

Master-Thesis

Karlsruhe, 19.03.2018

Der Vorsitzende des

Prüfungsausschusses

Prof. Dr. Heiko Körner

F
ak

u
lt

ät
 f

ü
r

In
fo

rm
at

ik
 u

n
d

 W
ir

ts
ch

af
ts

in
fo

rm
at

ik

Name:

Thema:

Fabian Hoppe

Comparative study on algorithms used for
clustering of natural language text

Arbeitsplatz: Robert Bosch Engineering and Business Solutions
Limited , Bengaluru

Referent:

Korreferent:

Abgabetermin:

Prof. Dr.-Ing. Laubenheimer

Prof. Dr. Link

02.10.2018

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, 18.10.2018

. .
(Fabian Hoppe)

Abstract

We are everyday surrounded by vast amounts of information. Consequently Information
Retrieval (IR) systems like search engines have become a part of our everyday life. But most
of that information is unstructured data like natural language. This creates a challenge
for IR systems, because in order to retrieve relevant documents the IR system has to
understand the texts.

This work identi�es features which capture the meaning of natural language texts (NLU
feature) and compares them regarding the detection of duplicates. The compared NLU
feature are lexical approaches, Par2Vec and a transfer-learning task. Lexical approaches
and Par2Vec are typical unsupervised features. The transfer-learning approach trains the
extraction of features on the STS task.

The duplicate detection represents many IR tasks. The classi�cation uses cosine similar-
ity to compare the data collection and a simple threshold to classify them. All features are
evaluated with two datasets. No NLU feature is able to outperform the baseline TF-IDF
feature. Especially the transfer-learning feature fails due to the limited model complexity
and training data to learn linguistic rules.

Zusammenfassung

Wir sind jeden Tag von einer Menge an Informationen umgeben, daher gehören Informati-
on Retrieval Systeme wie eine Suchmaschinen zum alltäglichen Leben. Die Mehrheit dieser
Informationen sind unstrukturierte Daten wie Sprache. Diese stellen eine Herausforderung
für IR Systeme dar. Die Suche nach relevanten Dokumenten muss diese verstehen.

Die vorliegende Arbeit untersucht Merkmale, welche die Bedeutung eines Textes reprä-
sentieren. Es werden lexikalische Methoden, Par2Vec und ein transfer-learning Ansatz
beschrieben. Der transfer-learning Ansatz lernt das Extrahieren relevanter Merkmale
durch STS-Daten.

Die Merkmale sollen als exemplarische IR Aufgabe Duplikate erkennen können. Dazu
wird eine Klassi�kation von zwei Datensetzen über die Kosinus Ähnlichkeit und einem
Schwellwert vorgenommen. Keines der vorgeschlagenen Merkmale erlaubt eine bessere
Klassi�kation als das TF-IDF Referenzmerkmal.

i

Contents

Abstract i

Zusammenfassung i

1. Introduction 1
1.1. Goal . 2
1.2. State of the art . 3

1.2.1. Natural Language Understanding 3
1.2.2. Analysis . 7
1.2.3. Current limitations . 9

1.3. Focus . 9
1.4. Outline . 10

2. Fundamentals 13
2.1. Linguistics . 13

2.1.1. Grammar . 13
2.1.2. Semantics . 16

2.2. Machine Learning . 18
2.2.1. Arti�cal Neural Network . 18

2.3. Statistical NLP . 22
2.3.1. Word representations . 22
2.3.2. Text representation: Bag of Words 26
2.3.3. Semantic Textual Similarity . 27

3. NLU feature 29
3.1. Overview . 29

3.1.1. Taxonomy . 29
3.1.2. Process pipeline . 32

3.2. Data Preprocessing . 33
3.2.1. Tokenization . 33
3.2.2. Data cleansing . 35

3.3. Lexical approaches . 37
3.3.1. Word representation . 38
3.3.2. Paragraph representation . 39
3.3.3. Implementation . 40
3.3.4. Parameter . 41

3.4. Unsupervised, compositional approach: Par2Vec 42
3.4.1. Paragraph representation . 43

ii

Contents

3.4.2. Implementation . 45
3.4.3. Parameter . 46

3.5. Transfer-learning approach: BiLSTM . 46
3.5.1. Sentence representation . 47
3.5.2. Implementation . 49
3.5.3. Training . 50
3.5.4. Parameter . 51

4. Information Retrieval 53
4.1. Document similarity . 54
4.2. Duplicate detection . 54

4.2.1. Thresholding . 55
4.2.2. Feedforward network . 56

5. Evaluation 57
5.1. Datasets . 57

5.1.1. Bosch bug report dataset . 57
5.1.2. Wikipedia dataset . 60

5.2. Evaluation metric . 61
5.2.1. Receiver Operating Characteristic curve 61
5.2.2. Similarity histogram . 62

5.3. Results . 62
5.3.1. Lexical approaches . 63
5.3.2. Par2Vec . 66
5.3.3. BiLSTM . 67

6. Conclusion 69
6.1. Further work . 69

Bibliography 71

A. Appendix: TensorFlow Graphs 75
A.1. GloVe model . 75
A.2. BiLSTM model . 76

B. Appendix: Evaluation data 77
B.1. Hyperparameters . 77
B.2. Similarity histograms . 78

iii

List of Figures

1.1. Overview for IR tasks . 3
1.2. Model of SHRDLU system . 4
1.3. Classi�cation of rule-based and statistical approaches 6
1.4. GloVe word visualization . 7

2.1. Grammatical structure of example sentence 16
2.2. Hidden state of RNNs . 20
2.3. Gates of a LSTM cell . 21

3.1. Overview of NLU features . 30
3.2. Basic NLU feature extraction pipeline . 32
3.3. Process pipeline for lexical approaches 38
3.4. Process pipeline for Par2Vec model . 43
3.5. Visualization of the paragraph vector (distributed memory) model 43
3.6. Visualization of the paragraph vector (distributed BoW) model 44
3.7. Process pipeline for BiLSTM model . 46
3.8. Network architecture of the BiLSTM model training task 47
3.9. BiLSTM cost and accuracy of one training run 50
3.10. STS prediction of the BiLSTM model with test dataset 51

5.1. ROC curves for di�erent preprocessing steps 63
5.2. ROC curves for di�erently trained GloVe embeddings 64
5.3. ROC curves for the mean lexical models 65
5.4. ROC curves for Par2Vec models . 66
5.5. ROC curves for BiLSTM model . 67

A.1. TensorFlow Graph visualization of the GloVe model 75
A.2. TensorFlow Graph visualization of the BiLSTM model 76

B.1. Similarity histogram of TF-IDF approaches 78
B.2. Similarity histogram of the Par2Vec approaches 78

iv

List of Tables

2.1. Linguistic sub�elds with example sentence 14
2.2. Description of all STS classes . 28

5.1. Summary of evaluation dataset properties 57

B.1. List of all lexical hyperparameters . 77
B.2. List of all Par2Vec hyperparameters . 77
B.3. List of all BiLSTM hyperparameters . 77

v

List of Abbreviations

AI Arti�cal Intelligence

ANN Arti�cal Neural Network

BoW Bag of Words

BiLSTM Bidirectional Long Short Term
Memory

CBoW Continuous Bag of Words

CNN Convolutional Neural Network

CSV Comma-separated Values

DNN Deep Neural Network

GloVe Global Vector

GRU Gated Recurrent Unit

IDF Inverse Document Frequency

IR Information Retrieval

LSTM Long Short Term Memory

LDA Latent Dirichlet Allocation

LSA Latent Semantic Analysis

ML Machine Learning

NLP Natural Language Processing

NLU Natural Language Understanding

NL Natural Language

NER Named Entity Recognition

NLTK Natural Language Toolkit

NLI Natural Language Inference

OCR Optical Character Recognition

PCA Principal Component Analysis

POS Part Of Speech

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

SVD Singular Value Decomposition

STS Semantic Textual Similarity

SVM Support Vector Machine

TF Term Frequency

vi

1. Introduction

Humans are able to exchange all kind of information through language. For instance,
language is used to talk about activities, to discuss abstract concepts and even helps to
determine the sentimental state of other human beings. Consequently, language is used
frequently in all kind of communication, like e-mails, reports, conversations and scienti�c
papers. This usage generates large language datasets, which contain a lot of informa-
tion. Approximated 80% of all relevant business data is text-heavy unstructured data[10].
Unfortunately acquiring insights out of text is a major problem for big data approaches.
Currently the main part of those information cannot be used for further automatically
analysis. The lack of such methods makes it di�cult to �nd relevant information in large
text datasets. It is like searching a needle in a haystack and the observable exponential
increase of data in the last years deteriorates this problem by adding even more hay.

Without being able to �nd relevant information it is likely that already existing informa-
tion is reproduced. The reproduction of information causes regularly unnecessary work.
One example for this is the reimplementation of an algorithm. In software development
it is well-known, that this duplication creates additional problems for maintaining the
implementations and even causes inconsistencies based on slight di�erences of the several
implementations. Of course, the produced heterogeneous data is a problem in other areas
as well and makes the search itself more di�cult. Other consequences of information
shortage are even more devastating. Managers could make wrong business decisions,
lawyers would not be able to defend their clients, engineers could design buggy products
and the research of scientists would be more di�cult without accessing the results of
colleagues. Information has become by far the most valuable resource for almost everyone.
Therefore the required access through Information Retrieval systems to manage large
amounts of data is one of today’s key challenges.

Information Retrieval (IR) recognizes the implicit patterns contained in collections of
unstructured data to �nd data that satis�es information needs[48]. This de�nes a variety
of IR algorithms for a broad application �eld. Depending on the task particular datasets,
patterns and formulations of information needs are considered. Popular examples for IR
systems are search engines like Google or Baidu which are used on a daily basis to search
the web with a query-based request by billions of people. Recently the virtual assistants
Siri, Alexa and Cortana integrated simple question answering systems, which allow a more
natural language oriented formulation of information needs. The IBM Watson project
illustrates that Information Retrieval is also used in enterprise related contexts as well as
scienti�c �elds.

Consistently those examples and IR in general focus on the biggest part of unstructured
data - natural language. This focus establishes IR as a sub�eld of Natural Language
Processing (NLP). As already mentioned the mandatory analysis of language to �nd
the relevant information is a tough challenge. Language is ambiguous in many aspects,

1

1. Introduction

uses a compositional structure and allows the de�nition of new concepts within the
language. Nevertheless a perfect IR system must understand the text on a human or even
superhuman level to �nd information needs. The task of understanding natural language is
a fundamental building block for IR models and many other NLP tasks. The corresponding
sub�eld is called Natural Language Understanding (NLU) and is AI-complete, which means
that solving the NLU problem makes all human knowledge available to machines and
constitutes arti�cial general intelligence[49].

1.1. Goal

The principal goal of Information Retrieval (IR) is making information accessible through
document search based on an information requirement. It organizes large amounts of
data and structures the data according to implicit patterns contained in the data and
the information requirement. IR tasks consists of two distinct sub goals: understanding
the input data and analyzing it with respect to this understanding by classi�cation or
clustering methods.

The abstract task of understanding language requires a further clari�cation. Therefore,
it is necessary to take a closer look at the concept of language. Ludwig Wittgenstein
describes language as a tool to trigger pictures in our minds[56]. According to Wittgen-
stein those pictures represent the meaning of a text and depend on the knowledge of the
initiator. In order to �nd the same picture based on the text and thereby understanding
it the knowledge of the recipients has to align with the knowledge of the initiator. NLU
requires speci�c knowledge. Assuming a constructivist learning model those pictures
extend the knowledge of all recipients and change future pictures. This learning process
establishes a bidirectional dependency between language and knowledge. Therefore NLU
has to integrate the described pictures into its knowledge base, otherwise it would not
be possible to receive the right picture in an ongoing text. Understanding a text accord-
ing to Wittgenstein means creating a picture based on this text and a priori knowledge.
Transferring this concept into the domain of machine learning the creation of a picture is
the generation of a representation within a vector space model based on several features
of the text. Current systems rely on domain speci�c feature and thereby understand
certain aspects. The research moves towards general understanding of texts to create a
task independent representation of the meaning similar to the pictures humans create in
their mind.

After the NLU algorithms created a representation for all texts it is possible to analyze
them regarding speci�c patterns. This analysis step provides a subset of documents which
comply to information needs: the retrieved documents. Therefore, the analysis focuses on
grouping and potentially ranking documents according to this need. Information needs
can either be formulated directly by transforming it into a NLU feature and compare it
to the document representations or implicitly by classifying all documents. This text
classi�cation determines information needs based on di�erent classes and requires labeled
data for each class. In contrast to grouping all documents according to labels the direct
comparison of NLU features does not depend on labeled data. Instead the most similar
documents compared to information needs are retrieved by clustering them. Clustering

2

1.2. State of the art

gathers similar documents and information needs with a data-driven approach. It does
not need a priori knowledge about the partitioning of the document collection. However,
the main goal of retrieving documents which satisfy a speci�c information need is shared
by both supervised and unsupervised models. The retrieval task determines whether
classi�cation or clustering is applied.

Figure 1.1 depicts the fundamental IR process with the described NLU and analysis steps.
The state-of-the-art models for both steps are illustrated in the following section.

Figure 1.1.: Schematic overview of transformation of text into the feature space with NLU
and the analysis by classi�cation or clustering of the feature. Notable the
supervised setting (dashed line) speci�es the information needs by labeling a
part of the collection. The structure of such labeled data is well-known and do
not require NLU.

1.2. State of the art

The �eld of Information Retrieval is a cornerstone of the current information age and
has a signi�cant value for corporations and individuals. This value becomes apparent
by looking at the success of web search engines like Google and Baidu which represent
just one application of the whole IR �eld. The diverse �eld of IR systems has led to
many publications and conferences around this topic. The depicted state of the art in
the following sections focuses on the creation of a vector space model to represent the
meaning of texts and the related classi�cation and clustering analysis tasks. Other IR
topics like document indexing, formulation of information needs through queries, Boolean
retrieval strategies and scoring models are not explicitly mentioned and will not be part of
the research provide by this thesis as well.

1.2.1. Natural Language Understanding

As described the �rst step towards �nding relevant information is understanding the
document collection and the information needs. The �eld of NLU addresses this problem
for general NLP tasks by extracting features which represent the meaning. Those features
can be either extracted by rule-based systems or with data driven statistical approaches.
Similar to other �elds in AI recent algorithms of NLU focus on statistical deep learning
models, which provide numerical features instead of simple nominal features provided by
most rule-based approaches.

3

1. Introduction

1.2.1.1. Rule-based approaches

First NLU approaches were published between 1960 and 1975. Examples of those early
systems are solving algebra text problems from school books[4] or answering question
about the position of building blocks in a model world[55] to prove the understanding of a
text input. Those early systems use rule-based methods to understand language commands
and perform actions according to the understanding. For example the block model of the
SHRDLU system[55] moves blocks and answers questions based on English key words.
Figure 1.2 shows an example input query and the corresponding action of the system.
The rules used in NLP systems are described with context-free grammars and checked

Figure 1.2.: Visualization of the SHRDLU model world together with a query input and
the corresponding output[55].

by parsers. For example, SHRDLU uses a systemic functional grammar to process the
language commands[55]. The idea of rule-based systems is supported by the linguistic
concept of generativism. This concept was introduced by Noam Chomsky and claims that
all NL is governed by general laws and principles, therefore NL can be described with a
generative grammar[12].

Rule-based systems focus on a speci�c domain, like a restricted world of colored blocks.
In this domain the possible inputs and outputs can be processed with few rules or a
simple grammar and the system is able to fully understand the reduced language input.
Improvements in the following years showed that those systems are very di�cult to scale to
a wider domain or adopt to another domain[34]. Rule-based systems, like SHRDLU require
knowledge about the di�erent utterances and how they can be connected. Therefore such
systems grow exponentially with an increasing number of utterances. Nevertheless rule-
based approaches are still considered in NLP applications with speci�c domains, especially
data preparation relies on the simplistic approaches provided by rule-based systems.
Examples are tokenization[24], stemming[44] and sentence boundary detection[24].

Nominal feature Early rule-based systems use words as nominal features. The rules test
whether the given words or word phrases are elements of a set of words. The introduced
historical rule-based systems [4, 55] use small word lists and check if the input is a part of
them.

4

1.2. State of the art

Instead of using distinct word sets with no additional information more recent ap-
proaches match the input words to big thesauri to �nd relations like synonyms or hy-
ponyms (is a relation) between words. The word relations in a thesaurus like WordNet[28]
are used to de�ne a graph. This graph uses the graph distance between words to measure
the semantic similarity. Budanitsky and Hirst provide an overview on �ve such distance
measurements[7].

Other relations like stereotypical situations for the words also allow to understand the
context of those words. For example the FrameNet[18] dataset lists duration, place, student,
teacher, subject, motivation, etc. as stereotypical situations for the word studying. The
situations could be used to add semantic annotations to the sentence[20]. By structuring
those annotations, it is even possible to generate complex parse trees based on those
frames[1]. Recently Liang proposed to train the semantic parsing process by question
answer pairs to reduce the required amount of supervision to create a formal representation
of the questions[33]. This approach uses statistical methods to generate a grammar and
combines thereby nominal feature with statistical approaches.

1.2.1.2. Statistical approaches

The increase in computational power and available language data was responsible for the
shift from rule-based methods to data-driven statistical methods in the early 1990s. The
statistical revolution also marks the shift from generative grammars to more structural
linguistics-based approaches. Structural linguistics focus on probabilities assembled over
a large utterance corpus[36]. Instead of trying to �nd complex rules which describe the
language, statistical methods analyze the occurrence of words and phrases and try to �nd
patterns to understand the text. An example for this analysis task are language models.
Those models try to predict a word with the help of given context words. Those so called
word embeddings have been proven to be useful for many NLP task. The language models
are used as inputs for supervised NLU tasks, like question answering[54], sentimental
analysis[51] or Semantic Textual Similarity (STS)[8]. Those systems use CNNs or RNNs
with large training datasets and hand-crafted additional features like POS tags. Other
NLP tasks like machine translation, text summarization use similar encoder-decoder
architectures to convert the text. Those tasks also require semantical understanding of the
input text, therefore the encoder is also trained to produce an abstract representation of
the meaning[9].

Statistic methods are able to process the complete corpus of a language. They are not
restricted to speci�c domains with reduced vocabulary[34]. But statistical methods focus
on speci�c subtasks of NLP, like language models instead of understanding the whole
language. This yields the classi�cation of statistical and rule-based systems shown in
Figure 1.3. Statistic methods achieved compelling result over all application domains for
subtask, but do not reach the deep language understanding of rule-based systems.

Recent research focuses on adding more structural components like dependency gram-
mars to ANNs methods. Tai et al. use Long Short Term Memorys (LSTMs) to model the
tree structure of language[53], Liang trains networks for semantic parsing[33]. Those
approaches combine statistical methods and generative grammars. They are aiming to
solve the poverty of stimuli problem[13]. Chomsky argues that a child is able to learn lan-

5

1. Introduction

Figure 1.3.: Classi�cation of rule-based and statistical approaches regarding the domain
breadth and understanding depth dimension[34]. The optimal approach would
archive a high value in both dimensions.

guage with a small amount of training examples, especially almost non-negative examples.
According to Chomsky to solve this problem the human mind needs to use a language
acquisition device, that contains a generative grammar[11]. Manning and Schütze state
that at least some architectural particularity is required to understand a language on a
human-level and that it is not possible to learn a language with a tabula rasa[36].

Numerical feature Statistical approaches generate numerical feature to represent words,
sentences and paragraphs by counting and analyzing the occurrences over large corpora.
The Bag of Words (BoW) model is the �rst step towards a numerical representation. It
accumulates one hot encoded word vectors over a �x vocabulary of words[48]. Despite its
simplicity it has been proven to work well for tasks like text categorization[38, 27]. The
problem of di�erent information entropy for words in languages are addressed by TF-IDF
approaches[48]. But the main disadvantage of the BoW model is the assumption of same
distances between di�erent words. It does not involve any semantics.

In compliance with the famous quote "You shall know a word by the company it
keeps."[19] from the linguist Firth more sophisticated features take the local context into
account to address this problem. The local context of a word is its n surrounding words.
Based on this concept LSA[16],LDA[3] and more recently word2vec[40] and GloVe[43]
were proposed. Those word representations or word embeddings have been proven
to accurately map the semantic of words into the vector space. Figure 1.4 shows that
semantically close words are also mapped to nearby vectors. Especially the analogy task
shows impressive results. For example produces the vector calculation woman−man+king
a result close to queen[40]. In contrast to the introduced thesauri-based feature the captured
semantic entanglement of close features does not re�ect a distinct relation like synonyms
or hyponyms. If the opposite is frequently used in the same n-grams, the word embedding
would be close to it[32].

