmani, D., Matinata, A., and Merialdo, P.

Knowledge graph embedding for link prediction: A comparative analysis. ACM

Trans. Knowl. Discov. Data 15, 2 (jan 2021).

[29] Sakai, T. On fuhr’s guideline for ir evaluation. SIGIR Forum 54, 1 (Feb. 2021).

[30] Vrandečić, D., and Krötzsch, M. Wikidata. Communications of the ACM 57,

10 (2014), 78–85.

[31] Wang, Z., Zhang, J., Feng, J., and Chen, Z. Knowledge graph embedding

by translating on hyperplanes. In AAAI (2014), C. E. Brodley and P. Stone, Eds.,

AAAI Press, pp. 1112–1119.

REFERENCES 38

[32] Wu, F., and Weld, D. S. Autonomously semantifying wikipedia. Proceedings of

the sixteenth ACM conference on Conference on information and knowledge manage-

ment - CIKM 07 (2007).

[33] Xie, R., Liu, Z., Luan, H., and Sun, M. Image-embodied knowledge representa-

tion learning, 2017.

[34] Yaghoobzadeh, Y., and Schütze, H. Multi-level representations for fine-grained

typing of knowledge base entities, 2017.

[35] Yao, L., Riedel, S., and McCallum, A. Collective cross-document relation

extraction without labelled data. In Proceedings of the 2010 Conference on Empirical

Methods in Natural Language Processing (Cambridge, MA, Oct. 2010), Association

for Computational Linguistics, pp. 1013–1023.

[36] Yogatama, D., Gillick, D., and Lazic, N. Embedding methods for fine grained

entity type classification. Proceedings of the 53rd Annual Meeting of the Association

for Computational Linguistics and the 7th International Joint Conference on Natural

Language Processing (Volume 2: Short Papers) (2015).

[37] Zequn Sun, Chengming Wang, W. H. M. C. J. D. W. Z. Y. Q. Knowledge

graph alignment network with gated multi-hop neighborhood aggregation. In AAAI

(2020), pp. 222–229.

[38] Zhang, X., Zhao, J., and LeCun, Y. Character-level convolutional networks for

text classification, 2016.

[39] Zhou, Z.-H. Ensemble Learning. Springer Singapore, Singapore, 2021, pp. 181–210.

Assertion

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Quellen

und Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben,

was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde, sowie

die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils geltenden

Fassung beachtet zu haben.

This work was performed on the computational resource bwUniCluster funded by the

Ministry of Science, Research and the Arts Baden-Württemberg and the Universities of

the State of Baden-Württemberg, Germany, within the framework program bwHPC.

Karlsruhe, January 14, 2022 Patrick Eisele

	Introduction
	Fundamentals
	Knowledge Graphs
	Knowledge Graph Embeddings
	Entity Type Prediction
	Evaluation
	Hits @ K
	Adjusted Mean Rank Index
	Mean Reciprocal Rank
	Early Stopping

	Related Work
	Representation Learning
	Translational distance models
	Models with image information

	Entity Type Prediction

	Methodology
	Data Preprocessing
	Entity Type Prediction
	Structural Classification
	Combined Classification

	Evaluation
	Experimental setup
	Structural Model
	Classification

	Datasets
	Dataset for Structural Model
	Datasets for Classification

	Analysis of Structural Model
	Analysis of Classification
	Structural Classification
	Combined Classification

	Conclusion
	Future Work
	Appendix