Word embeddings do not address the problem of featurizing larger utterances. Straight-
forward algorithms use concatenation or (weighted) summation of the single word vectors
to represent larger parts of the text[35]. Those approaches are facing the same problem
as BoW-models. The word order is ignored. More sophisticated models consider the
structure of sentences and paragraphs. Le and Mikolov extend the language model with

6

1.2. State of the art

Figure 1.4.: A set of GloVe embeddings reduced to a two dimensional vector space with
PCA. The visualization shows that related words are mapped to vectors with
a small Euclidean norm.

an additional paragraph vector[30]. This model assumes that the local context of a word
depends not only on the word itself but also on the paragraph.

Aside from those unsupervised features end-to-end approaches take the syntax of text
into account as sequences for RNNs[26] and LSTMs[25] models or as concatenations for
CNN[31] based approaches. Supervised NLU task like STS, which measures the degree
of di�erence in meaning for two sentences, can produce features for further NLP tasks.
Examples for STS systems are introduced by Tai et al. and Shao[53, 50]. Especially STS
provides due to frequent tasks at the SemEval workshops many benchmark algorithms
together with su�cient training data[8]. Recently transfer learning based on multiple NLP
tasks emerged as an additional approach for general purpose sentence embeddings[9, 14].

1.2.2. Analysis

The second step for IR systems is analyzing the extracted features to group relevant
documents. The grouping of NLU features can either use classi�cation or clustering. The
current state of the art for both methods is brie�y discussed in the following paragraphs.

1.2.2.1. Classification

In IR every search can be seen as classi�cation problem. The classi�cation separates
all documents into a group which matches an information need and another group of
documents which do not match the information need[48]. Consequently, it groups the
collection constantly into multiple groups. Each group satisfying one speci�c information
need. This makes classi�cation suitable for common search terms and splitting a collection
into several known topics. This is also the reason why classi�cation in IR is referred to as
topic classi�cation. Typical IR classi�cation tasks are spam �ltering or �nding news stories
about a certain topic. But tasks like sentimental analysis can be considered as retrieval
tasks as well.

Most algorithms use word level feature to classify text. As already mentioned BoW
feature are still popular for many text classi�cation task, because of the simplicity. Often it
is enough to just compare the occurrences of utterances to classify texts. Term frequency
extensions are used to create feature invariant to text length and take the di�erent in-
formation entropy of words into account. Typically naive Bayes[48, 38] or SVMs[27] are

7

1. Introduction

used as classi�er on the term frequency feature. Nevertheless the curse of dimensionality
and the related sparse feature vectors are di�cult for most analysis methods. Therefore
the success of word embeddings in many NLP tasks is also notable in text classi�cation.
Recent approaches additionally encounter the sentence structure by using RNNs and
CNNs. Socher et al. introduced tree structured RNNs according to dependency graphs to
group the sentiment of movie reviews[51]. Aside from word level representation CNNs,
which work for many tasks well on raw signals, are used to classify the collection on
character level[58]. This approach could recognize the meaning of a�xes, like pre- and
-ing to derive the meaning of new words.

1.2.2.2. Clustering

In IR clustering is based on the so called cluster hypothesis. Schütze et al. describe the
hypothesis as follows: "Documents in the same cluster behave similarly with respect to
relevance to information needs"[48]. Accordingly, if one document of the cluster satis�es
an information need, all other documents of the cluster most likely satisfy it as well. This
hypothesis can be exploited for many use-cases in IR. One example is applying hierarchical
clustering to stepwise re�ne the information need. At each level it is possible to select the
cluster most suitable for the intended information need. This scatter-gather search avoids
ambiguity of search queries[48]. Another example for clustering is speeding up the search
process by dividing the collection into clusters and searching just the nearest clusters to
the information need.

The groups are determined by the document collection itself, therefore it depends
on features and the used clustering algorithm. Similar to text classi�cation BoW and
word embeddings are commonly used as features for clustering text. However more
sophisticated text representations based on end-to-end deep learning approaches cannot
be used in this unsupervised setting. Unsupervised features using transfer learning like the
already mentioned universal sentence encoder proposed by Cer et al. are not commonly
used either. Xu et al. describe another model explicitly for short text clustering[57]. They
use pseudo labels obtained by simple dimensionality reduction to train a CNN and cluster
this feature representations with k-means.

The actually used clustering algorithms is determined by the speci�c, demanded charac-
teristics of the clustering task, therefore the clustering approaches are highly task speci�c.
Commonly k-means models are used for topic clustering and scatter-gather searches
often use single-linkage approaches[48]. But most applications require specialized clus-
tering algorithms to take unknown cardinalities, partial or fuzzy cluster and prototype
representations of clusters into account.

1.2.2.3. Use case: Duplicate detection

An application between clustering and classi�cation is the detection of duplicates in
the collection. This typical classi�cation task, with two input texts and a Boolean is-
duplicate label, also compares documents which is a common task for clustering algorithms.
Accordingly, the duplicate can be de�ned as small cluster. In this case the behavior with
respect to relevance to information needs within a cluster should not di�er at all. The

8

1.3. Focus

duplicate detection for natural language is used in detecting plagiarism[59], �ltering web
crawls / search results[48] or to identify bug repots, which describe the same error[23].
Recent methods use mostly �ngerprints, a set of substrings, or simple BoW based feature
to compare documents. On one hand this is due to the performance restriction and on the
other hand it is based on the need to detect only exact duplicates.

1.2.3. Current limitations

The summarized state of the art reveals a few limitations of NLU feature and IR. Based on
the following depicted limitations the contributions of this work is going to be de�ned in
the next section.

NLU feature The current research on the semantic feature space for IR tasks has two
important shortcomings which will be addressed by this thesis. Firstly, the end-to-end
approaches applied by many supervised NLP tasks like STS, sentiment analysis or ques-
tion answering rely on training data and do not provide explicit sentence or even text
representations. Therefore, unsupervised tasks have to fall back on simpler features. The
recently proposed general purpose representations based on transfer learning tasks could
solve this problem, but as of today those feature were not used for IR tasks. Secondly,
feature taking the word ordering into account are trained and used mostly on grammatical
correct sentences. In IR many documents do not contain just continuous text. Bullet
points, keywords and other interruptions of text with a distinct grammatical structure
are common. Consequentially the current research does not report results for those noise
data.

Analysis Current text classi�cation approaches use large dataset with a structure aligned
to English grammar rules. Therefore, those models lack evaluation capabilities for less
strictly structured text with smaller training datasets. Due to the predominantly unsu-
pervised setting most IR approaches still rely on simple feature, which are obtained in an
unsupervised fashion. Those term-frequency or word embeddings models fail to represent
the combined meaning of words in a sentence. The lately introduced general purpose text
representations from transfer-learning tasks are currently not investigated for the use
within IR.

1.3. Focus

This work aims to structure the recent research e�orts by comparing NLU concepts for
featurizing semantics of text and applying it to IR. In accordance to this goal the main
contribution of this thesis is a comparative study for semantic similarity measurements.
The focus of this study is to identify useful patterns and heuristics for speci�c IR tasks
with varying datasets.

The considered NLU features are unsupervised features and text representations gener-
ated by a transfer-learning task. The transfer feature will be based on a supervised deep
learning approach which generates from the STS tasks a sentence representation. This

9

1. Introduction

representation will be combined and normalized to create a feature for the whole text. The
comparison of those feature to classical unsupervised feature aims to evaluate the potential
use of transfer-learned features in traditionally unsupervised settings. Additionally, to this
evaluation of supervised and unsupervised features this work will explore the e�ects of
involving the linguistic structure. In many situations the structure of texts di�ers from
strictly structured text according to English grammar. For example, the texts might contain
bullet points. The in�uence of this noise on structural properties will be studied as well.

Information Retrieval uses a variety of methods and models as depicted in Section 1.2.
This thesis will concentrate on the basic aspects of IR tasks. The feature vectors and the
comparison between documents and information needs. Both aspects are required for IR
clustering and classi�cation systems. This restriction also reduces the required system
components and �ts the introduced use-case of duplicate detection.

The duplicate detection will use bug reports as test datasets. Large software projects
are tested by many di�erent users to ensure the functionality of the product. During
testing multiple thousand bug reports are gathered. In order to manage those reports it is
necessary to apply basic IR approaches to satisfy typical information needs that emerge
while those errors are repaired. This use-case focuses on searching the collection based on
an entity to retrieve similar errors. The knowledge of similar errors helps to �nd reports
which describe the same bug. Those duplicates cause avoidable costs through multiple
correction attempts. Furthermore, determine the search for similar reports who is best
suited to �x this bug (the developer, who recently �xed similar bugs), what the potential
cause of the problem could be (the same cause, which produced similar problems) and
provides several other important insights.

The analysis of bug reports is also a project of Robert Bosch Engineering and Business
Solutions Private Limited, which supports this work. One of their aims is to apply AI
techniques, like IR to improve the e�ciency of the overall software development process.
This work contributes to this goal by comparing several unsupervised NLU features and
improving the current duplicate detection for bug reports.

1.4. Outline

The remaining part of the thesis is organized in four chapters. The structure of those
chapters are described as follows.

• In Chapter 2 required fundamentals are characterized. The chapter introduces basic
ML algorithms, statistical NLP concepts and basic linguistic knowledge.

• The main part of this thesis delves into the following two key aspects of IR systems.

NLU feature Chapter 3 looks at distributional features to quantify the meaning of
texts. Unsupervised and transfer learning supervised feature representations
are described.

Information Retrieval The analysis in Chapter 4 focus on clustering algorithms in
IR systems and the special case of duplicate detection.

10

1.4. Outline

• The detailed evaluation of the aforementioned algorithms is depicted in Chapter 5.
This evaluation uses duplicate detection.

The concepts of the di�erent approaches as well as the results of the evaluation are
summarized in Chapter 6. This chapter also describes promising reference points for
future work.

11

2. Fundamentals

This chapter covers the essentials used in consecutive chapters. With respect to this focus
a selection of general machine learning algorithms (Section 2.2) and statistical NLP tasks
are presented. The statistical NLP part in Section 2.3 is con�ned to word embeddings and
STS as NLP benchmark task. In favor of increasing the understanding of language as the
analyzed domain data before delving into the analysis part Section 2.1 introduces basic
linguistic concepts.

2.1. Linguistics

Natural Language Processing is due to the focus on language data closely related to
linguistics as the scienti�c �eld of studying languages. In order to provide the required
data understanding basic linguistic knowledge is necessary.

The usage of a complex language distinguishes humans form all other species and is
widely considered a trait of intelligence. The introduction chapter already established a
close relation between our thinking process and the ability to express our thoughts through
language. Therefore, language itself becomes a framework to order and structure our
thoughts. Vice versa language is shaped by our brains (neurolinguistics), social in�uences
(sociolinguistics) and of course the already existing language (historical linguistics). Those
in�uencing factors emphasize the wide range of linguistics. The scope of this thesis is
to understand the meaning of utterances, therefore the focus on this introduction lays
on structural and overall semantical aspects of linguistics. Those two facets are required
to categorize, understand and evaluate the NLU models that will be introduced within
Chapter 3.

Structural and semantical aspects of language are often characterized as a stack of
several di�erent linguistic sub�elds based on a hierarchical view of language processing.
Table 2.1 shows these di�erent layers accompanied by a brief example sentence to illustrate
the stepwise processing. Morphology and syntax analyze the structure of text. Those
�elds de�ne rules, which are collected in grammars. Based on the structure semantics and
pragmatics examine the meaning. The following sections depict grammatical rules and
the encoded meaning.

2.1.1. Grammar

A grammar is a set of rules to construct proper words, phrases and sentences. Those rules
are studied by the sub�eld’s morphology and syntax. They focus on the word and text
structure. Since the structure of a text is closely related to its meaning, we delve in the
following paragraphs deeper into both sub�elds.

13

2. Fundamentals

sub�eld example sentence
The trash is full.

Morphology is: lemma of be (third person singular)

Syntax POS determiner noun verb adjective
Dependency full→ is; full→ trash; trash→ the

Semantics object trash has property full
Pragmatics You should empty the trash.

Table 2.1.: The di�erent sub�elds of linguistics required to understand meaning of text.
The example sentence emphasizes typical aspects of each sub�eld. It does not
use any speci�c annotation.

Morphology This sub�eld is concerned about the structure of words. Words are con-
structed out of atomic units of meaning which are called morphemes. Most words consist
of just one morpheme, like dog or clean. In order to alter the meaning, grammatical
category (noun, verb, etc.) or other syntactical properties of words morphemes can be
combined with a�x morphemes[5]. The pre�x un- can be added to clean to form the
word unclean. This negates the meaning of the word clean. In general, the combination of
morphemes can be classi�ed into three classes.

• In�ections alter grammatical properties of words by adding a�xes. A typical in�ec-
tion is thereby the -s su�x to change a noun from singular to plural or -ed to change
the tense of a verb. In�ections do not transform the grammatical category or general
meaning of a word. All in�ections are referred to as lemmas of one lexeme. This
lexeme describes the principal meaning, therefore a lexeme is the root of a lemma
and serves as a representative for the group of lemmas. The English language just
contains eight in�ections. All of them are su�xes.

• Derivations manipulate the meaning of a word with pre- or su�xes. In this process
the grammatical category of the word is often changed. One example for this is
the derivation -er, which transforms verbs into nouns. Cleaner describes a person
who cleans for living. Another already brie�y mentioned example is unclean. This
derivation does not transform the grammatical category but changes the meaning
more drastically than the derivation -er in cleaner.

• Finally compounding words are the last combination type. In�ections and derivations
use a�xes, which dependent on other morphemes to form a complete word. They
cannot stand alone as words. Therefore, they are considered as bound morphemes.
In opposition to these free morphemes can be used as separate words. Strictly
speaking compounding words based on this property are not a combination of
morphemes but a combination of words. A few English examples are basketball or
real estate. Compounds refer to a new concept rather than a concatenation of the
combined word meanings, therefore it is not possible to interpret just the separate
morphemes. Especially for blank space separated open compounds, like real estate
the interpretation becomes more challenging, because what appears to be two words
is actually one.

14

2.1. Linguistics

Morphological analysis is used to derive the semantics of single words as well as to alter
words to re�ect details like the number or the temporal aspect of single words. The syntax
of a language is built-up based on morpheme combinations.

Syntax The ordering of words to form valid sentences is governed by syntax. Syntactical
rules de�ne phrases and sentences based on a grammatical categorization of words and
the intended meaning.

Grammatical categorizations are a key concept of grammars. Similar behaving words
with respect to phrase and sentence structures are grouped together[36]. Such groups
are titled as Part Of Speech (POS). The major groups, like nouns, verbs, etc. are taught in
elementary school, therefore the basic concept of POS tags is well-known. In linguistics
a few additional POS tags are used, like determiner in Table 2.1. Words with same POS
tags can be used as replacements for other words with the same tag without restructuring
the phrase or sentence. This interchangeability indicates that the syntax, or grammatical
correct structure is de�ned based on Part Of Speech.

The idea of generative grammars uses POS to de�ne hierarchical rules to combine
growing units. These set of rules generate for example out of the sequence (determiner,
adjective, noun) a noun phrase. This phrase serve as a constituent and is combined with
other constituents or POS until all constituents are combined into one single root. The
root represents a sentence. The example sentence of Table 2.1 is depicted in Figure 2.1 as a
tree according to this pattern. Combination rules are formalized as context-free grammars.
Based on such a grammar it is not only possible to describe sentences, but also to generate
sentences.

Another view on the structure of a sentence is given by dependency grammars. Instead
of con�ating the di�erent parts a dependency grammar uses prede�ned, asymmetric
relations between two phrases to determine the structure. One example of such a relation
is the subject of a verb phrase. This relation de�nes who or what is described by the verb
phrase. In Figure 2.1 subject relations are labeled with nsubj. In this case the verb phrase is
the head and the noun is the dependent of the relation. In general, the dependent modi�es,
extends or just refers to the head[42]. Dependencies are more open for interpretation than
constituency grammars, because it is not possible to de�ne universal rules for them. In
one sentence multiple dependencies are imaginable. It requires semantical knowledge to
select the right dependency. Accordingly, data has to be manually labeled.

Both approaches establish a tree-hierarchy for sentences. Constituent structures store all
words in the leaf-layer as opposed to dependency structure, where all nodes correspond to
a word and edges are labeled. In the last years dependency grammars are frequently used
for many NLP tasks, because it contains more semantical knowledge than constituency
grammars, but both viewpoints are useful for speci�c tasks. For this thesis neither structure
models are used explicitly, because the structure of a sentence will be learned with ANNs.
Therefore, the details of both models are out-of-scope for this work and will not be
discussed further.

15

2. Fundamentals

S

NP

DT

The

NNS

trash

VP

VBZ

is

ADJP

JJ

full.
(a) constituent structure

The trash is full.

det
nsubj

cop

(b) dependency structure

Figure 2.1.: An example of the constituent structure (a) and dependency structure (b). The
Penn Treebank annotation-style is used to label the constituent structure[37].
The dependency structure uses Universal Dependencies[42]

2.1.2. Semantics

Semantics is the sub�eld of linguistics analyzing the meaning of words, sentences and
utterances. As such it is an important part for NLU systems. According to the hierarchical
structure understanding of text relies on morphology and syntax. Obviously, the meaning
of words is closely related to morphology aspects. In addition to the simple word meaning
utterances have to take syntax into account.

Lexical semantics Languages use a set of words. Those words refer to speci�c concepts,
which de�ne the meaning of a word. In order to understand a word, it is thereby necessary
to know the corresponding concept. For concrete concepts like a house it is possible to
connect word and concept by showing it, but this is not directly possible for abstract
concepts. Those concepts have to refer to already existing concepts by de�ning relations to
other words. Lexica or dictionaries describe a word in this fashion with varying, unspeci�c
relations. Thesauri explicitly de�ne the relations between words with metadata and are
frequently used in formal systems to de�ne words. Typical word relations are antonyms
(opposite relation), hyponyms (is-a relation) or meronym (part-of relation)[36].

These relations are commonly used in morpheme combinations. The meaning of a word
containing multiple morphemes can be derived from one morpheme altering the meaning
of other morphemes. The word unclean refers to clean and states that it is not what is
commonly associated with the word clean by adding the pre�x un-. Adding the pre�x un-
to another morpheme, like important alters the meaning of this morpheme in a similar
way. Many practical approaches spare analyzing the meaning on morpheme level and
instead expand a thesaurus with important morpheme combinations. In this case words
are the atomic meaning units.

Instead of explicitly de�ning word relations with a thesaurus it is also possible to
�nd relations between words by analyzing the usage of words. This exploits implicit
relations of co-occurring words and is called distributional semantics[19]. If two words
occur frequently in the context of the same other words, it is reasonable to assume an
a�liation between those words. For example, student and professor most likely occur often
in the context of university. The obvious advantage of analyzing co-occurrences instead of

16

2.1. Linguistics

manually de�ning word relations is the omitted labeling e�ort. Distributional semantics
requires only a large text corpus. At the same time those unspeci�c relations are not
analyzed with respect to di�erent types, like antonyms or hyponyms and therefore do
not reach the annotational depth of thesauri approaches. Nevertheless are distributional
semantics especially through word embeddings, as mentioned in the introductory chapter,
regularly used in NLP tasks.

Since a word is de�ned by the context, in which it occurs, the same word can have
di�erent meanings in di�erent contexts. This creates ambiguity. A suit can represent a
law suit or a piece of cloth. Without knowing the context it is not possible to resolve this
ambiguity, therefore the entire utterance contains more meaning than the single words.
This open problem is word sense disambiguation and has to use compositional semantics
to resolve the ambiguity.

Compositional semantics Aside from lexical semantics utterances carry additional mean-
ing. Compositional semantics analyze these utterances to resolve word ambiguity and to
establish relations between individual word meanings. Manning and Schütze formulate
this condition in the following way:

The meaning of the whole is the sum of the meanings of the part plus some
additional semantic component that cannot be predicted from the parts.[36]

The sum of the parts provides overall contextual information about the general topic or
domain of the utterance. Humans use this when skimming through a text to determine the
topic of it. In this case the meaning of a few keywords without any relation between them
is su�cient to solve the task. Knowing the topic of a text can be used to disambiguate
word meaning and to associate a priori knowledge with the text.

The additional component arises out of the order of words and sentences. Syntactical
dependencies specify word relations, like the object of a verb, on sentence level. Composi-
tional semantics derive the meaning of the sentence by connecting those dependencies
with the meaning of individual words. But the syntactical rules do not de�ne unique
dependencies for all sentences. In general, multiple interpretations of word dependencies
are possible. This results in ambiguity on sentence level. In order to resolve the ambiguity,
it is necessary to identify the most likely dependency according to the domain and previous
sentences.

Utterances with multiple sentences contain additionally relations between sentences.
If a noun was already mentioned in a previous sentence, it is likely that a pronoun is
used to refer to it. This anaphoric relation is one example of cross sentence references.
Those references do not follow a nested structure, like it is commonly used for word
dependencies.

Pragmatics Language is always embedded into a wider context, for instance the relation
between transmitter and receiver, previous discussions or simply the body language of a
speaker. All these in�uencing factors can alter the literal meaning of text. The example in
Table 2.1 assumes that transmitter and receiver are �atmates and one of them is responsible

17

2. Fundamentals

for emptying the trash. Additional context changes the simple statement into an imperative
sentence.

Comprehensive NLU requires an understanding of any context to identify sarcasm and
idioms. In human-to-human communication the pragmatics layer re�nes or alters the
meaning of many utterances and is an important part of human communication. Some areas
try to avoid encoding information into the pragmatics layer to prevent misunderstandings
because recipients might not share the same context required to understand the pragmatic
layer. Business reports, product documentation or other reports are examples for this.
During this work we are going to focus on the literal meaning of a text, because our focus
lays on formal reports.

2.2. Machine Learning

Apart from linguistic knowledge NLP and especially statistical NLP requires pattern
recognition as well. These methods identify the underlying structures, similarities or other
patterns of the text corpus. Typically, those text patterns are due to their complexity not
explicitly programmed, but automatically learned. This constitutes Machine Learning (ML)
as the second closely related �eld.

Most current approaches applied in NLP depend on ANNs. Using word embeddings and
BiLSTMs this work is no exception. Consequently, fundamentals about neural networks
are brie�y mentioned.

2.2.1. Artifical Neural Network

Instead of a deep dive into the general basics of Arti�cal Neural Networks (ANNs) and
the variety of di�erent networks, which is provided by many books and articles like [22],
this section focuses on the two networks actually applied during the remaining work. The
feed-forward networks is applied to classify representations, which are partially generated
by RNNs. Nevertheless, the basic elements of networks will also be introduced brie�y at
this point.

Perceptron Atomically all neural networks consist out of kind of layered perceptrons.
The perceptron classi�er de�nes a linear function, which separates the vector space into
two distinct classes depending on whether it is above or below the plane described by the
linear function. It is a binary classi�er. Expressed in a mathematical fashion the perceptron
calculates with f (®x) de�ned in Equation 2.1 the output ŷ.

f (®x) = ŷ =

{
0 if ®w ®x + b ≤ 0
1 otherwise

(2.1)

The possible result (0, 1) represents the two classes. The input vector ®x ∈ Rn contains n
features of one instance which should be classi�ed. The input vector ®x and the weights ®w
are elementwise multiplied and summed. This is the dot product. The parameters ®w and
b de�ne the linear function. Those values are determined by optimizing a cost function
based on input vectors and the corresponding output.

18

2.2. Machine Learning

2.2.1.1. Feed-forward networks

In order to classify more complex data a single linear function is not su�cient, therefore
perceptrons are layered. The result of one is the input of another perceptron. All networks
consist out of one input layer, several hidden layers and one output layer. The size of the
input layer is determined by the size of the initial feature vector ®x and the output size
is correlated to the required classi�cation task. If this sequence of perceptrons does not
contain any loops, meaning that the output of one perceptron just a�ects the following
perceptrons and not a previous one in addition, those networks are feed-forward networks.

Logically the perceptron has to be modi�ed to be used as a node in a neural network.
The transformations of the features in the layers are not restricted to one single real value
output. Accordingly the one dimensional result has to be generalized to am dimensional
result by exchanging the vector ®w with a matrixW ∈ Rm×n. Consequently, the bias b has
to be expanded into a bias vector ®b ∈ Rm. The matrix indicates the di�erent connections
between each unit in a layer. A network with a valid weight on all entries is fully connected.

Furthermore, the step function has to be changed as well. The step function serves a
special purpose in this concatenation of perceptrons. Linear functions are closed under
the chaining of linear functions. Without the nonlinearity part represented by the step
function for perceptrons the concatenation of them would be equally powerful than one
linear function. Therefore, this nonlinearity part to determine the output is important for
all networks. But for actual networks the step function is substituted by a better �tting
approximation, because the derivation of it has some unfavorable properties. The best case
for optimization would be a small change in the outputs whenever the weights and biases
are slightly altered. This allows a gradually adaption of the parameter. The derivation of
the step function is always zero except for x = 0, where it is in�nitely large. Therefore,
the output of a perceptron does not change gradually with better �tting parameters. Non-
linearities like the sigmoid function or the hyperbolic tangent function are frequently used
approximations with better �tting derivations.

Optimization After summarizing the general structure of a neural network in a rather
short way, the optimization aspect or how those parameters are adapted remains an open
issue, which will be brie�y addressed. The optimization has to measure the performance
of the current parameters and gradually adjust those parameters to improve them. This
requires a cost function, which measures the performance. Typically, the probability distri-
bution q of the network is compared to the approximated original probability distribution
p. The cross entropy, depict in Equation 2.2, is a common cost / loss / objective function to
compare those probabilities.

J (Θ) = −
∑

p(x) logq(x) (2.2)

The partial derivative of the cost function J (Θ) with respect to each parameter Θ
describes the change in the output value, if the corresponding parameter is slightly adjusted.
In order to minimize the cost all parameters are adjusted stepwise in negative gradient
direction till a local minimum is found. This approach is called gradient descent. The

19

2. Fundamentals

Equation 2.3 and Equation 2.4 describe this method in mathematical terms.

∆C =
δ J (Θ)

δΘ
(2.3)

Θnew = Θ − η∆C (2.4)
Figuratively speaking determines ∆C the direction in which the parameter have to be
adjusted. To avoid jumping over a minimum the parameters are combined with a learning
rate η, which decreases the step size. The partial derivative is calculated based on back-
propagation, which speeds up the calculation by reusing already calculated gradients. The
error is propagated reversely through the whole network.

Vanilla gradient descent uses all training examples to calculate one step, for many
cases this is to ine�cient, therefore more elaborated algorithms are applied. Stochastic
gradient descent for example just estimates the true probability function based on a few
examples[45]. These examples are mini-batches. Other approaches like AdaGrad[17] try
additionally to improve the step size.

2.2.1.2. Recurrent Neural Network

In opposition to feed-forward networks it is also possible to allow a node to in�uence
previous nodes. Those are Recurrent Neural Networks (RNNs). The recurrent connection
allows to take the previous activation state into account thereby it is particular useful
for time-related features like a word sequence. The previous state is saved as a so-called
hidden state. The basic approach is visualized in Figure 2.2.

Figure 2.2.: The dependencies of output ŷt to the hidden state ht and the previous hidden
state ht−1.

The hidden state and the new input are frequently simply summed after multiplying
the weight matrices. This is formulated in Equation 2.5. The actual output transforms the
hidden state with the help of an additional weight matrix.

h(®xt) = ®ht = σ (Whh(®xt−1) +Wx ®xt)

f (®xt) = ŷt = σ (Wo
®ht)

(2.5)

Those weight matrices are de�ned asWx ∈ R
l×n,Wh ∈ R

l×l andWo ∈ R
m×l with n denoting

the input vector size, l the hidden vector size and m the output size. In contrast to the
depicted equations the output and hidden state calculation does not need to use the same
non-linearity σ . Instead other functions could be applied as well.

The training of RNNs simply unfolds the recurrent connection into a feed-forward
network and applies backpropagation. This leads to deep virtual feed-forward networks

20

2.2. Machine Learning

depending on the sequence length. With increasing network layers, the backpropagated
gradients tend to vanish or explode depending on the nonlinearity component. If the
gradients of this functions are commonly smaller than one the gradients vanish. Vice
versa lead large gradients to exploding values[25]. This requires further improvements.
Exploding gradients can be handled with cutting o� large gradients[]. The vanishing
gradients cannot be improved so easily, but LSTM provides a solution for this as well.

Long Short TermMemory Hochreiter and Schmidhuber introduced the Long Short Term
Memory as an extension to solve the vanishing gradient problem[25]. The basic idea is
adding a memory cell, which controls whether the current state or the hidden state should
be taken stronger into account. This mechanism allows preserving the state over a longer
time period. LSTMs are commonly used for many NLP tasks, therefore many slightly
altered de�nition exists. The following overview of a LSTM unit is in line with Tai et
al.[53].

The memory cell ®ct is naturally de�ned by its previous state which is weighted by the
forget gate ®ft and the current state calculated from the input gate ®it and ®ut . This adjusted
memory state and the output gate ®ot determine the new hidden state ®ht . The output ŷt is
not altered compared to the RNN. This interdependencies are illustrated in Figure 2.3 and
formalized in Equation 2.6.

Figure 2.3.: Dependencies of the memory cell ®ct and the hidden state ®ht .

The exact calculation of each part can di�er in the applied nonlinearity and added biases.
The equations are not discussed in detail, because of the rather limited bene�t provided
by understanding the details of a LSTM for this thesis. One exemplary de�nition of the
di�erent gates is:

®it = σ (W(hi)®ht−1 +W(xi)®xt + ®bi)

®ft = σ (W(hf)®ht−1 +W(x f)®xt + ®b f)

®ot = σ (W(ho)®ht−1 +W(xo)®xt + ®bo)

®ut = tanh(W(hu)®ht−1 +W(xu)®xt + ®bu)
®ct = ®it � ®ut + ®ft � ®ct−1

®ht = ®ot � tanh(®ct)

(2.6)

21

2. Fundamentals

where � denotes elementwise multiplication and the subscripts of the weights emphasize
that for each gate a di�erent weight matrix is multiplied. The functional expressions are
due to the complexity and the minimal advantage of de�ning the input parameter left out.

The single LSTM units can be arranged in multiple layers or the signal can be processed
in forward and backward direction (Bidirectional Long Short Term Memory). During the
thesis such a BiLSTM calculates a sentence representation. Due to the complexity of the
unit itself with current calculation power just small networks are trainable.

2.3. Statistical NLP

After introducing a few basic ML methods and conveying an impression of linguistic
theories about semantics the fundamentals of NLP used in the following chapters can be
introduced.

NLP is a large �eld ranging from simple text manipulation to complex understanding
tasks like IR. As mentioned during the introductory chapter the focus of this work lays
on text understanding. The basis for all analysis task to achieve understanding is the text
representation. The representation of larger utterances, will be discussed in Chapter 3. As
starting point for those more complex representations the encoding of words becomes a
necessity. Those representations will be brie�y explained in the following section, as well
as non-semantic text representations and one evaluation task for sentence representations.

2.3.1. Word representations

The key factor for most understanding tasks is the representation of words. Consequently,
the transformation of words into features and the applied enhancement methods for those
features are fundamental.

A word is associated with a speci�c concept. Setting aside morphological aspects,
like a�xes, the concept is not related to any characteristic of this word other than the
word itself. Due to this property just, the equality relation can be established for word
comparisons. Words can be considered nominal data. The encoding of words into a vector
must take this into account, therefore the mainly used initial representation for a word
in vector space is a one-hot encoding. This representation associates each dimension of
a vector with one word. The corresponding dimension of a word is set to one and all
other vector values to zero to represent a word. The vector depends on the vocabulary
associated with the vector’s dimensions. This initial representation is used for basic text
representations, like BoW as well as for processing more complex word representations.

The one-hot encoding has two main drawbacks. Firstly, typical languages require a
large vocabulary, therefore those vectors have a high dimensionality and are sparse, which
is challenging to handle for most ML methods. Secondly, the vectors do not allow the
de�nition of any distance or similarity with respect to the lexical semantic between words.
Word embeddings aim to annihilate those problems.

Word embeddings exploit distributional semantics to de�ne a vector representation. As
mentioned distributional semantics de�nes a word based on the co-occurring words. Ex-
pressed in a more mathematical way the representations of those words must be correlated.

22

2.3. Statistical NLP

If features are correlated it is possible to predict with one feature the other feature. Based
on this reasoning word embeddings incorporate distributional semantics by predicting one
word (center word) based on the surrounding words (context words) or vice versa. This
prediction task is a language model. Multiple approaches were proposed based on this
conceptual idea. Word2Vec and GloVe are due to their performance on the word analogy
task (intrinsic evaluation task for lexical semantics) frequently used.

Word2Vec The Word2Vec approach, introduced by Mikolov et al. optimizes a neural
network to predict context or center words.

• Skip-gram: Prediction of context words based on the center word.

• Continuous Bag of Words: Prediction of center word based on the sum of all context
words.

Rare words are generally more unlikely to occur as center word, therefore the CBoW
model is not able to train those word embeddings quite as accurate as the skip-gram
model. Generally does skip-gram require less data, because it generates from n context
words n training examples while the CBoW model obtains just one training example. But
the CBoW model is less computational costly and generates a better representation for
frequent words[39]. The basic process is quite similar between skip-gram and CBoW.
Additionally, due to the smaller evaluation corpus just the skip-gram model is later on
considered therefore the following description focuses on the skip-gram approach.

Predicting context words entails maximizing a probability distribution for all actual
context words based on the complementary center word representations. The probability
of each word is de�ned in Equation 2.7. Where o denotes the index of the context word,
c the index of the center word and ®uo respectively ®vc the corresponding representations
for context or center words. Those representations are stored in a weight matrix of a
neural network. One-hot vector selects the column to produce ®uo respectively ®vc vectors.
The �nal word representation is the sum of context and center representation of each
word. The separated two internal matrices get lost, which creates a problem for training
pretrained models further on because the internal weights are not published for the most
common pretrained datasets.

p(o |c) =
exp(®uoT ®vc)∑V

w=1 exp(®uw
T
®vc)

(2.7)

Those representations are combined with a dot product and converted into a probability by
the softmax function. The dot product generates high values for similar vectors. Therefore,
the probability is high if context and center representations are similar or related. The
softmax function is the default way in ML to generate a probability distribution.

The optimization of those weights requires a cost function. Word2Vec uses the cross
entropy de�ned in Equation 2.8 for that. T denotes the length of the corpus, wt is the
word index of the word on position t . The actual probability is denoted by q(·). This cost
function can be optimized by typical methods like gradient descent to train the involved

23

2. Fundamentals

weight parameters.

J (Θ) = −
1
T

T∑
t=1

∑
−m<j<m

j,0

q(wt+j |wt) logp(wt+j |wt) (2.8)

Nevertheless, due to the high number of parameters, a vocabulary of 10,000 words with
300 dimensional representations has 6,000,000 weight parameters, the training has to be
faster to e�ciently calculate representations. Mikolov et al. propose three improvements
to achieve this.

• Subsampling: Frequent words in the corpus are trained unnecessarily often, espe-
cially considering the smaller information value of those words. Therefore, not
all occurrences of those words have to be used for training. Word2Vec assigns a
probability to each word whether it should be considered or not. This dropout
probability for each word is de�ned in Equation 2.9.

p(wi) = 1 −
√

t

|wi |)
(2.9)

Thereby |wi | denotes the overall occurrence of the word wi . The hyperparameter t
adjusts how fast this function converges to a probability of 1 to drop the word. A
small value for t results in a high dropout probability for smaller counts.

• Negative sampling: Another training aspect is the large amount of negative predic-
tion samples. For each training word pair, the center word weights together with
all weights of context word representations are adjusted. For the earlier introduced
small example those would already be 3,000,300 parameters for each step. The sum
in the denominator in Equation 2.7 is responsible for this high number of adjusted
parameters. Each step provides one positive example and |V | − 1 negative examples
to train the context word representations. The information value that one word does
not occur in the context of a speci�c center word is low but is trained signi�cantly
more often than any positive example. Those negative examples can be reduced to
decrease the number of adjusted parameters. Negative sampling approximates the
softmax function with a few negative examples, instead of all negative examples.
The details are explained by Goldberg and Levy[21].

• Hierarchical softmax: Alternatively, to negative sampling the softmax function
can be approximated by hierarchical softmax. The hierarchical softmax organizes
the probability distribution into a tree-structure. The probability and embedding
of one word is calculated by multiplying them along the path. Logically this ac-
celeration procedure increases the memory complexity, because the intermediate
representations have to be also stored. Due to the complexity of this approach a
detailed description is avoided in this work. Further information is provided by
Rong[47]. Mikolov et al. use a binary Hu�man tree to generate a tree-structure
for the embeddings. This not only minimizes the trained weights for frequent
words, but also groups words with similar occurrence frequencies. The grouping

24

2.3. Statistical NLP

introduces a dependency between representation and tree position. Therefore, the
grouping is an important aspect of this approximation. The Hu�man tree showed
compelling results. Other approaches train on negative sampling or the original
softmax and cluster the embeddings to generate groups of approximated similar
word embeddings[41].

GloVe The optimization on di�erent local text windows instead of a single global co-
occurrence matrix decreases the performance and is subsequently a disadvantage of
the Word2Vec approach compared to LSA or other co-occurrence matrix based models.
Pennington et al. propose the GloVe model to solve this problem[43].

They de�ned the cost function as shown in a simpli�ed form in Equation 2.10[43]. The
core of this objective function is the dot product as well. But instead of minimizing the
occurrence step by step the overall co-occurrence Pi,j of the word i in the context of j is
taken into account. The logarithm of the count increases with larger co-occurrences. In
order to minimize the function, the dot-product has to increase as well, which is the case
for very similar vectors as previously mentioned.

J (Θ) =
W∑
i,j=1

f (Pi,j)(®ui
T
®vj + bi + bj − log Pi,j)2 (2.10)

GloVe has the same drawbacks as Word2Vec for frequent words. To address this issue
the squared error is weighted by function f (·). It incorporates the word occurrence and
should be relatively small for large values. Pennington et al. propose the in Equation 2.11
presented function[43].

f (x) =

{
(x
xmax
)α if x < xmax

1 otherwise
(2.11)

Identical to Word2Vec the GloVe model is widely used and described in more detail in
many papers, therefore the details are of this model are not discussed further on at that
point. More details can be found in the original paper[43].

Training Both models do not require labeled data but must be trained on corpus data.
Logically the word usage of this corpus de�nes the representation and requires enough
occurrences of each word to de�ne the meaning. Accordingly, a large training corpus
provides better embeddings. On the other side due to word ambiguity and text-speci�c
word usage the training dataset must represent the word distribution of the actually
analyzed text, too. Those two aspects often contradict each other. Depending on the
task the training on embeddings based on a small domain speci�c corpus or the usage of
pretrained embeddings using a dataset containing billions of words can be more e�cient.
Conceptually domain speci�c training performs better, if the word distribution di�ers
substantially from the pretrained embedding corpora. Those are trained on Wikipedia
articles, news datasets or any text found by a web crawler, therefore the encoded lexical
semantic is rather general.

Another training aspect of neural network models, like the reviewed Word2Vec approach
is the backpropagation to alter the word embeddings based on the actual classi�cation

25

2. Fundamentals

task. The representation calculated from the language model serves as initialization
and the backpropagation used to train the classi�cation model is appended to also train
the embeddings. This emphasizes task speci�c aspects of the lexical semantics. This
simple transfer learning approach for word embeddings requires more training data and
computing power for the actual classi�cation task.

N-gram model Compounding words or more speci�c open compounds, described in
Section 2.1 are particularly challenging for word representation because the identi�cation
whether multiple words are actually a compound requires extensive world knowledge. For
example The Wall Street Journal is a compound and should be encoded as just one word.
However, this requires the knowledge that a newspaper with such a name exists. Instead
of creating large dictionaries for those compounding words, the frequency of speci�c
word combinations within a corpus can be used as a heuristic approach to identify those
compounding words. Therefore, the frequency of a sequence of N words is analyzed.

N-grams are not considered during this thesis due to the additional time costs and the
increase in complexity for the overall system (larger vocabulary, additional erroneous
component), accordingly a detailed description is not necessary. Principally a reasonably
well performing N-gram model should increase the overall performance, while a decrease
would be highly unlikely.

2.3.2. Text representation: Bag of Words

Beyond representing single words larger utterances require a representation as well.
Especially NLU features cannot be a simple combination of single word features due to
the compositional aspect of semantics. The Bag of Words (BoW) model does not apply any
semantics at all. Consequently it is together with derivations of the BoW model presented
as fundamental model. Later the TF-IDF approach is used as a baseline.

The BoW model accumulates all one-hot vectors. The resulting representation obviously
comprises the occurrence of each word in the vocabulary for this text. Such a word count
provides especially for topic detection valuable results because according to linguistic
concepts the pure word sum provides the general topic, similar to the human skim through
process recognizing just single keywords to detect the general topic.

The major drawback of simple word counts as provided by BoW is the dependency on
the text length. This problem can be avoided by using length invariant metrices, like the
cosine similarity or by normalizing the vectors. The normalized vectors are de�ned in
Equation 2.12 and coined Term Frequency (TF)[]. Where t ∈ d denotes the terms/ words
and d = (t1, t2, t3, . . . , tN) denotes a list of all terms within one document. The operator ‖·‖
used in Equation 2.9 for the word embeddings as well, denotes the number of occurrence
of the term in d . Commonly both approaches are applied.

TF (t ,d) =
‖t ‖∑
t̂∈d

t̂

 (2.12)

From the perspective of Shannon’s information theory di�erent words do not carry an
equal amount of information. Some words, like stop words (the, a) occur more frequently

26

2.3. Statistical NLP

over all texts of the corpus and on the other hand some words are unique for one spe-
ci�c topic. The comparison between two representations has to take this into account.
Therefore, each term has to be weighted depending on the entropy of it. The weights are
the Inverse Document Frequency (IDF). The Equation 2.13 depicts the calculation of this
weighting factor. Hereby denotes D the overall corpus, consequently is ‖D‖ the number
of all texts d and the denominator counts the actual documents containing the term t .

IDF (t ,D) = log ‖D‖

‖d ∈ D : t ∈ d ‖ (2.13)

Applying IDF as a factor for each dimension of the TF feature magni�es the di�erences
for important words and diminishes unimportant words. This combination is intuitively
named TF-IDF.

2.3.3. Semantic Textual Similarity

Semantic Textual Similarity (STS) is an intrinsic evaluation task to validate the semantic
understanding of a sentence. Intrinsic tasks are supposed to focus on one subtask of more
complex models. For STS this subtask is the semantic representation of sentences. Another
example for intrinsic evaluations are word analogy tasks which are frequently used to
evaluate word embeddings[39]. From a linguistic perspective word analogy tasks evaluate
lexical semantics and STS is one of multiple intrinsic task to evaluate compositional
semantics on sentence level. As such it is correlated to many di�erent actual NLP tasks,
like machine translation or text classi�cation and can subsequently be used as intrinsic
evaluation task for sentence representations of those systems. During the course of this
thesis STS is not considered as evaluation task, but to exploit the entangled semantic
aspects to train sentence embeddings for one NLU feature.

The STS task compares two sentences regarding the semantics of each sentence and
classi�es the relatedness of the sentences. This classi�cation requires the understanding of
the sentences. In opposition of the natural language interference task, which classi�es two
sentences in entailment, neutral and contradiction[6]. STS captures the degree of similarity.
Those six distinguished levels of sentence similarity are presented in Table 2.2 together
with one example for each level.

Dataset Due to the importance of semantic sentence representation many STS datasets
exists. Especially the SemEval workshops contributed in the last years many datasets.
One recently introduced dataset is STS Benchmark[8]. The authors Cer et al. combined
several STS datasets from SemEval workshops of the last years. It contains 8,628 labeled
sentence pairs. The sentences are gathered from news agencies, online forums and image/
video captions. Those sentence pairs are labeled by humans. The similarity levels allow
interpretation, therefore human judgment is not unique either. To avoid any bias each
pair is labeled multiple times. The gold standard labels are the average of those multiple
labels. Due to this process the actual label within the dataset is continuous.

Benchmarks As intrinsic evaluation task STS is suited to benchmark di�erent approaches.
The mentioned STS Benchmark focuses on as the name already suggests providing bench-

27

2. Fundamentals

Class Description Example

0 Sentences are not similar at all. Someone is slicing tortila’s.
Someone is riding a horse.

1 Sentences are not similar, A man is playing the piano.
but have the same topic. A woman is playing the violin.

2 Sentences are not similar, A woman is peeling a potato.
but have some details in common. A woman is peeling an apple.

3 Sentences are mostly similar, The turtle followed the �sh.
di�ering in an important aspect. A sea turtle is hunting for �sh.

4 Sentences are mostly similar, A man is eating a banana by a tree.
di�ering in an unimportant aspect. A man is eating a banana.

5 Sentences are completly similar. A plane is taking o�.
An air plane is taking o�.

Table 2.2.: Description of the six di�erent similarity classes used for the STS task. The
descriptions are taken over from Cer et al.[8].

marks. Cer et al. published the performance of most recent approaches for sentence
embeddings on this dataset[8]. Additionally, the current state of the art benchmarks are
presented at the online wiki1. The performance is measured and compared by linear
correlation of labels and predictions with Pearson’s r, typically scaled by 100.

Avoiding a deeper look into particular benchmarks generalizing the currently best
performing approaches depend on handcrafted features combined with ANNs. Currently
the best approach scores a Pearsons’s r value of 0.81[8]. Recently pure ANN methods,
especially models using transfer learning approach similar values. In Section 3.5 the
BiLSTM model proposed by Tai et al. for the STS task is used to train general sentence
embeddings. This method is supervised and achieves a Pearsons’s r value of 0.711 on the
test dataset of STS Benchmark[8].

1http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark

28

http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark

3. NLU feature

In order to analyze text with regard to the inherent meaning it is necessary to quantify text
attributes which denote the meaning of text. The quanti�ed attributes are NLU features.
This chapter gives in Section 3.1 an overview of such features and introduces a brief
taxonomy of common feature extraction methods for natural language. Afterwards the
chapter dwells on details of three speci�c algorithms for creating a NLU feature space in
sections 3.2 to 3.5.

3.1. Overview

Natural Language Understanding is a large research �eld with an even wider range of tasks,
each of them with an unique set of requirements and varying de�nitions of understanding.
Translating a text requires another form of understanding than identifying the overall topic
of a text or answering questions. Based on those di�erences each task also requires speci�c
NLU features. This is the reason why many features with divided characteristics exist.
In order to select, evaluate and even understand those features it is useful to categorize
them. Consequently, a brief taxonomy based on linguistic fundamentals and the required
training e�ort is in the following section introduced. Similar to the taxonomy linguistics
allows to de�ne the principal structure of extracting NLU features which is illustrated
below.

3.1.1. Taxonomy

The introduced taxonomy relies on three main aspects: way of assigning meaning, type of
exploited semantics and the required input data. The �rst two aspects engage a lexical
point of view. The third aspect is a typical ML property to categorize models. In Figure 1.1
the classi�cation with a selection of algorithms for each category is shown. The di�erent
aspects are described in the following paragraphs. The taxonomy constitutes the selection
of the three in detail analyzed algorithms, which is discussed in the last paragraph.

Definition ofMeaning The used descriptions to de�ne the meaning is a key distinguishing
characteristic. It is displayed on the �rst level of Figure 3.1. The meaning can be explicitly
denoted by a thesaurus which requires a large collection or by implicitly exploiting the
distributional hypothesis. Distributional models require instead of a priori de�ned relations
between certain words a large text corpus to obtain the implicit relations. Thesauri-based
approaches formulate speci�c rules based on the a priori relations. The features are
nominal and it is only possible to analyze words within a thesaurus with prede�ned
relations. Naturally words are nominal. Distributional semantics introduces a notion of

29

3. NLU feature

Features

Distributional

Lexical

TF-IDF[46]

GloVe[43]

Word2Vec[40]

LSA[16]

Compositional

Sequential

Par2Vec[30]

BiLSTM[53]

CNN[50]

Hierarchical

TreeLSTM[53]

Thesauri-based

Lexical

WordNet[28]

Compositional

FrameNet[18]

Figure 3.1.: Hierarchical overview of NLU features. The dashed boxes indicate supervised
models, all other models are unsupervised. Models which are investigated in
this work are highlighted in grey.

similarity based on the di�erences of the word co-occurrences. This is used by distributional
models to generate numerical features. Co-occurrences are not able to distinguish word
relations and therefore use vague relations.

Context Aside from the principal gathering of meaning certain feature also take varying
context into account. Some methods just use lexical semantics and other analyze addition-
ally the structure to obtain compositional semantics as well. The bene�t of compositional
semantics depends on the structure of input data and the task. Tasks like topic detec-
tion do not rely on details obtained by a larger context. In general, distributional and
thesauri-based approaches can observe compositional semantics.

Thesauri-based approaches append the relations used to compare di�erent words with
relations of the context in which the word is used. Those annotations are frames based on
frame semantics. For example, a sentence containing the word studying often contains the
duration or the subject in the same sentence. Based on the frame it is possible to connect
both words and capture the meaning of the whole sentence.

Distributional features encode the lexical meaning to vectors. The compositional mean-
ing is than calculated out of a sequence of vectors for the lexical meaning. The typical
dependency-structure of sentences makes it possible to divide this sequence analysis into
the following two categories:

• Based on the perception of humans the vectors are read in sequential order. The
linguistic structure of a sentence is either ignored or must be learned by the model.

30

3.1. Overview

• Instead of the sequential order the syntactical structure of a sentence is used to
extract the features. The increased structure of the input data reduces the required
training data in cases where the NLP task requires syntax.

Trainingdata Apart from the linguistic categorization one important factor for all features
is the required data to learn them. Initially all methods use one-hot encoded, concatenated
vectors or conceptually similar representation as feature. The feature learning transforms
those simple features into more sophisticated ones with lower dimensionality to avoid
over�tting and to reduce training time. Those transformations could either be unsupervised
or supervised. In Figure 3.1 supervised models are marked with dashed rectangles.

The thesauri-based approaches mostly rely on manual feature engineering. Therefore,
it does not use feature learning at all. Subsequently no additional training data is required.
The landscape of distributional features is more divided. Traditional models use unsu-
pervised methods, like PCA or SVD to reduce the dimensionality. Word embeddings use
language models and thereby are basically also unsupervised. Finally typical deep learning
approaches, like CNNs or RNNs integrate the feature learning into the classi�cation task.
Essentially each layer of those networks represents features. To learn those features labeled
data is required. The features are closely related to the classi�cation task they are trained
on and do not provide any theoretical insight.

Selectedmethods The in-depth described models are marked with grey �lled rectangles
in Figure 3.1. TF-IDF is used as baseline model. It compares the plain word occurrences.
As such it does not make use of any semantical knowledge.

Thesauri-based approaches are not considered, because di�erentiating between special
word relations is not required and distributional models evolved as quasi-standard for the
vast majority of NLP tasks. In addition, creating a suitable thesaurus based on the speci�c
domain data is time-consuming, cost expensive and would require extensive domain and
linguistic knowledge. As a consequence, the subsequently presented methods are restricted
to distributional semantics.

The �rst algorithm takes plain lexical semantics into account. It uses simple word
embeddings to be more speci�c Word2Vec and GloVe as features. This model is described
in Section 3.3. Word embeddings are frequently used as word representations and are
the basis of many compositional features as well. Hence, they are suitable for comparing
lexical and compositional models. The remaining two algorithms Par2Vec (Section 3.4)
and BiLSTM (Section 3.5) use compositional semantics based on word embeddings. Addi-
tionally Par2Vec is an unsupervised method and BiLSTM uses a supervised task to learn
features. This di�erence gives insights in the applicability of transfer features compared
to unsupervised features. Due to the close similarity between sequential and hierarchical
features, especially comparing BiLSTMs and TreeLSTMs and the time limitation of this
thesis hierarchical feature are not considered. The TreeLSTM algorithm shows for the STS
task an improvement of 1% in the Person’s r correlation compared to BiLSTMs models[53].
Therefore, it is a reasonable assumption that in the given setting both models will provide
similar results.

31

3. NLU feature

3.1.2. Process pipeline

The extraction of NLU features has to follow a general structure that is based on the
linguistic notion of semantics. Compositional semantics requires lexical semantics to
convey the overall meaning. Additionally, based on the strong grammatical dependencies
within a sentence and more loose relations across sentences compositional semantics can
be distinguished between sentence and paragraph, article, etc. This generates the intuitive
structure shown in Figure 3.2.

Figure 3.2.: The basic feature extraction pipeline for all described NLU features of this
thesis.

Preprocessing Before actually extracting features the text has to be divided into sentences
and words. Additionally, data cleaning, like removing unimportant characters from
the text is applied in many cases as well.

Word representation The word representations encodes based on the separated words the
aspects of lexical semantics. The result of this step is one feature vector for each
word. Distributional semantics requires a large text corpus to generate an accurate
representation. Therefore additional text similar to the input text is commonly used
to improve those feature vectors.

Sentence representation Based on the sequence of word representations the sentence rep-
resentation is calculated. Depending on the algorithm this calculation just combines
the word representations or uses additionally the word order or even the syntactical
dependencies. Taking advanced structures into consideration requires to conduct
further steps, e.g. POS tagging or dependency trees.

Paragraph representation Finally the sentence representation is combined into a repre-
sentation for larger utterances. This is the NLU feature used for further analysis,
like classi�cation tasks. The meaning of an utterance is predominantly determined
by the meaning of each sentence. Sentence relations do not follow the same strict
structure of sentence structure. Therefore, it is more complex to �nd those relations.
Consequently they are seldom used.

All succeeding described features embody this basic structure with some speci�cs.
Especially the preprocessing step is shared by all presented methods with minor changes,

32

3.2. Data Preprocessing

like skipping some data reduction steps. Therefore, the preprocessing is placed in front of
the feature descriptions and presented in the following section.

3.2. Data Preprocessing

The preprocessing for extracting NLU feature has two main objectives: Separating the text
into featurizable units and cleaning the input data. The separation is arguable required
for extracting any feature based on the introduced notion of hierarchical semantics. This
tokenization is independent of the actual features. It provides the elements to calculate
those features. On the contrary data cleansing relies on the actual extracted features,
because it changes key characteristics of the dataset to increase the generalizability and
adopts to the requirements of the feature extraction models.

3.2.1. Tokenization

Splitting the input text yields the parts used to calculate features. The introduced general
pipeline to extract NLU features uses words as atomic units and groups those into sentences
and �nally into a larger utterance. Thereby tokenization must divide the text into words,
sentences and in some cases into larger utterances like paragraphs. Since the separation
into paragraphs is not required for the short texts analyzed during this study it is not
described in detail. Additionally, paragraphs depend heavily on the used convention, e.g.
two-line feeds as separator. Those conventions lack of ambiguity and are consequently
easy to separate.

3.2.1.1. Sentence boundary detection

The task of separating single sentences is called sentence boundary detection. From a
linguistic point of view, it is necessary to distinguish between di�erent sentences because
words within a sentence depend on each other to de�ne the meaning of the overall sentence.

At the �rst glance the separation of written sentences seems rather simple. English,
as most languages, uses a period (.) to separate two sentences. Consequently, sentences
could be split by just searching for periods. Of course, this heuristic would have already
failed to split the last sentence since it contains a period as part of the content and not
as the delimiter of a sentence. Periods are not exclusively used to mark the end of a
sentence. Among others they mark abbreviations, initials and are used within �oating
point numbers[29]. Sentence boundary detection has to classify the occurrence of all
periods to detect those used as sentence delimiter. Apparently such a classi�cation task
can be solved with typical ML methods. Abbreviations is the most di�cult class as they
are based on the occurrence frequency. Complementary question marks (?) or exclamation
marks (!) can be used to end a sentence as well. In general, those symbols contain
less ambiguity than a period. Therefore, the classi�cation of periods remains the most
important part to disambiguate sentence boundaries.

In many cases heuristic rule-based systems already provide enough accuracy. However,
the detection of abbreviations in rule-based systems relies on pre-de�ned word sets which

33

3. NLU feature

introduce the need of additional resources, similar to supervised approaches. Unsuper-
vised methods do not rely on pre-de�ned abbreviations. They generate an abbreviation
vocabulary based on a few properties of abbreviations. Naturally the accuracy of those
models tends to be lower than methods using additional resources. In the case of extracting
semantic knowledge for information retrieval tasks based on lexical and unannotated
compositional approaches the accuracy of sentence boundary detection does not need to
exceed the precision of those methods, due to the fact that syntactical context is rather
limited for most by this considered methods.

One example for unsupervised models, which produces competitive results, is the Punkt
algorithm proposed by Kiss and Strunk[29]. It is implemented in NLTK and will be used
within this work[2]. The key characteristic of identifying abbreviations uses the assumption
that they always have a �nal period, they tend to be short and also frequently have internal
word periods[29]. Aside from these basic properties to understand possible shortcomings
the details of this algorithm are not important to understand and are consequently not
introduced here.

3.2.1.2. Word segmentation

Word separation is necessary, because they are used as the atomic meaning units and
subsequently are the fundamental parts of any NLU feature.

After in�ating the complexity of sentence boundary detection in the last section based
on ambiguity this thesis continues doing so with the problem of detecting single words.
Fortunately, the whitespaces used as word separators in most languages do not have
multiple functions. However, exceptions introduce ambiguity for word segmentation. The
basic rule that words are embedded into whitespaces does not apply for the following
cases:

• English contractions, like I’ll or isn’t are in each case two words without a whitespace
in between. Treating them as one single word creates especially for syntactical rules
like constituent grammars an issue, because this word could be part of two-word
classes[48].

• Another simple case is punctuation. Most full stops, commas and other punctuation
marks are attached to a word and would consequently be considers as a part of that
word. Preferably this should not be the case, because it would assume two di�erent
meanings for a word with punctuation marks and the same word without it. Strictly
speaking punctuation marks are no words. This is the reason why those parts of
this whitespace separation are commonly referred to as tokens.

• Sometimes hyphenation is used to separate two words as well. In general hyphen-
ation is an ambiguous word delimiter, because some words containing a hyphen are
just one word[48]. An example for this ambiguity is e-mail, which is just one word
and text-based which are basically two words.

• Lastly compounding words create ambiguity with open compounds as well. Open
compounds are treated syntactically as one word and have one distinct meaning,

34

3.2. Data Preprocessing

nevertheless they are divided by whitespaces. Consequently, an open compound
must be one distinct token.

Contraction and punctuation can be found with a regular expression. Hyphenation
and open compounds are more di�cult to �lter out. For most use-cases hyphenations are
treated as one word. Generally, hyphenations do not face the same uncertain word classes
as contractions do. Open compounds are merged into one token by n-gram approaches.
They analyze the occurrence of word sequences. During the course of this thesis the
NLTK implementation for tokenizing words is used. It applies �lter to distinguish between
contraction and punctuation[2].

3.2.2. Data cleansing

One crucial part for all practical machine learning tasks is the data quality. Typical
real-world data has a low quality due to missing measurements, faulty measurements or
simple inaccurate measurements. These errors introduce unwanted noise. Therefore, data
cleansing is required to improve the quality and boost the �nal outcome. Textual data is
no exception to this general rule.

In addition to data speci�c cleaning steps textual data faces commonly a problem with
dimensionality. Two properties of text contribute to this problem. On one side some words
occur frequently in almost any text without adding information on the other side some
words are so unique that they do not occur in other texts. Both aspects lead to a larger
vocabulary and consequently to more dimensions in the initial BoW model. Therefore the
curse of dimensionality is supplementary handled by removing and generalizing speci�c
tokens.

3.2.2.1. Token removal

Removing irrelevant or redundant features is frequently used for most ML methods. At
this point tokens are the most basic features of text. Consequently, irrelevant tokens are
removed before more complex features are calculated. The removal of tokens depends on
the actual task and is thereby a domain speci�c task. The three token types listed below
are commonly removed.

Numbers The meaning of a number depends on the context and format of it. This makes a
number particular di�cult to interpret. For instance, numbers might be nominal or
numerical and di�erent units can measure the same property as meter and centimeter.
This required knowledge is di�cult to acquire and numbers cannot be represented
in the same way words are encoded, therefore numbers are predominantly ignored
or replaced with one special token for all numbers. Some speci�c methods introduce
additional hand-crafted rules for numbers.

Special Characters Apart from punctuation marks many texts use other special characters
as well. Commas, parenthesis, bullet points, etc. are used to structure a text. Logically
those structure elements do not carry any meaning if the structure is disregarded.
Nevertheless, certain texts assign some meaning to certain sequences of special
characters. The most prevalent case is text emoticons.

35

3. NLU feature

Stop words Not all words contribute the same amount of meaning, therefore words not
contributing to the requested meaning can be ignored. In contradiction to the TF-IDF
algorithm, which solely uses information entropy to take this di�erence into account,
stop words are identi�ed through a manually assembled corpus and are entirely
removed. Typical stop word corpora contain words like the, to and a.

Regular expressions are used to remove number tokens and tokens containing special
characters. Stop words are removed based on a NLTK corpus containing 179 stop words.
The corresponding statements are displayed in Listing 3.1.

1 impor t r e
2 impor t n l t k
3

4 stopWords = s e t (n l t k . co rpus . s topwords . words (’ e n g l i s h ’))
5

6 d e f i s V a l i d T o k e n (token) :
7 r e t u r n not (r e . match (r ’ . ∗ \ d + . ∗ ’ , token) # \ d d i g i t
8 or r e . match (r ’ \W+ ’ , token) # \W non−a lphanumer i c
9 or token i n stopWords)

Listing 3.1: Python implementation for removing numbers and special characters based on
a regular expression. Additionally stop words are removed using a NLTK set

Due to the di�cult interpretation and the small expected information gain for repre-
senting the meaning of a whole paragraph numbers are removed for the whole evaluation.
This restriction abolishes the need to use an additional representation for numbers. Addi-
tionally, the removal of special characters does not distinguish between those denoting
lexical meaning and those just structuring text. The evaluated datasets are reports and
other formal documents in which emoticons or similar tokens are not used.

3.2.2.2. Token generalization

Comparable to the aggregation of data objects it is possible to reduce the distinguished
words by grouping them. As mentioned in Section 2.1 many words are appended with
a�xes to alter grammatical properties. Tempus, numbers and other grammatical details are
in most cases not important to determine the overall meaning of a paragraph accordingly
those lemmas can be transformed into the corresponding lexeme.

The recovering of lexemes is called lemmatization. The word usage and the context
are analyzed to determine the lexeme. For example POS tags have to distinguish between
meeting as a verb or a noun because the lexeme of the verb is meet but the noun should not
be changed at all. This kind of morphological analysis is a complex and time-consuming
task, therefore stemming is often considered as a heuristic alternative. Stemming only
analyses the word itself and tries to reduce the word to its stem. This stem di�ers from the
lexeme. Lemmatization focuses on converting lemmas to lexemes by removing in�ections
while stemming focuses on grouping the words with a similar meaning and therefore
removes also derivational su�xes. Stemming would remove the -ing in both cases for
the meeting example and would not change is or women at all. Nevertheless stemming

36

3.3. Lexical approaches

provides for English text similar results than lemmatization, however the results of either
methods depend heavily on the actual NLP tasks[48]. According to the most likely similar
results for English, the lower complexity and the larger groups during this thesis just
stemming is considered for generalizing tokens.

Stemming analyses single words with rule-based approaches to determine the stem.
The group of methods is called stemmer. According to Schütze et al. Porter’s algorithm is
the most common stemmer for English[48]. Subsequently the NLTK implementation of
Porter’s algorithm is used during the conducted study. The following description is an
overview of this stemmer based on the detailed de�nition from Porter[44]. It contains 5
steps. For each step rules are de�ned to transform the su�xes and determine the longest
possible su�xes that �t the applied condition. In order to ensure a minimal length of
the stem a condition based on a length measurement of transitions between vowel and
consonant is de�ned. The �rst step removes plurals and past participle su�xes, while the
steps two to four remove speci�c su�xes and step �ve removes some remaining characters,
like -e. One example rule part of the second step is formalized as: (m > 0)ATIONAL→
ATE. This means if at least one transition from vowel to consonant exits before ATIONAL,
than it can be replaced with ATE. One example for this rule is RELATIONAL→ RELATE.

3.3. Lexical approaches

After describing the commonly used preprocessing steps we can delve into the actual
NLU features starting with lexical approaches. All three considered approaches are with
the exception of calculating the word representation similar, therefore they are described
jointly.

The TF-IDF model is used as a baseline due to its frequently usage in topic clustering/clas-
si�cation for many IR tasks. Furthermore, it does not measure any semantic information
aside from the information entropy of each occurring word. This conceptual di�erence
to all other models makes TF-IDF suitable to provide conclusions about the advantages
or disadvantages of semantic models in general. This baseline model is accompanied by
word2Vec and GloVe models on lexical level. Undoubtedly both models involve semantic
knowledge within the word representation and use dense vectors. Similar to the TF-IDF
approach both models are popular for many NLP task, especially ANN methods apply
frequently Word2Vec due to the possibility to use backpropagation. Both approaches
are considered because the in�uence of the global optimization used by GloVe and the
local context window of word2Vec is not foreseeable. This word embeddings also build
the fundament for the other two presented models, because those advanced models use
basically the same lexical representation and expand it by taking compositional semantics
into account.

As mentioned in Section 3.1 lexical methods do not use the word order of a text. Ac-
cording to this sentence and paragraph representation consider the word representations
respectively sentence representations as unsorted list. Since no additional dependencies
must be considered the main task for both steps is normalization. This maps the sets with
di�erent cardinalities to a �x-sized vector. Therefore, the models become invariant to text
lengths. TF-IDF uses averaging, a particularly often used way to normalize data. This is

37

3. NLU feature

frequently used for word embeddings as well. Cer et al. provide an example for this on the
STS task[8]. Consequently, averaging the word representation to calculate the sentence
and paragraph representation is also used in this work. The resulting process pipeline for
all lexical approaches is depicted in Figure 3.3.

Figure 3.3.: Process pipeline for lexical approaches. The sentence and paragraph represen-
tations are calculated by averaging the word representation.

The following sections take a closer look into the single word representations, the
reasons for averaging them and the implementation. Finally, the hyperparameters of each
model are discussed.

3.3.1. Word representation

Naturally the word representation is the de�ning element of pure lexical approaches. The
three considered models are default approaches. In consequence those representations
have been introduced in Section 2.3. Those basic concepts are not altered, but in order to
improve the representations aspects regarding the vocabulary and training are discussed
in the following paragraphs.

Vocabulary TF-IDF uses a weighted one hot encoding for words. This requires a �x
vocabulary size otherwise each word would be represented by a vector with a di�erent
length. This vocabulary can be built by analyzing the corpus. Including all words creates
on the one hand the most accurate representation but on the other hand the representations
get sparse. As mentioned data sparsity is an undesirable property for further analysis.
Based on this trade-o� the de�nition of the vocabulary is a crucial part of the word
representation for TF-IDF. Apparently considering the most frequent words will decrease
the dimensionality and overall the least amount of words are ignored. On the other side
frequent words do not carry the same information value, therefore stop words are removed
from the vocabulary, too.

The dimensionality of word embeddings is independent of the vocabulary size. Ac-
cordingly, no �xed size vocabulary is required. The trade-o� between vocabulary size
and vector dimensionality does not exist. Consequently, the removal of stop words or
less frequent words is unnecessary. This allows adding new words to the vocabulary.
The previous weights are simply appended and trained again. Assuming well-trained
embeddings the additional words are not going to change the old embeddings signi�cantly.

38

3.3. Lexical approaches

In order to avoid any adaption at all the old embeddings can even be kept �xed and only
the new representations are trained. This highlights the most important aspect for word
embeddings: training.

Training In opposition to the one-hot representation word embeddings are de�ned by
their occurrence. Therefore, the corpus must contain a su�cient occurrence of each word
to de�ne the lexical semantic of it. A large corpus is more likely to ful�ll this requirement,
but it also contains word ambiguity. This trade-o� between domain-speci�c training
and general pretrained embeddings was described in Section 2.3. Improving the training
without introducing more ambiguity has to append the corpus with domain-speci�c data.
This work gathers additional data by identifying domain related Wikipedia articles based
on the nouns of the corpus. The extraction utilizes the POS tagger of NLTK to identify
those nouns and the Wikipedia Python library to gather articles of those identi�ed.

3.3.2. Paragraph representation

The next processing step generates a representation for larger utterances. Pure lexical
approaches normalize the word representations to generate length invariant features. As
mentioned this normalization step calculates for all three approaches the average value
de�ned as:

®wd =
1
N

N∑
i=1
®ui (3.1)

where N denotes the total number of words in the paragraph, and ®ux the x-th word
representation. This calculation creates especially for lexical semantic encoded in word
embeddings two problems.

Contradiction Since a word embedding ®u with n dimensions is de�ned as a vector ®u ∈
[−1, 1]n averaging word embeddings cancel out certain aspects of the overall meaning. One
theoretical example are oxymorons, like awful good. By averaging contradicting words,
the meaning of each word gets annihilated. Since oxymorons are used to emphasis certain
aspects this would not be a desirable result. Due to the unspeci�c notion of word relations
used by word embeddings an oxymoron is just an arti�cial example for two appropriate
reverse vectors. Avoiding this behavior requires a more complex model which considers
compositional semantics.

Weight Another aspect which is not accurately modeled by simple averaging word
representations is the individual in�uence of words. Depending on the POS, word position
and the occurrence the meaning of each word has to be weighted di�erently. For example,
nouns and verbs contribute more to the overall meaning than adjectives. Partially the IDF
factor applied in TF-IDF addresses this problem. Consequently, the averaging of word
embeddings could be improved by including similar weights as well[35]. This extension is
de�ned in Equation 3.2.

39

3. NLU feature

®wd =
1
N

N∑
i=1

IDF (i,D)®ui (3.2)

3.3.3. Implementation

Two lexical approaches (TF-IDF, GloVe) are implemented from scratch with Python and
in the case of GloVe with TensorFlow. The Word2Vec representation is calculated by the
Gensim1 Python library. All paragraph representations are calculated with a trivial NumPy
averaging function. Therefore, just the word level implementation is discussed brie�y.

One-hot encoding The most frequent words are determined with a simple counter. This
standard collection class counts the word occurrence in the whole text corpus, stored as a
list in tokens and ranks them accordingly. The source code is de�ned in Listing 3.2 where
vectorSize denotes the hyperparameter to determine the maximum vocabulary size.

1 impor t c o l l e c t i o n s
2 wordCount = c o l l e c t i o n s . Counter (t o k e n s) # s o r t
3 wordCount = wordCount . most_common (v e c t o r S i z e) # s e l e c t

Listing 3.2: Usage of Counter to sort words based on the occurrence in tokens

On word level the one-hot encoding is not implemented as a vector, because of the
extreme sparsity of such a vector. Instead a simple index for each word is saved which
indicates the position of the one in the vector notation. This index is stored in a simple
dictionary with voc[key] = index . The corresponding word string is used as a key and
vice versa the word string is added with the index as key to allow resolving the one-hot
encoding.

The IDF factor for each word is moved outside of the sum to reduce the total amount of
calculations and consequently multiplied with TF (or paragraph representation).

GloVe The GloVe model is implemented with TensorFlow. Similar to the one-hot encoding
a word is mapped to one index which refers to the actual embedding. The TensorFlow
graph receives a matrix of indices for context words, center words and the corresponding
co-occurrence counts as input. The placeholder de�ned in line 1 and 2 in Listing A.2 shows
this for the context words and the co-occurrence count. The center words behave like
context words on that account they are omitted. In line 3 the corresponding embeddings
are generated and randomly initialized with a value between −1 and 1. Based on the index
matrix a pointer to the related embedding is generated in line 4 for each matrix element.

1 cooccur renceCount = t f . p l a c e h o l d e r (t f . f l o a t 3 2)
2 c o n t e x t I n p u t = t f . p l a c e h o l d e r (t f . i n t 3 2)
3 contex tEmbedd ings = t f . g e t _ v a r i a b l e (shape =[v o c a b S i z e ,

v e c t o r S i z e] , i n i t i a l i z e r = t f . random_uniform [. . .])

1https://radimrehurek.com/gensim/

40

https://radimrehurek.com/gensim/

3.3. Lexical approaches

4 contextEmbedding = t f . nn . embedding_lookup ([contex tEmbedd ings
] , c o n t e x t I n p u t)

Listing 3.3: Simpli�ed lookup of embeddings based on indices.

The cost function of GloVe as de�ned in Equation 2.10 is straight forward implemented
as TensorFlow graph accessing the contextEmbedding pointer list. The minimum is
found by a standard TensorFlow Adagrad optimizer. A shortened version of the source
code is attached in Appendix A together with the Tensorboard visualization of it.

Word2Vec The calculation of Word2Vec embeddings using Gensim is conceptual the same
process as extracting the Par2Vec embedding which is presented in Section 3.4. Therefore,
it is not described in detail at this point.

3.3.4. Parameter

Each model uses several hyperparameters. Those parameters in�uence each model sub-
stantially. Therefore, they are summarized in this section and their in�uence is discussed.

TF-IDF The described TF-IDF implementation uses one hyperparameter: the vocabulary
size. This parameter de�nes the size of each word vector. Consequently, the data spar-
sity and the number of considered words is determined by this parameter as previously
discussed. Typical the vocabulary size for models ignoring compound words is set to a
few thousand words. This number corresponds to the number of words a human needs to
know to understand the text.

Word embeddings The presented word embeddings are more complex models than TF-
IDF. They contain more hyperparameters. All embeddings de�ne the following parameters.

• Vector size: The dimensionality of the embedding vector determines the number of
weights. More weights in a network allow a better adaption of the network to the
original probability distribution but might also cause over�tting the model to the
training dataset. Commonly vectors with 100 to 500 dimensions are used[39].

• Context window length: The context window de�nes which words are included for
the prediction task. Small windows encode more grammatical structure and larger
windows in�uence embeddings to focus on the overall meaning[43].

• Training parameters: Additionally, typical training parameters like the learning rate,
batch size and number of epochs are incorporated to each model. Those parameters
in�uence the optimum search by setting the adaption rate of all optimized parameters,
determining the subsamples to approximate the probability distribution and the
repetition to �nd better minima for non-convex functions.

Additionally, each model has its own parameters to in�uence the cost function to reduce
the in�uence of frequent words and improve the training.

41

3. NLU feature

GloVe The hyperparameter focus on the weight function of the co-occurrence counts for
GloVe.

• Co-occurrence maximum xmax : Is the upper limit of the weight function. All oc-
currences above that limit are mapped to the maximum value of 1. This cuto�
prevents disproportionate in�uence of high co-occurrence counts. Pennington et al.
set xmax = 100[43].

• Scaling factor α : Below the maximum value the weight of the co-occurrences is
determined by the scaling factor. Pennington et al. argue that empirical α = 0.75
improves the embedding slightly compared to a linear scaling factor[43]. This scaling
factor emphasis rare words.

Word2Vec The Word2Vec model provides two hyperparameters to improve the learning
performance by adjusting the subsampling and negative sampling.

• Subsampling t : This hyperparameter used in Equation 2.9 determines how fast the
drop probability for a sample converges to 1. This scales down the update frequency
for common words. Mikolov et al. recommend to set t around 10−5.

• Negative samples: The number of negative samples used to train the embeddings is
the last hyperparameter. For most applications adapting 5 to 20 negative examples
for each prediction step is su�cient[39]. The negative sample parameter does not
exist for models using the hierarchical softmax to improve the performance.

3.4. Unsupervised, compositional approach: Par2Vec

Considering solely lexical semantics restricts the possible understanding captured by
NLU features to the sum of the parts of a text. It fails to capture the additional semantic
component denoted by the relation between the di�erent words. Many methods ad-
dress this disadvantage and try to capture compositional semantic as well. Consequently,
these methods have to use the position of words to generate sentence and paragraph
representations.

One model using the word order is the unsupervised Par2Vec model introduced by Le
and Mikolov[30]. This method extends the language model of Word2Vec to additionally
optimize a paragraph representation. Instead of just using the word embeddings to predict
words for each paragraph a vector is added to the word embeddings and is subsequently
also altered during the optimization. The Par2Vec models assumes with this additional
vector for each paragraph that the accurate prediction of a word does not only depend on
the corresponding context/center words, but also on the overall topic of this paragraph.
Therefore, the vector distinguishes between paragraphs with di�erent topics. Due to the
simultaneous calculation both representations in�uence each other. Therefore, the word
embeddings of this model di�er from the simple lexical approaches.

Par2Vec considers the word order based on the context windows, but it does not use any
syntactical structure other than unordered neighboring words. According to this property

42

3.4. Unsupervised, compositional approach: Par2Vec

it is controversial whether Par2Vec can be considered a sequential model. For the course
of this thesis it is classi�ed as a sequential model due to its usage of minimal word order.
However the hierarchical model introduced in Section 3.1 distinguishes between sentence
and paragraph representation is not fully applicable due to the minimal incorporated word
order. The intermediate sentence representation can be skipped. Based on this lack of
considered linguistic structure speci�c word relations are not considered. This structure
leads to the process pipeline illustrated in Figure 3.4.

Figure 3.4.: Process pipeline for the Par2Vec model. Word and paragraph representation
are simultaneously calculate by optimizing a language model.

In the following sections the Par2Vec algorithm is described in greater detail with a
special focus on the used Gensim implementation and the parameters.

3.4.1. Paragraph representation

The paper by Le and Mikolov introduces two extensions to the Word2Vec approach. Each
extension adds a paragraph representation to the two di�erent prediction tasks of the
Word2Vec model. The distributed memory approach adapts the Continuous Bag of Words
model and the distributed BoW alters the skip-gram approach and is compatible to it.

Distributed memory The CBoW model uses the average / concatenation of all context
words to predict the center word. This approach can be appended with a paragraph
representation by simply adding a paragraph vector to the context vectors. It is illustrated
in Figure 3.5. The additional vector is denoted by ®wd .

Figure 3.5.: Visualization of the paragraph vector (distributed memory) model. The context
word vectorsuo and the paragraph vectorwd are combined to predict the center
word vc .

43

3. NLU feature

This vector alters the probability function of Continuous Bag of Words slightly. Accord-
ingly, the probability function is de�ned as:

®u(o,d) =
®wd +

∑
o∈ ®uo

1 + |o |

p(c |(o,d)) =
exp(®vcT ®u(o,d))∑V ,D

w=1
d=1

exp(®vcT ®u(w,d))

(3.3)

where d denotes the index of the paragraph vector ®wd and D denotes the set of all initial
training paragraph indices. Compared to Word2Vec CBoW the intermediate averaged
representation of all context words ®u(o,d) is appended by ®wd . As a result, the sum over
all possible windows have to adapt the paragraph vectors as well. The prediction task is
distributed between context words and paragraph vector.

New paragraph representations (not used during the initial training) are obtained with
�x word representations as a result the training can be accelerated, because just the
randomly initialized new paragraph vector must be adjusted to minimize the cost function.

The paragraph representation is held constant for all windows of one paragraph regard-
ing the cost function. This allows a variable length of the actual paragraphs which helps to
encode single sentences and whole text documents. Due to the optimization on multiple
windows a paragraph vector encodes the topic of each paragraph. This topic tends to
generalize more for larger text, because a single word prediction does not contribute as
much as the same prediction for a smaller text. The second Par2Vec approach exhibits this
as well.

Distributed BoW The second introduced approach appending word embeddings to para-
graph embeddings is oriented on the skip-gram model. Skip-gram uses the center word to
predict all context words. Derived from this model the distributed BoW representation
incorporates just the paragraph vector to predict all words of one paragraph. The process
is visualized in Figure 3.6.

Figure 3.6.: Visualization of the paragraph vector (distributed BoW) model.

In di�erence to the distributed memory approach it is not necessary to calculated a
intermediate representation out of multiple words. For each word the in Equation 3.4
de�ned probability has to be calculated.

p(o |d) =
exp(®uoT ®wd)∑V

w=1 exp(®uw
T
®wd)

(3.4)

44

3.4. Unsupervised, compositional approach: Par2Vec

The prediction solely based on paragraph vectors removes the dependency of the cen-
ter word vc for the probability. This cuts the word embedding parameters by half and
consequently creates a simpler model. Additionally, the context word embeddings uo are
just used to compare the prediction to the actual result. Updating of those embeddings is
unnecessary[30]. They can remain randomly initialized, if their only task is to identify the
di�erent words. The distributed BoW model only optimizes the paragraph vectors, there-
fore it is a far simpler model than the distributed memory approach. But the abandonment
of center words also dispenses the word order. The distributed BoW approach does not
use any compositional semantic. Strictly speaking just, the distributed memory approach
is an unsupervised compositional method.

Le and Mikolov report for their evaluated tasks the combination of both models as
consistently best model and the distributed memory approach alone as close to those
results[30].

3.4.2. Implementation

Similar to the Word2Vec model the Par2Vec representation is implemented by the Gensim
Python library. Following the usage of this library is described, which does not di�er
greatly between Word2Vec and Par2Vec. Gensim renames the Par2Vec model to Doc2Vec,
which established it as a synonym for Par2Vec.

The Gensim approach is oriented on Scikit-learn classi�er. One classi�er object is
created with all hyperparameters, trained and �nally the classi�er predicts the results.
This basic process is shown with the actual function calls in Listing 3.4.2.

1 from gensim . models impor t Doc2Vec
2 model = Doc2Vec ([. . .])
3 model . b u i l d _ v o c a b (t r a i n T e x t)
4 model . t r a i n (t r a i n T e x t , t o t a l _ e x a m p l e s = l e n (t r a i n T e x t) , [. . .])
5 parRep = model . i n f e r _ v e c t o r (paragraph)

Both models (Word2Vec, Par2Vec) require a special input format of tagged words /
paragraphs. This preprocessing step creates trainText as a list of namedtuple . For each
element the words and a unique tag is required to train the embedding. The inver_vector
function does not need this tag later on. Listing 3.4.2 shows this preprocessing with a
simple index as tag, because the tag is not used further on.

1 from c o l l e c t i o n s impor t namedtuple
2 gensimTextRows = namedtuple (’ t o k e n s ’ , ’ t a g s ’)
3 t r a i n T e x t = []
4 f o r index , s e n t i n enumerate (t i c k e t S e t) :
5 t r a i n T e x t . append (gensimTextRows ([token f o r token i n

i t e r t o o l s . c h a i n . f r o m _ i t e r a b l e (s e n t)] , [index]))

45

3. NLU feature

3.4.3. Parameter

Due to the close relation between the Par2Vec and the Word2Vec model they share all
hyperparameter. The in�uence of each parameter to the paragraph representation is
similar to the in�uence on word embeddings. Le and Mikolov emphasis that especially
the window size parameter should be cross-validated since they report that the error rate
varies up to 0.7% for the evaluated sentiment task.

3.5. Transfer-learning approach: BiLSTM

The last reviewed feature is the most elaborated model with respect to the syntactical
structure of a text. Instead of using context windows similar to Par2Vec the presented
model includes the full word order and represents thereby a typical sequential model
on sentence level. As such it can enclose the linguistic structure of a sentence, like
dependencies to gather compositional semantics. This approach extends the lexical model
(word2Vec or GloVe) by replacing the word averaging on sentence level with a RNN which
is trained to provide compositional semantics. Likewise a brief look at the process pipeline
in Figure 3.7 shows this di�erence.

Figure 3.7.: Process pipeline for the BiLSTM model. The sentence representation is calcu-
lated with a BiLSTM network which is trained on the STS task based on word
embeddings as word representations.

The sentence representation or to be more precise the ANN has to be trained to extract
compositional semantics. This internal training task must include semantic knowledge.
Through the training on such a task the parameters of the ANN learn to create an accurate
sentence representation which captures the sentence’s meaning. Afterwards the trained
model can generate a representation for all kind of sentences. The learned knowledge
from a speci�c task is transferred. In opposition to the Par2Vec and word embedding
approaches this training data is not provided by large unlabeled corpora based on language
models. Hence the model is supervised. This transfer-learning approximately follows the
same approach commonly used in object recognition as Conneau et al. point out[14].

The two key factors of this transfer-learning approach are the model and the initial
task. Especially the initial task must rely on semantic knowledge. One example for such
a task is the STS task. It provides due to the SemEval workshop su�cient labeled data
and benchmark models. Furthermore, the task of classifying sentences due to overall

46

3.5. Transfer-learning approach: BiLSTM

similarity resembles the later contemplated problem of detecting duplicates. Based on the
training task the BiLSTM model proposed by Tai et al. for STS is considered as classi�er
during this work[53]. This BiLSTM model shows on the STS benchmark a reasonably
good performance[8]. Supplementary LSTM approaches are commonly used for many
NLP tasks due to the variable input length. However, the focus of this work lays on the
principal application of transfer-learning, therefore evaluating a great number of di�erent
models is out of scope for this work.

For completeness the two recently published approaches InferSent[14] and Universal
Sentence Encoder[9], which both propose a general sentence representation obtained
by transfer-learning tasks, should be mentioned as well. Neither of those papers were
reviewed in detail during this work.

Consistently to the review of the aforementioned lexical approaches and Par2Vec the fol-
lowing section starts with a description of the basic algorithm, followed by implementation
details and a summary of all hyperparameters of the BiLSTM approach.

3.5.1. Sentence representation

The sentence representation is generated by training the weights and biases of a BiLSTM
model to predict semantic similarity between two sentences. The intermediate represen-
tation of this training task constitutes a NLU feature for each sentence, which includes
compositional semantics and can be applied to tasks with less or none training data.

The process of the whole training task as proposed by Tai et al. is illustrated in Fig-
ure 3.8[53]. The intermediate representation of two sentences is compared with a simple
feedforward network with one hidden layer. The resulting probability vector is compared
to the actual label to calculate the loss and adapt the parameter of the feedforward model
and the BiLSTM. Both components are in detail introduced in the following paragraph.

Figure 3.8.: Network architecture of all components for the STS training task.

BiLSTM The LSTM cell was introduced in Section 2.2. The used exemplary de�nition of
all gates (Equation 2.6) matches the de�nition of a LSTM cell used in this model.

The input sequence of word embeddings is considered in forward direction and backward
direction to avoid in�uencing the hidden state excessively by the end or beginning of
the sequence. Each direction is fed into one single layer LSTM cell. This constitutes the
BiLSTM. The last hidden state of both cells are concatenated and form the �nal output of
the BiLSTM component.

47

3. NLU feature

Feedforward network The feedforward network compares two sentences regarding the
similarity of the semantic annotated representations. To avoid training the feedforward
network to append the semantic sentence representation, the inputs of this component are
two simple di�erence measurements instead of the actual vectors. The semantic represen-
tation should be exclusively generated by the BiLSTM component because the feedforward
network is exchanged later on. Consequently, all linguistic knowledge incorporated into
it would be lost. In theory using a di�erence value as input separates the semantic rep-
resentation and the similarity classi�cation. Due to the di�cult interpretation of ANN
transformations this cannot be proven trivially. Therefore the sentence vectors calculate
by the BiLSTM are compared regarding the absolute di�erence in each dimension and the
angular di�erence. Both measurements are de�ned as:

®h+ = | ®hL − ®hR |

®h× = ®hL � ®hR
(3.5)

where ®hL respectively ®hR denote the sentence representations and � denotes elementwise
multiplication. According to Tai et al. a combination of both comparisons is empirical
proven to be superior compared to either of them alone[53]. Thereby the hidden layer
combines ®h× and ®h+ by adding both transformed vectors as formalized in Equation 3.6.

®hs = σ (W®h×
®h× +W®h+

®h+ + b®hs) (3.6)

Finally the output layer calculates the probabilities for each similarity class of the STS
task by applying a softmax nonlinearity, therefore the result vector is de�ned as p̂in[0, 1]6
and the output layer is:

p̂ = so�max(W®hs
®hs + bŷ) (3.7)

Logically the predicted class is de�ned as ŷ =
[
0 1 ... 5

]
p̂. By this de�nition the

probabilities are used as weights to sum the classes and average them. This allows like the
average label a continuous result instead of a strict classi�cation into the six classes.

The loss compares the prediction p̂ with a probability distribution q calculated based on
the �oating-point labels. The label spreads the probability to the two nearest classes based
on the distance to either of those classes.

The actual loss is calculated between those two probabilities as cross entropy and
optimized by simple gradient descent. Due to the many parameters of the model it tends
to over�t, therefore, a L2 regularization term is added to the cost function. This term
penalizes large weight values by adding the sum of quadratic weights. Additionally the
BiLSTM applies dropout to introduce noise in order to avoid over�tting. Tai et al. report
no signi�cant improvement for the STS task, but due to the focus on transfer-learning and
the reported improvements for the sentimental task dropout regularization is applied in
this model.

Transfer-Learning The training task applies backpropagation to optimize the feedforward
network and the BiLSTM. Afterwards only the BiLSTM is used to generate a sentence
representation which is not used to classify two sentences but as general NLU feature.

48

3.5. Transfer-learning approach: BiLSTM

Due to the training task the representation has been trained to include semantics of
each sentence. The model learned in an abstract way to identify linguistic concepts
between words like dependencies to infer the compositional semantic of a sentence. Ideally
this knowledge can be transferred to identify the semantic of all sentences without any
additional adaption. This best-case scenario is di�cult to achieve because the training
task introduces a bias based on the task and used training data. For example the STS tasks
contains colloquial sentences which are not directly comparable to technical language.
The slight change of the actual task alters the possible required features, too. Classifying
a sentence as duplicates and non-duplicates might require completely di�erent features
than sorting sentences into �ve similarity classes. Due to the opaque, di�culty to interpret
features generated by ANNs this cannot be theoretically excluded.

One method of solving those problems is additional training on the actual task. Similar
to word embeddings the BiLSTM weights can be adjusted in the context of another task
as well. The training on the STS task provides the initial weights which are adapted by
additional task speci�c training. Due to the initialization this training requires less data
to �nd a �tting representation. Due to the limited time and quality of training data this
possibility is not explored during this thesis, but most likely would improve the obtained
results for the transfer-learning model without additional adaption to the speci�c task.

3.5.2. Implementation

The BiLSTM approach is implemented like GloVe with TensorFlow. The BiLSTM compo-
nent is assembled out of standard TensorFlow classes for LSTMs, calculating dropouts and
passing a bidirectional sequence to RNN cells. Those abstractions allow it to implement it
within a few lines, illustrated in Listing 3.4.

1 lstmFw = [. . .] . DropoutWrapper ([. . .] . Bas icLSTMCel l (l s t m S i z e) ,
ou tpu t_keep_prob = keepProb)

2 s t a t e = [. . .] . b i d i r e c t i o n a l _ d y n a m i c _ r n n (lstmFw , lstmBw , sentA ,
[. . .])

3 t e n s o r = t f . c o n c a t ([s t a t e [0] . h , s t a t e [1] . h] , a x i s =1)

Listing 3.4: BiLSTM component

For the feedforward network component the de�ned equations 3.5 - 3.7 are straight for-
ward implemented. The TensorFlow graph for the whole model is attached in Appendix A.

The cross-entropy losses are optimized with a standard TensorFlow gradient descent
algorithms. The required probability for the actual label is calculated by Listing 3.5. The
two equal comparisons mask the two nearest classes to the actual label and split the
�oating-point part between those classes.

1 r C l a s s = t f . range (0 , 5)
2 f l o o r L a b e l = t f . f l o o r (l a b e l)
3 l a b e l P r o b = t f . e q u a l (f l o o r L a b e l − t f . t r a n s p o s e (r C l a s s) , − 1 . 0)

∗ (l a b e l − f l o o r L a b e l)) + t f . e q u a l (f l o o r L a b e l − t f .
t r a n s p o s e (r C l a s s) , 0 . 0) ∗ (f l o o r L a b e l − l a b e l + 1))

Listing 3.5: Calculation of the label class probabilities based on the �oating point label.

49

3. NLU feature

3.5.3. Training

One special aspect of the BiLSTM model is the prior training on STS data. The model is
trained on 8,628 sentence pairs of the STS Benchmark dataset[8]. Initially the dataset is
split into a train part with 7,249 pairs and a test set with 1,379 pairs. This split is used to
analyze the model on the STS task. Accordingly, the following reported results apply this
split. Since the �nal evaluation task does not use the STS test dataset the whole dataset is
used to train the sentence representation later on.

During training the cost function is gradually optimized and must decrease over time.
Correlated to the decreasing cost the prediction accuracy should increase. The accuracy is
calculated as:

Accuracy =
1
N

N∑
i=1

{
1 if bŷi + 0.5c = byi + 0.5c
0 otherwise

(3.8)

where ŷi denotes the the i-th prediction, yi the corresponding label and N the overall
number of examples. The graphs in Figure 3.9 show a training run. The cost and the
accuracy show that the model is able to learn comparing the two sentences. Especially
the accuracy reaches almost 100% which means that the model predicts most training
examples correct. In fact this model achieves on the training dataset a Pearson’s r of 0.98.

(a) cost curve (b) accuracy curve

Figure 3.9.: The cost (a) and accuracy (b) curve for one training run of the BiLSTM model.

The relevant performance on the test dataset is at r = 0.677, which is in the same range
of the reported r = 0.711 for this model[8]. The slight di�erence is most likely caused by
the di�erent preprocessing steps and epochs. For example, the presented model removes
all number tokens without replacing them with a special number token. The predictions
and labels are illustrated in Figure 3.10.

Another important training aspect is the used vocabulary. The actual task most likely
uses a di�erent vocabulary than the STS dataset. Consequently, during training this
di�erent vocabulary must be used. This deteriorates the performance of the STS task

50

3.5. Transfer-learning approach: BiLSTM

as illustrated in Figure 3.10. The example uses domain speci�c vocabulary of the Bosch
dataset which will be introduced in Section 5.1. The discrepancy of both vocabularies is
quite large, therefore, the correlation drops to r = 0.468. This illustrates the challenge for
transfer-learning. The BiLSTM model has to learn linguistic rules to extract compositional
semantics and apply those rules to a possible completely di�erent domain. Nevertheless
the model shows that it is still able to predict STS classes and thereby learn some linguistic
rules with domain speci�c vocabulary.

(a) general vocabulary r = 0.677 (b) domain vocabulary r = 0.510

Figure 3.10.: Predictions of the BiLSTM model compared with actual labels. The results
using a general vocabulary is shown in (a) and results with �ltered domain
speci�c vocabulary is illustrated in (b).

3.5.4. Parameter

The number of hyperparameter for such a complex model is higher than the number of
hyperparameter of aforementioned models, but Tai et al. provide considerable information
and empirical results for the STS task about most hyperparameter. However, some intuition
about the parameters is useful, too. The following list summarizes those parameters.

• Word embeddings: The input of the sentence representation step is of course not
directly a hyperparameter of the BiLSTM model, but in�uences the overall result.
The potential hyperparameter are listed at the lexical approaches. Tai et al. used
a 300 dimensional pretrained GloVe vector[53]. They do not mention Word2Vec
embeddings and two authors contributed to both papers.

• Maximum sentence length: The maximum sentence length is required to optimize
the LSTM, because in�nite backpropagation would not be possible. Logically a
larger value increases the memory requirements, because shorter sentences must be
padded. On the other hand, cuts a small value many sentences o� and information

51

3. NLU feature

gets lost. This parameter has to be selected based on the expected sentence length. A
limit of 50 token covers almost all sentences and does not waste too much memory.
Tai et al. do not report this parameter[53]. For the STS task it is most likely that the
maximum sentence length of the used STS dataset was chosen.

• BiLSTM output size: This hyperparameter determines the size of the sentence
representation and thereby the number of weights within the LSTM unit. More
parameters allow a better approximation of the actual probability function but
requires more training data and increases the possibility to over�t.

• Hidden layer of feedforward network: The hidden layer size de�nes the complexity
of the comparison between sentence representations. A larger model most likely
shifts the analysis of linguistic rules into the feedforward network. Subsequently
the BiLSTM component would produce worse sentence representations. But a small
network might not be able to classify the similarity accurately. Tai et al. used a
hidden layer of size 50[53].

• Regularization strength λ: The regularization add an incentive to train less complex
models with small weights. The hyperparameter λ controls the weight of this
additional term. Tai et al. apply a per-minibatch L2 regularization strength of
λ = 10−4 to avoid over�tting[53].

• Keep probability for dropout: Additionally, dropout reduces over�tting as well. The
keep probability determines how many weights are removed during training. For
the sentiment analysis Tai et al. reported a dropout probability of 0.5[53]. Typical
this probability is in the range of 0.5 to 0.8[52]

• Training parameter: Of course, at last this approach uses the typical learning param-
eter learning rate, batch size, epochs, too. The in�uence does not change compared
to other models. The BiLSTM model uses a learning rate of 0.05 and a minibatch
size of 25[53]. The epoch iterations are not reported.

52

4. Information Retrieval

The previously introduced NLU features quantify the meaning of texts. Those text repre-
sentations can be utilized for many analysis tasks requiring semantic knowledge. This
chapter introduces Information Retrieval as such an analysis task. The NLU features allow
to �nd information based on semantic knowledge of each document instead of simple
occurrences like the typical vector space model (TF-IDF feature).

In general IR �nds documents in a larger collection of documents which satisfy informa-
tion needs[48]. Accordingly the main objective of all IR systems is grouping the collection
into subsets of documents which satisfy a speci�c information need and optionally ranking
these documents. As brie�y mentioned in Section 1.2 the groups are either created in a su-
pervised or an unsupervised fashion respectively through classi�cation or clustering. Both
approaches depend on measuring di�erences between documents or classes. Classi�cation
uses NLU features as input of a classi�er. The cost function of this classi�er measures
the di�erences between the currently predicted class and the class label by comparing
the probability distributions. The optimization step reduces this di�erence to a minimum.
On the other side clustering measures the di�erences between entities of the document
collection to group and rank them. For both steps a distance or similarity measurement
is an important part. Due to the nature of the duplicate detection the similarity between
documents is more important for this work. It is discussed in Section 4.1.

After establishing distance measurements for all NLU features the duplicate detection as
a speci�c retrieval task is introduced in Section 4.2. This task �nds based on one document
other documents of the collection which describe the same real entity. Duplicates create
inconsistency and redundancy in structured and unstructured datasets. Redundancy wastes
memory capabilities and in�uences the e�ciency of other tasks performed on the datasets,
because of the additional unnecessary documents. The inconsistency which is the result
of scattering information about the same entity into multiple documents in�uences aside
from the e�ciency also the e�ectivity. If information is spread over several documents
some information might not be accessible to users. Therefore, the duplicate detection
is an important task especially for large collections and is frequently applied in many
contexts with di�erent characteristics. Duplicate record detection �lters and merges the
records of structured databases, for unstructured data the duplicate detection �lters the
results of web crawling and as typical IR task it retrieves closely related documents to
collect information of one entity from multiple documents. From an IR perspective the
recognition of duplicates groups very similar documents together without labeling those
groups. Accordingly, it resembles a typical clustering task without ranking the results.
Therefore the detection of duplicates is established as showcase evaluation task for IR and
consequently used to evaluate the NLU features in Chapter 5.

53

4. Information Retrieval

4.1. Document similarity

One particularly important aspect for all IR tasks is the notion of similarity between
entities. The similarity or distance between entities allows the comparison between them
and is the foundation of clustering or ranking algorithms. Many ML tasks aside from
the IR �eld use those measurements as well. Hence many default similarity/ distance
measurements exist. Especially the cosine similarity is frequently used for many text
mining tasks[36]. Therefore, it is going to be used during this work as well.

Cosine similarity The cosine similarity is de�ned as:

dcos = cos(Θ) =
®hL ®hR

®hL

®hR

 (4.1)

where ®hL respectively ®hR denote the feature vectors and ‖·‖ denotes the Euclidean norm of
each vector[]. Cosine similarity measures the cosine of the angle Θ between both vectors.
Due to the normalization it is independent from the vector length.

Relation to NLU features The cosine similarity is frequently utilized in combination with
TF-IDF[48]. Based on this empirical evidence the cosine similarity is consequently suitable
for comparing TF-IDF vectors. In contrast word embeddings are designed to �t the cosine
similarity. The cost function of word embeddings as de�ned in Equation 2.7 maximizes
the similarity between context and center words by comparing both representations with
the dot-product. The dot-product measures angular distance as well. Accordingly, the
dot-product used for the optimization of language models and cosine similarity are closely
related. Lexical approaches, Par2Vec and the BiLSTM features use those language models
as basis. Therefore, the cosine similarity is most likely suitable as similarity measurement
for those models as well.

Elementwise similarity Aside from comparing two vectors with a single scalar as result
the representations can be compared elementwise and afterwards the output vector of
this comparison can be used to classify the tuple. This method is just applicable for
classi�cation task which classify the relation between two feature vectors like duplicate
detection. This comparison is frequently used for ANN classi�er. The STS classi�cation
of the BiLSTM feature provides an example of such a case. The model compares both
sentences as de�ned in Equation 3.5 with elementwise multiplication and the absolute
di�erences between both vectors. The classi�er learns to combine the dimensions to
optimize the class prediction. Hence the elementwise multiplication measures angular
distances and the absolute di�erence the length similar to the city-block distance.

4.2. Duplicate detection

The detection of duplicates removes redundancies and resolves inconsistencies by re-
trieving documents about the same entity. Therefore it is a frequent task in the IR �eld.

54

4.2. Duplicate detection

Commonly the duplicate recognition is restricted to identifying exact copies. Consequently
checksums to detect copies of whole documents and �ngerprints (selection of n-grams) or
simple TF-IDF features are combined with a threshold classi�er to detect partial copies
are commonly used[15]. The detection of duplicates based on NLU features goes a step
beyond those methods by exploiting semantic features. Logically the focus of the duplicate
detection based on NLU features moves from recognizing exact copies to the recognition
of same meanings.

Definition Duplicates are documents which describe the same entity. Therefore, a relation
isDuplicate between two documents can be de�ned. This isDuplicate relation indicates
whether the compared documents are duplicates or not. It is symmetric and transitive.
This perspective illustrates the detection of duplicates as a binary classi�cation problem.

From an Information Retrieval view the detection of duplicates resembles a search where
one document describes the information need and all retrieved documents are duplicates
of this document. This description corresponds to the general de�nition of an IR task.

NLU feature evaluation The de�nition points out that the duplicate detection represents
a typical IR task. But in opposition to other retrieval task like web search it has a few
properties which simplify the recognition. Those points are:

• The information need is formulated by the representation of one document. Con-
sequently the representations of all possible information needs are equal to the
representations of the document collection. This simpli�es the IR task by eliminat-
ing possible systematic di�erences between the representations of the information
need and the document collection. Typical query-based systems might be in�uenced
by these di�erent formulations.

• The key element for the duplicate detection is the comparison between two docu-
ments. Therefore the emphasis of this task is clearly on the NLU features and the
similarity measurement. Subtasks like sorting or elaborated clustering is unneces-
sary.

• The di�erentiation between duplicates and non-duplicates is more objective than
documents grouped based on satisfying an information need. Subsequently the
labeled data is more reliable.

Due to those properties the recognition of duplicates is considered for evaluating the
NLU features in Chapter 5. For this purpose, two classi�er are described in the following
sections.

4.2.1. Thresholding

The thresholding classi�es the document tuple with a simple threshold and a similarity
measurement. This approach is commonly applied for the duplicate detection with TF-
IDF[15].

55

4. Information Retrieval

As �rst step the recognition of duplicates must compare the two considered documents
to determine the overlap in meaning of both documents. This is handled by similarity
measurements like the cosine similarity. The result of this comparison is a single scalar
dcos which quanti�es the similarity between both documents.

The isDuplicate relation is true if both documents are like a certain level. Intuitively the
tuples should be classi�ed as duplicates if and only if the similarity values is greater than
a certain threshold T . Mathematically formalized:

CT =

{
1 dcos > T

0 otherwise
(4.2)

whereT denotes the threshold. The output of 1 classi�es the document tuple as duplicates.
This simple model is comprehensible. Therefore the in�uence of the NLU features is

more easy to understand. Additionally, is the only hyperparameter the threshold T which
can be set in a heuristic way by analyzing just a few examples. Due to those reasons the
thresholding was selected as primary classi�er for the evaluation.

4.2.2. Feedforward network

Aside from applying a simple threshold in combination with cosine similarity a more
advanced classi�er should be introduces as well. The presented feedforward network is
oriented on the STS training task of the BiLSTM feature. Essentially this six-class classi�er
is simply reduced to a binary classi�er.

Instead of a classical similarity measurement the comparison is done elementwise
by the aforementioned elementwise similarities de�ned in Equation 3.5 to be able to
emphasis speci�c dimensions within the hidden layer. The hidden layer is not changed
either. But the output layer is reduced to just two dimensions. One element representing
the probability for a duplicate prediction and the other element the probability for non-
duplicates. Therefore, the prediction is de�ned by which probability is more likely. This is
formalized in Equation 4.3.

p̂ = so�max(W®hs
®hs + ®bŷ)

CF = argmax(p̂)
(4.3)

The argmax(p̂) function selects the index of the maximal dimension value.
The feedforward network requires training data and introduces multiple additional

hyperparameter like the hidden layer size. The hyperparameter are listed at the BiLSTM
feature (Section 3.5). The advantage of this ANN approach is the additional training
possibility to adapt the NLU features as mentioned for the BiLSTM feature.

56

5. Evaluation

In order to compare the performance of all discussed features based on empirical data
this chapter evaluates them in the context of the in Chapter 4 introduced IR duplicate
detection. For this purpose two datasets were gathered and are presented in Section 5.1. In
addition to the data characteristics the used evaluation metric is introduced in Section 5.2.
The last part (Section 5.3) of this chapter discusses the evaluation results of all features.

5.1. Datasets

The di�erent methods are evaluated on two datasets with diverging properties. Both
datasets are gathered as part of this thesis. The Bosch bug report dataset is a real-world
collection of bug reports. On the other side several Wikipedia summaries from di�erent
languages are gathered as arti�cial evaluation dataset. An overview of both datasets can
be found in Table 5.1. The following sections describe those properties in detail combined
with data preparation steps.

5.1.1. Bosch bug report dataset

Typical software projects contain many bugs. Therefore, applications are extensively
tested by multiple stakeholders. The result of those tests are reports, which describe the
error in natural language. Large projects gather thousands of those bug reports. The
unstructured description and the large amount of bug reports creates a typical IR task.
Particularly detecting duplicates provides a tangible improvement, because it reduces the
amount of bug reports which have to be reviewed by developers.

The used collection of bug reports for the evaluation is provided by Robert Bosch
Engineering and Business Solutions Private Limited. These bug reports are collected from

Property Bosch bug reports Wikipedia summaries
size 13,095 reports 200 summaries
• duplicate tuple 780 110
• non-duplicate tuple 3,900 550
data origin real arti�cial
structure several paragraphs with

headings, bullet points, etc.
one paragraph with no

structural elements
language keywords, English sentences plain English sentences
vocabulary speci�c domain no speci�c domain

Table 5.1.: Overview of the most important dataset properties.

57

5. Evaluation

a car multimedia project. But due to the nature of those bug reports the dataset cannot
made publicly available. It contains precise descriptions of sensitive data about Bosch
software. Additionally, are some reports created by customers, whom have not agreed on
publishing those reports. Due to this high con�dentiality the shown examples within this
thesis are not original reports either. The actual data is rephrased in a way to preserve
the characteristics of those examples. These key characteristics of the used dataset are
presented in the following section.

5.1.1.1. Data characteristics

The dataset contains 13,095 bug reports of which 1,515 reports are marked as duplicate of
at least one other ticket of the dataset. Each report contains a short one-sentence summary,
a longer description and a list of duplicate tickets. For the evaluation the NLU features are
extracted solely from the description. Additionally, are the duplicate lists used to generate
labeled list with two tickets and a Boolean value to identify those tickets either as duplicate
tickets or not. Overall the 1,515 duplicate reports are transformed into 780 duplicate tuples.
The small di�erence between tuple and duplicate number shows that a few reports have
more than one duplicate. The remaining tuples are considered as non-duplicates. The
tuples are subsampled to improve the ration between duplicates and non-duplicates. This
is described as part of the data preparation, after taking a closer look into the properties
of the actual descriptions.

Listing 5.1 and Listing 5.2 are two example descriptions of the same error. Primarily
the di�erent structure and di�erent language stand out for those examples. Regarding the
structure and used language the overall dataset is heterogenic as well.

1 ∗ Sep.22 report Issue # 62
2 h4. Test Environment:
3 ∗ Device Partnumber: XXXXXXXXXXXX
4 ∗ Test−type (Bench/ In−car/ [...] / Automated): Bench
5 h4. Media Device CD (If used) :
6 ∗ Mode (R/RW) :
7 h4. Action:
8 1. Destination −> Enter POI or Address
9 2. Enter any character −> Tap "Show All"

10 3. Tap next page arrow
11 h4. Observation: A redundant screen �ashes a while.

Listing 5.1: Bug report with template and bullet points.

1 Enter a destination address and change into Show All view. Go to the next page.
2 Observation:
3 A di�erent view is shortly visible, before the actual view is presented.
4 Expectation: Direct switch between the pages of Show All view.

Listing 5.2: Bug report in plain English with minimal headings.

58

5.1. Datasets

Text structure The descriptions of bug reports are structure by several paragraphs with a
heading for each paragraph. The paragraph either describes the sentence in plain English,
uses bullet points or numbered lists. In some cases those structural elements are marked
with annotations, like h4. for headings and ∗ for bullet points. Listing 5.1 shows an
example which uses annotations, in opposition to Listing 5.2, which does not use any
additional annotations. In general, no annotation guidelines are used consistently.

The description of a bug covers naturally preconditions, a sequence of actions, an
observation and the expected behavior. Based on these recurring elements of bug reports
many of the reports uses templates. Unfortunately, no uni�ed template can be identi�ed
within the dataset. Additionally, are parts of the template either removed or not �lled
in. Therefore parts like h4. Action: can be found in over 8,800 reports, but the term
h4. Notes (if any) : , which appears to be part of the same original template just occurs

in 5,800 reports.
Overall the structure does not allow the extraction of more speci�c parts of the descrip-

tion like observations neither is the removal of the template without using a complex
parser possible.

Language Aside from the di�cult text structure the used language is not consistent either.
Due to the commonly used template some points are answered using just keywords other
parts are �lled out with several sentences, but continuous text above the length of a few
sentences is not used at all. As consequence of this full stops are seldom used to terminate
a sentence. For most cases new lines are used to separate di�erent parts.

Bug reports utilize domain speci�c vocabulary. It contains many technical terms and
speci�c named-entities for elements of the software, like the Show All view in Listing 5.2.
Based on the informal character of bug reports spelling errors cannot be precluded, too.

5.1.1.2. Data preparation

The original dataset is exported from an issue tracking software in CSV format. It contains
15,769 bug reports of which 4,448 reports are marked as duplicate. Those reports must be
transformed into labeled pairs for the duplicate classi�cation. Additionally, the original
dataset contains cloned reports (one-to-one copies of other reports) and not all duplicates
satisfy the transitivity property, therefore the corresponding reports are �ltered out. The
mentioned annotations are removed, too.

Removal of cloned tickets The raw dataset contained several exact copies of reports.
Those reports are arbitrary easy to classify as duplicates and would skew the actual result,
therefore those reports are removed by a binary comparison of the description text. 1,056
reports are a�ected of this removal. Additionally 991 reports are marked with clone − at
the beginning of the summary. A few of those reports are slightly altered and consequently
not binary equal to other tickets and not removed by binary comparison. In favor of
avoiding any cloned data, all reports marked like this are removed as well. Overall 1,268
copies are removed.

59

5. Evaluation

Properties of isDuplicate relations The in Section 4.2 described properties of the isDupli-
cate relation can be used to validate labeled data. If two reports are duplicates, they have to
be symmetric and transitive. The transitivity property creates distinct groups. All reports
of those group have to be marked as duplicates of the same reports. If those criteria are
not full �lled at least one report of the group is not correct labeled. Similar to the removal
of cloned tickets all tickets of a group not satisfying both criteria are removed. This leads
to the removal of 1,406 reports.

Subsampling Adding one duplicate report into a dataset of n reports logically adds not
only a duplicate tuple, but n−1 non-duplicate tuple, too. Logically all duplicate datasets are
skew. For the evaluation and potential training unbalanced classes introduce a bias towards
the more frequent class[]. The problem is handled by subsampling the non-duplicate tuple.
Instead of all possible non-duplicate tuple just 5 ∗ 780 tuple are selected.

Annotations The mentioned annotations used by some reports add noise, therefore the
most commonly used annotations are removed from the corpus. In Listing 5.3 the applied
regular expression to replace the annotation is presented.

1 d e s c r i p t i o n = r e . sub (’ h4 . . ∗ ? (: | \ n) ’ , ’ ’ , d e s c r i p t i o n)
2 d e s c r i p t i o n = r e . sub (’ \ ∗ . ∗ ? (: | \ n) ’ , ’ ’ , d e s c r i p t i o n)
3 d e s c r i p t i o n = r e . sub (’ { c o l o r . ∗ } ’ , ’ ’ , d e s c r i p t i o n)

Listing 5.3: Python expressions to remove marked headings, bullet points and color
markup.

5.1.2. Wikipedia dataset

The Wikipedia dataset contains the summaries of di�erent articles. The summary or lead
section of a Wikipedia article is the text before the table of contents. This section is typical
a few sentences long and summarizes the most important content of the following article.
The summaries are gathered from the English, German, France and Spanish Wikipedia.
All summaries are translated into English using Google Translate (Seq2Seq LSTM) with
exception of the English texts. This creates several summaries about the same topic
which are consequently labeled as duplicates. In order to avoid large di�erences the text
size di�ers at most by 15% between the duplicates and is also manually �ltered. The
characteristics of the resulting summaries are described in the following section.

5.1.2.1. Data characteristics

The Wikipedia dataset contains just 200 summaries of which each summary is a duplicate.
Therefore, it contains 110 duplicate tuples and 550 randomly selected non-duplicate tuples.
The dataset is way smaller than the bug reports but provides more reliable isDuplicate
labels and is more homogenous in language and text structure. Overall the data is less
noisy. In Listing 5.4 and Listing 5.5 two shorted examples of the summaries are illustrated.

60

5.2. Evaluation metric

1 Gamma−ray bursts (often abbreviated GRB) are energy bursts of very high power in the
Universe, which emit large amounts of electromagnetic radiation.[...]

2 The gamma−ray burst was �rst observed on 2 July 1967[...]
3 Gamma radiation in the narrower nuclear−physical sense does not involve gamma−ray

bursts.

Listing 5.4: Shorted German summary of the gamma-ray burst article.

1 A gamma−ray burst or gamma−ray burst (sometimes translated as gamma−ray
explosion) is in astronomy a burst of gamma−photons which appears randomly in
the sky.[...]

2 The dominant theory is that the gamma−ray surge is generated[...]
3 The gamma−ray bursts are accidentally discovered in 1967.

Listing 5.5: Shorted France summary of the gamma-ray burst article.

The examples show that most summaries contain similar information. Nevertheless, all
texts are most likely written by di�erent authors and consequently di�er in formulations
and focus of the information. For example, the German gamma-ray burst summary focuses
on the history aspects compared to the France summary which focuses on the physical
explanation. The text properties

• Text structure: All summaries contain just one single paragraph. The paragraph
does not use any heading or other structural elements like new lines.

• Language: The summaries use plain English sentences. All sentences use a full stop
to terminate a sentence. The summaries are selected randomly form all Wikipedia
articles. Therefore, no domain speci�c vocabulary is utilized and spelling errors are
seldom.

5.2. Evaluationmetric

The detection of duplicates as a binary classi�cation problem can be evaluated by the
Receiver Operating Characteristic (ROC) curve. This metric is commonly applied to
evaluate binary classi�er. The basics of the ROC are brie�y described in the following
section. This default model is complemented with a view into the distribution of similarity
between duplicates and non-duplicates.

5.2.1. Receiver Operating Characteristic curve

The binary classi�cation can be divided into four possible situations for each tuple:

• True positive (TP): The text tuple is labeled as duplicate and classi�ed as such.

• False positive (FP): It is not labeled as duplicate but classi�ed as one.

• True negative (TN): The tuple is not labeled nor classi�ed as duplicate.

61

5. Evaluation

• False negative (FN): It is labeled as duplicate but classi�ed as non-duplicate.

Based on these cases the recall or true positive rate (Equation 5.1) and the false positive
rate (Equation 5.2) are de�ned. The rates depend on the number of tuples assigned to each
situation. ConsequentlyTP , FN and so on represent in each case one integer number. The
true positive rate compares the correctly predicted duplicates with the amount of labeled
duplicates. The best case are values close to one. In opposition to this the false positive
rate compares all wrongly as duplicates predicted tuples with all non-duplicate labeled
tuples. The FPR should be close to zero.

TPR =
TP

TP + FN
(5.1)

FPR =
FP

FP +TN
(5.2)

Both rates point out a di�erent aspect of the classi�er but in�uence each other. A good
recall value most likely leads also to more false positive cases and vice versa. Therefore,
there is a trade-o�. Depending on the task the TPR or the FPR value are more important.
Consequently, most classi�er vary the sensitivity to tip it into one direction. The resulting
set of rates are plotted as the ROC curve. This chart maps the false positive rate to the
x-axis and the true positive rate to the y-axis of a chart. Consequently, good classi�ers
tend to the upper left of the diagram.

5.2.2. Similarity histogram

In addition to the ROC curve and the related measurements which evaluate the whole
classi�cation it is interesting to step back and take a closer look into the di�erent NLU
features by analyzing the cosine similarity distribution of duplicates and non-duplicates.
Ideally should the distributions show a signi�cant di�erence between duplicates and non-
duplicates with minimal overlapping. This di�erence allows a good classi�cation with
a simple threshold classi�er and indicates that more elaborated classi�er with di�erent
similarity measurements would also perform better. Additionally, should the variance for
the non-duplicate group be high and the variance for the duplicate group low, because a
duplicate describes a very narrow relation. All duplicates must have the same meaning.
Non-duplicates can range from completely di�erent meaning to almost the same meaning.

Those similarity distributions are illustrated with two histograms. The histograms are
normalized and plotted into the same diagram. The normalization step sets the area of each
histogram to 1 which transforms both graphs into a probability density. Those densities
allow an easy comparison between the two classes.

5.3. Results

The evaluation shows that no presented NLU feature is able to outperform the baseline
TF-IDF feature. The following section discusses the evaluation details for each NLU feature.

All features utilize the in Section 4.2 established thresholding classi�er in combination
with cosine similarity. The ROC curves adjust the threshold value in 0.01 steps starting at

62

5.3. Results

T = 0 tillT = 1. The feedforward network mentioned in Section 4.2 is not used as classi�er
due to the small amount of labeled data. The hyperparameter settings of each feature is
listed in the appendix (Appendix B).

5.3.1. Lexical approaches

Three lexical features were introduce in Section 3.3: TF-IDF, Word2Vec and GloVe. For
these representations are two particular interesting points discussed in detail: the prepro-
cessing to reduce the vocabulary size and the e�ect of training data on word embeddings
with GloVe as example. Following those in�uence factor, the representations are compared
with each other.

5.3.1.1. Preprocessing

The preprocessing steps stemming and stop word removal aim to reduce the sparsity of the
word representations. Therefore just models which directly utilize BoW word representa-
tions can be improved by those methods. Consequently just the TF-IDF representation is
evaluate regarding the preprocessing steps. The result on the Bosch dataset is presented
in Figure 5.1.

(a) TF (b) TF-IDF

Figure 5.1.: ROC curves for TF (a) and TF-IDF (b) representations with di�erent prepro-
cessing steps on the Bosch dataset. The y-axis is shifted by 0.5.

The TF-IDF representation does not show any improvement for stemming and the
removal of stop words. The reason can be seen by comparing it to a simple TF model. The
stemming does not signi�cantly boost the performance of this model either. Most likely
the vocabulary size is too small to observe any e�ect of generalization. Additionally are
the reported improvements for other English NLP task quite small[48]. In opposition to
the modest results regarding stemming the removal of stop words actually improves the TF

63

5. Evaluation

model. Stop words are by de�nition frequent words which means that the TF-IDF model
already reduces the in�uence of those words with the IDF factor. Hence the expected
positive in�uence of the preprocessing steps to reduce the data sparsity cannot be observed
due to the small vocabulary and corpus size. The Wikipedia dataset which is even smaller
shows a similar behavior. In order to align the TF-IDF representation with the other
evaluated NLU features the both preprocessing steps are skipped in other comparisons.

5.3.1.2. Training data

One important aspect of word embeddings is the training corpus. Naturally embeddings
bene�t from a large training corpus, since more text provides more information for the
word co-occurrences required to de�ne the actual embeddings. On the other side due to
word ambiguity and text-speci�c word usage the training dataset has to represent the
word distribution of the actually analyzed text as well. Those two requirements often
contradict each other. Therefore a closer look into the in�uences of training data for
detecting duplicates is conducted on the GloVe embeddings. This evaluation requires
domain speci�c language. Hence it uses the Bosch dataset and ignores the Wikipedia
collection, because the Wikipedia dataset does not have a speci�c domain. Additionally,
the pretrained GloVe embeddings are already trained on the Wikipedia corpus. Therefore,
comparing domain speci�c training and pretrained models contains a bias on the Wikipedia
dataset.

The pretrained embeddings are trained on a large corpus of Wikipedia articles and
the �fth Gigaword corpus which contains text form several news agencies. The overall
corpus contains up to 6 billion tokens[43]. The original Bosch dataset contains just 118,835
tokens. In addition, a small amount of domain-speci�c data is extracted from suitable
Wikipedia articles. This collection contains additional 29,318 tokens. The di�erently
trained embeddings are used as input of the mean model introduced in Section 3.3. The
corresponding results of the threshold classi�cation are illustrated in Figure 5.2.

Figure 5.2.: ROC curves for GloVe embeddings trained on di�erent datasets.

64

5.3. Results

The domain speci�c training shows a consistently better result than the pretrained
embeddings. Taking a closer look indicates two aspects which contribute to this result.
Firstly, the domain-speci�c training captures the actually meaning even with less data
apparently more accurate. Secondly, from the 11,309 di�erent words in all Bosch tickets
just 8,0085 are actually also words in the pretrained dataset. Over 3,000 words remain
randomly initialized for the pretrained embeddings. However, the word embeddings
trained on the extended dataset show a slight improvement over the plain dataset. The
additional domain data just contains around 30,000 tokens. Consequently, the expected
improvement is also small. The observed behavior is in line with the expectation and hints
that a larger amount of domain data improves the model.

5.3.1.3. Comparison of lexical methods

Finally, the three introduced word representations are directly compared. The results for
both dataset are illustrated in Figure 5.3.

(a) Bosch (b) Wikipedia

Figure 5.3.: ROC curves for the mean lexical models. The results of the Bosch dataset are
illustrated in (a) and the results for the Wikipedia dataset in (b). The y-axis of
(b) is shifted by 0.5.

Neither the GloVe nor the Word2Vec approach outperforms the baseline TF-IDF model.
But the word embeddings show a di�erence between the datasets. The divergence between
embeddings and baseline are almost an order of magnitude greater for the Bosch dataset
than for the Wikipedia collection. One key di�erence between the datasets on the level of
lexical semantics is the heterogenic style of the Bosch dataset. Instead of full sentences
bullet points and keywords occur frequently in the text. In opposition to this the Wikipedia
dataset only consists out of complete English sentences. Arguably this lack of structure
deteriorates the performance of the embeddings.

The TF-IDF features are even able to classify the Wikipedia dataset almost perfectly.
For T = 0.1 the recall is 0.99 with a precision of 0.98. Naturally is the classi�cation of the

65

5. Evaluation

Wikipedia dataset easier, because of the lack of an overall topic between all documents
like the software application by bug reports. The low threshold indicates that most non-
duplicates of the Wikipedia collection are not similar at all. This is illustrated in the
appendix (Figure B.1). The Bosch histogram shows for non-duplicates a slightly bigger
variation. Due to the high variance in both duplicate groups the prediction accuracy
decreases signi�cantly based on this di�erence.

5.3.2. Par2Vec

The �rst NLU feature taking compositional semantics into account is Par2Vec. The ROC
curve of those unsupervised features is depict in Figure B.2.

(a) Bosch (b) Wikipedia

Figure 5.4.: ROC curves for the distributed BoW (D-BoW) and the distributed memory
(DM) approach of the Par2Vec model. The results of the Bosch dataset are
illustrated in (a) and the results for the Wikipedia dataset in (b). The y-axis is
shifted by 0.5.

The graph shows for both models of Par2Vec an improvement compared to the simple
averaging of the lexical approaches. They are on a similar level than the baseline TF-IDF
although both feature are still slightly worse. Interestingly is the simpler distributed
BoW model for the Bosch dataset even better than the more complex distributed memory
feature. This emphasis the text structure again. The distributed BoW feature does not use
a window to de�ne context words. The representation is optimized to predict all words
of one paragraph. Consequently, the feature is more suitable for the keyword oriented
language of the Bosch dataset. This also indicates word embeddings with larger context
windows are more robust against ungrammatical sentences.

The ROC curve of the Wikipedia dataset does not provide many information about
the models due to the principal simple classi�cation task. But the similarity histogram
allows based on the variance a brief discussion. As presented in the appendix (Figure B.2)

66

5.3. Results

is the variance of unique documents from the distributed memory model bigger and the
duplicate variance smaller. This con�rms the slightly better ROC curve as well.

5.3.3. BiLSTM

The last evaluated feature is the transfer-learning approach. The resulting ROC curves are
illustrated in Figure 5.5.

(a) Bosch (b) Wikipedia

Figure 5.5.: ROC curves for the BiLSTM model. The results of the Bosch dataset are
illustrated in (a) and the results for the Wikipedia dataset in (b). The y-axis of
(b) is shifted by 0.5.

The BiLSTM feature shows overall the worst performance on the Bosch dataset and
improves the mean word embedding model insigni�cantly on the Wikipedia dataset. The
sentence representations are learned with STS sentences. The text structure of the Bosch
dataset does not resemble those sentences. Logically all possible learned linguistic rules
cannot be applied. This example shows the obvious limitations of transfer-learning in a
completely unsupervised setting.

However, the performance on the Wikipedia collection which has a similar sentence
structure than the STS training task shows that the feature learned just to classify the
STS sentences. The model was not able to generalize the learned representation to solve
other tasks. However, the small di�erence between both datasets shows that at least a
few linguistic rules have been learned. This hints that more elaborated models with more
training data could possibly extract a larger amount of generalized linguistic rules.

67

6. Conclusion

This thesis compared NLU features for the usage in IR systems. Therefore, several features
which encounter semantic knowledge were identi�ed, categorized and described. Those
features were evaluated by detecting duplicates in two datasets with di�erent text structure.
Due to direct comparison between documents is the detection of duplicates a perfect
example for the grouping and ordering commonly used in IR.

Lexical features and Par2Vec were not able to outperform the TF-IDF baseline. Addition-
ally both models were in�uenced by the text structure. For well-de�ned English sentences
both models performed better. The additional compositional semantic incorporated in
Par2Vec also improved the performance.

The transfer-learning feature was not able to improve the classi�cation compared to
word embedding approaches on documents consisting of English sentences and performed
even worse on documents with a mixed text structure. This indicates that the BiLSTM was
able to learn the structure of a sentence a little, but could not improve the classi�cation
with this knowledge.

In summary showed the simple TF-IDF feature an impressive result on both datasets
with a small vocabulary size. On the contrary the NLU features fall short.

6.1. Further work

The evaluation results show that further work is necessary to improve NLU features for
the �eld of IR to achieve better performances than the TF-IDF feature.

Labeled data The most obvious further work is the gathering of more data which is
labeled as duplicates. More labeled data allows better classi�cation models like the drafted
feedforward network. Additionally, would it be possible to optimize the hyperparameter
of all models. Due to the skew groups the labeling of randomly picked tuples out of a
collection is di�cult. Most likely the creation of a new document as a duplicate is easier.
However, labeled data is the bottleneck for this concrete detection task and is not going to
improve NLU features in general.

Delegate features The evaluation pointed out that the performance of most NLU features
is signi�cantly in�uenced by the text structure. Consequently are features and parameters
optimized for one speci�c structure. But many real-world collections in the �eld of IR
contain a mixed text structure which leads to a performance decrease for all features.
Therefore, dividing a text regarding properties like structure and using specialized features
for each part might improve the overall result.

69

6. Conclusion

Transfer-learning Despite the particular bad evaluation result of the transfer-learning
feature is the approach promising for multiple NLP tasks. The minimal amount of learned
sentence structure indicates that it is possible to learn linguistic rules on one task and
apply those rules on another task. The results from Cer et al. and Conneau et al. show this
as well. Most likely requires transfer-learning for IR due to the complex text properties
of an IR corpus more sophisticated models with additional training data than the simple
NLP tasks which already apply transfer-learning. The models can be improved by either
training the feature additionally on the new task or by incentivizing the model to generate
broader rules.

70

Bibliography

[1] Laura Banarescu et al. “Abstract meaning representation for sembanking”. In: Pro-
ceedings of the 7th linguistic annotation workshop and interoperability with discourse.
2013.

[2] Steven Bird, Ewan Klein, and Edward Loper.Natural language processing with Python:
analyzing text with the natural language toolkit. "O’Reilly Media", 2009.

[3] David M Blei, Andrew Y Ng, and Michael I Jordan. “Latent dirichlet allocation”. In:
Journal of Machine Learning Research (2003).

[4] Daniel G Bobrow. “Natural language input for a computer problem solving system”.
PhD thesis. Department of Mathematics, MIT, 1964.

[5] Geert Booij. The grammar of words: An introduction to linguistic morphology. Oxford
University Press, 2012.

[6] Samuel R Bowman et al. “A large annotated corpus for learning natural language
inference”. In: Preprint arXiv (2015).

[7] Alexander Budanitsky and Graeme Hirst. “Semantic distance in WordNet: An exper-
imental, application-oriented evaluation of �ve measures”. In: Workshop on WordNet
and other lexical resources. 2001.

[8] Daniel Cer et al. “SemEval-2017 Task 1: Semantic Textual Similarity-Multilingual
and Cross-lingual Focused Evaluation”. In: Preprint arXiv (2017).

[9] Daniel Cer et al. “Universal Sentence Encoder”. In: Preprint arXiv (2018).
[10] Goutam Chakraborty and Murali Krishna Pagolu. “Analysis of unstructured data:

Applications of text analytics and sentiment mining”. In: SAS global forum. 2014.
[11] Noam Chomsky. Aspects of the Theory of Syntax. Tech. rep. Massachusetts Inst. of

Tech. Cambridge, 1964.
[12] Noam Chomsky. Aspects of the Theory of Syntax. MIT Press, 2014.
[13] Noam Chomsky. “On Cognitive Structures and their Development: a Reply to Piaget”.

In: Language and Learning: The Debate Between Jean Piaget and Noam Chomsky.
1980.

[14] Alexis Conneau et al. “Supervised learning of universal sentence representations
from natural language inference data”. In: Preprint arXiv (2017).

[15] W Bruce Croft, Donald Metzler, and Trevor Strohman. Search engines: Information
retrieval in practice. Addison-Wesley, 2010.

[16] Scott Deerwester et al. “Indexing by latent semantic analysis”. In: Journal of the
American society for information science (1990).

71

Bibliography

[17] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient methods for on-
line learning and stochastic optimization”. In: Journal of Machine Learning Research
(2011).

[18] Charles J Fillmore and Collin F Baker. “Frame semantics for text understanding”. In:
Proceedings of WordNet and other lexical Resources NAACL workshop. 2001.

[19] J. R. Firth. “A synopsis of linguistic theory”. In: Studies in linguistic analysis (1957).
[20] Daniel Gildea and Daniel Jurafsky. “Automatic labeling of semantic roles”. In: Com-

putational Linguistic (2002).
[21] Yoav Goldberg and Omer Levy. “Word2Vec Explained: deriving Mikolov et al.’s

negative-sampling word-embedding method”. In: Preprint arXiv (2014).
[22] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016.
[23] Raj P Gopalan and Aneesh Krishna. “Duplicate bug report detection using clustering”.

In: 23rd Australian software engineering conference. 2014.
[24] Gregory Grefenstette and Pasi Tapanainen. “What is a word, what is a sentence?:

problems of tokenisation”. In: Proceedings of the 3rd Conference on Computational
Lexicography and Text Research. 1994.

[25] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural
computation (1997).

[26] John J Hop�eld. “Neural networks and physical systems with emergent collective
computational abilities”. In: Proceedings of the national academy of sciences. 1982.

[27] Thorsten Joachims. “Text categorization with support vector machines: Learning
with many relevant features”. In: European conference on machine learning. 1998.

[28] Adam Kilgarri�. Wordnet: An electronic lexical database. 2000.
[29] Tibor Kiss and Jan Strunk. “Unsupervised multilingual sentence boundary detection”.

In: Computational Linguistic (2006).
[30] Quoc Le and Tomas Mikolov. “Distributed representations of sentences and docu-

ments”. In: International conference on machine learning. 2014.
[31] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In:

Proceedings of the IEEE. 1998.
[32] Omer Levy and Yoav Goldberg. “Linguistic regularities in sparse and explicit word

representations”. In: Proceedings of the 18th conference on computational natural
language learning. 2014.

[33] Percy Liang. “Learning executable semantic parsers for natural language under-
standing”. In: Communications of the ACM (2016).

[34] Percy Liang. “Talking to computers in natural language”. In: The ACM Magazine for
Students (2014).

72

[35] Joseph Lilleberg, Yun Zhu, and Yanqing Zhang. “Support vector machines and
word2vec for text classi�cation with semantic features”. In: IEEE 14th international
conference on cognitive informatics & cognitive computing. 2015.

[36] Christopher D Manning and Hinrich Schütze. Foundations of statistical natural
language processing. MIT Press, 1999.

[37] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. “Building a
large annotated corpus of English: The Penn Treebank”. In: Computational Linguistic
(1993).

[38] Andrew McCallum, Kamal Nigam, et al. “A comparison of event models for naive
bayes text classi�cation”. In: AAAI-98 workshop on learning for text categorization.
1998.

[39] Tomas Mikolov et al. “Distributed Representations of Words and Phrases and their
Compositionality”. In: Advances in Neural Information Processing Systems 26. Curran
Associates, 2013, pp. 3111–3119.

[40] Tomas Mikolov et al. “E�cient estimation of word representations in vector space”.
In: Preprint arXiv (2013).

[41] Andriy Mnih and Geo�rey E Hinton. “A scalable hierarchical distributed language
model”. In: Advances in neural information processing systems. 2009.

[42] Joakim Nivre et al. “Universal Dependencies v1: A Multilingual Treebank Collection.”
In: LREC. 2016.

[43] Je�rey Pennington, Richard Socher, and Christopher Manning. “Glove: Global vec-
tors for word representation”. In: Proceedings of the 2014 conference on empirical
methods in natural language processing. 2014.

[44] Martin F Porter. “An algorithm for su�x stripping”. In: Program (1980).
[45] Herbert Robbins and Sutton Monro. “A stochastic approximation method”. In: Her-

bert Robbins Selected Papers. Springer, 1985, pp. 102–109.
[46] Stephen Robertson. “Understanding inverse document frequency: on theoretical

arguments for IDF”. In: Journal of documentation (2004).
[47] Xin Rong. “Word2Vec parameter learning explained”. In: Preprint arXiv (2014).
[48] Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. Introduction to

information retrieval. Cambridge University Press, 2008.
[49] Dafna Shahaf and Eyal Amir. “Towards a theory of ai completeness.” In: AAAI

Spring symposium: logical formalizations of commonsense reasoning. 2007.
[50] Yang Shao. “HCTI at SemEval-2017 Task 1: Use convolutional neural network to eval-

uate semantic textual similarity”. In: Proceedings of the 11th international workshop
on semantic evaluation. 2017.

[51] Richard Socher et al. “Recursive deep models for semantic compositionality over a
sentiment treebank”. In: Proceedings of the 2013 conference on empirical methods in
natural language processing. 2013.

73

Bibliography

[52] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from
Over�tting”. In: The Journal of Machine Learning Research (2014).

[53] Kai Sheng Tai, Richard Socher, and Christopher D Manning. “Improved semantic
representations from tree-structured long short-term memory networks”. In: Preprint
arXiv (2015).

[54] Shuohang Wang and Jing Jiang. “Machine comprehension using match-LSTM and
answer pointer”. In: Preprint arXiv (2016).

[55] Terry Winograd. Procedures as a representation for data in a computer program for
understanding natural language. Tech. rep. Massachusetts Inst. of Tech. Cambridge,
1971.

[56] Ludwig Wittgenstein. Tractatus logico-philosophicus. Kegan Paul, Trench, Trubner
and Co., 1921.

[57] Jiaming Xu et al. “Self-taught convolutional neural networks for short text cluster-
ing”. In: Neural Networks (2017).

[58] Xiang Zhang, Junbo Zhao, and Yann LeCun. “Character-level Convolutional Net-
works for Text Classi�cation”. In: Advances in Neural Information Processing Systems
28. Curran Associates, 2015, pp. 649–657.

[59] Du Zou, Wei-Jiang Long, and Zhang Ling. “A cluster-based plagiarism detection
method”. In: Notebook papers of CLEF LABs and workshops. 2010.

74

A. Appendix: TensorFlow Graphs

A.1. GloVemodel

1 w e i g h t i n g F a c t o r = t f . minimum (1 . 0 , t f . pow (cooccur renceCount /
countMax , s c a l i n g F a c t o r))

2

3 embeddingProduct = t f . reduce_sum (centerEmbedding ∗
contextEmbedding , a x i s =1)

4 l o g C o o c c u r r e n c e s = t f . l o g (cooccur renceCount)
5 d i s t a n c e E x p r = t f . s q u a r e (embeddingProduct + c e n t e r B i a s +

c o n t e x t B i a s − l o g C o o c c u r r e n c e s))
6

7 c o s t = t f . reduce_sum (w e i g h t i n g F a c t o r ∗ d i s t a n c e E x p r))
8 o p t i m i z e r = t f . t r a i n . AdagradOpt imizer (l e a r n i n g R a t e) . minimize

(c o s t)

Listing A.1: Simpli�ed GloVe cost function implementation. The constant hyperparameter
are scalingFactor and countMax.

Figure A.1.: TensorFlow Graph visualization of the GloVe model

75

A. Appendix: TensorFlow Graphs

A.2. BiLSTMmodel

1 compAngle = tensorA ∗ t e n s o r B
2 compDif f = t f . abs (tensorA − t e n s o r B)
3 compSig = t f . s i gmoid (t f . matmul (compAngle , wAngle) + t f . matmul

(compDiff , wDif f) + b S i g)
4 compProb = t f . nn . so f tmax (t f . matmul (compSig , wSig) + bProb)
5 p r e d i c t i o n = t f . matmul (compProb , r C l a s s)
6 r e g u l a r i z e r = (lambdaReg / 2) ∗ t f . reduce_sum ([t f . nn . l 2 _ l o s s (x

) f o r x i n t f . t r a i n a b l e _ v a r i a b l e s ()])
7 compProb = compProb + 0 . 0 0 0 0 1
8 c r o s s E n t = − t f . reduce_sum (l a b e l P r o b ∗ t f . l o g (compProb))
9 c o s t = t f . reduce_mean (c r o s s E n t , a x i s = 0) + r e g u l a r i z e r

10 o p t i m i z e r = t f . t r a i n . G r a d i e n t D e s c e n t O p t i m i z e r (l e a r n i n g _ r a t e =
l e a r n i n g _ r a t e) . minimize (c o s t)

Listing A.2: Simpli�ed Feedforward network to compare sentence representations.

Figure A.2.: TensorFlow Graph visualization of the BiLSTM model.

76

B. Appendix: Evaluation data

B.1. Hyperparameters

model parameter value
TF-IDF vocabulary size 10000

Word2Vec

vector size 300
context window length 5 (symmetric)

subsampling 0.001
negative samples 5

GloVe

vector size 300
context window length 5 (symmetric)

co-occurrence maximum 100
scaling factor 0.75

Table B.1.: List of all lexical hyperparameters with the exception of learning parameter.

model parameter value

Distributed Memory

vector size 300
context window length 5

subsampling 0.001
negative samples 5

Distributed BoW
vector size 300

subsampling 0.001
negative samples 5

Table B.2.: List of all Par2Vec hyperparameters with the exception of learning parameter.

submodel parameter value
Word embedding GloVe

BiLSTM output size 100
maximum sentence length 50

Feedforward hidden layer size 50

Regularization strength λ 10−4
keep probability dropout 0.5

Table B.3.: List of all BiLSTM hyperparameters with the exception of learning parameter.

77

B. Appendix: Evaluation data

B.2. Similarity histograms

(a) Bosch (b) Wikipedia

Figure B.1.: Histogram of TF-IDF with the Bosch dataset(a) and Wikipedia dataset(b).

(a) Distributed memory (b) Distributed BoW

Figure B.2.: Histogram of the distributed memory(a) and the distributed BoW(b) model.

78

	Abstract
	Zusammenfassung
	Introduction
	Goal
	State of the art
	Natural Language Understanding
	Analysis
	Current limitations

	Focus
	Outline

	Fundamentals
	Linguistics
	Grammar
	Semantics

	Machine Learning
	Artifical Neural Network

	Statistical NLP
	Word representations
	Text representation: Bag of Words
	Semantic Textual Similarity

	NLU feature
	Overview
	Taxonomy
	Process pipeline

	Data Preprocessing
	Tokenization
	Data cleansing

	Lexical approaches
	Word representation
	Paragraph representation
	Implementation
	Parameter

	Unsupervised, compositional approach: Par2Vec
	Paragraph representation
	Implementation
	Parameter

	Transfer-learning approach: BiLSTM
	Sentence representation
	Implementation
	Training
	Parameter

	Information Retrieval
	Document similarity
	Duplicate detection
	Thresholding
	Feedforward network

	Evaluation
	Datasets
	Bosch bug report dataset
	Wikipedia dataset

	Evaluation metric
	Receiver Operating Characteristic curve
	Similarity histogram

	Results
	Lexical approaches
	Par2Vec
	BiLSTM

	Conclusion
	Further work

	Bibliography
	Appendix: TensorFlow Graphs
	GloVe model
	BiLSTM model

	Appendix: Evaluation data
	Hyperparameters
	Similarity histograms

