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Abstract. The rapidly increasing amount of entities in knowledge bases
(KBs) can be beneficial for many applications, where the key issue is
to link entity mentions in text with entities in the KB, also called
entity linking (EL). Many methods have been proposed to tackle this
problem. However, the KB can never be complete, such that emerging
entity discovery (EED) is essential for detecting emerging entities (EEs)
that are mentioned in text but not yet contained in the KB. In this
paper, we propose a new topic-driven approach to EED by representing
EEs using the context harvested from online Web sources. Experimental
results show that our solution outperforms the state-of-the-art methods
in terms of F1 measure for the EED task as well as Micro Accuracy and
Macro Accuracy in the full EL setting.

1 Introduction

As large knowledge bases (KBs) of individual entities became available, it
enabled the linking of words or phrases in text to entities in the KB. The
challenges of entity linking (EL) lie in entity recognition and disambiguation.
The first stage, i.e., entity recognition (ER), is to identify the word sequences in
text that refer to an entity, also called mentions, for which no KB is required.
The second stage, i.e., entity disambiguation (ED), aims at mapping ambiguous
mentions onto entities like persons, organizations or movies in the KB.

In spite of the rapidly increasing quantities of entities in the KB, the
knowledge can never be complete due to (1) the ever-changing world, e.g., new
entities appear under the same names as existing ones in the KB, and (2) a
long-tail of entities that are not captured by the KB because they lack the
importance. In [1], a survey to thoroughly investigate various types of challenges
that arise from out-of-KB entities in the context of EL has been provided. We
refer to such out-of-KB entities as emerging entities (EEs) and EL methods
must cope with this issue, i.e., mentions that have no corresponding entities in
the KB. In this work, the key problem is to determine when a mention refers
to an EE by discriminating it against the existing candidate entities in the KB.
The task is also called emerging entity discovery (EED). The examples of two
kinds of EEs, i.e., new entities and long-tail entities, are given in the following.



Example (New Entities) Suppose an EL method is fed with the input text
“Alphabet, Google’s new parent company, is boldly restructuring the search
engine giant and its subsidiaries.” from one of the early news articles on this
topic, before the entity Alphabet Inc. being added into the KB due to its lagging
behind news [2]. The EL method needs to determine that the mention “Alphabet”
does not refer to Alphabet (poetry collection), a 1981 book by Danish poet Inger
Christensen that exists in the KB, e.g., Wikipedia, for quite a long time, and
instead should be mapped to an EE.

Example (Long-tail Entities) Consider the news about Michael Jordan,
a professor of English at the University of St. Thomas, who does not exist in
the KB. An EL method needs to decide that the mention “Michael Jordan”
in such a news should refer to an EE, instead of a candidate entity in the KB,
such as Michael Jordan, an American retired professional basketball player,
or Michael I. Jordan, a professor in machine learning, statistics, and artificial
intelligence at the University of California, Berkeley.

However, most existing EL methods cannot robustly deal with mentions that
have no correct entity candidate in the KB. As soon as there is a candidate entity
for a mention in the input text, these algorithms are destined to choose one. In
order to identify mentions that have no good match in the KB, a simple solution
is to employ a confidence threshold to disregard the candidate entities in the KB
yielded by an algorithm, such that a mention with a low confidence score for all
KB entities is determined to refer to an EE.

In contrast, Hoffart et al. [3] has introduced a new approach, which models
an EE as a set of weighted keyphrases collected from news articles by looking
back some days before the publishing date of the input text and introduces an
additional EE candidate for each mention. Once the candidate space is expanded
with EEs, the EL problem is fed back to a prior EL method (i.e., AIDA [4]),
which is based on the same keyphrase features, such that it can treat EEs in the
same way as it treats KB entities. This is the state-of-the-art method for EED
and also the most related work to ours.

The main drawback of the method in [3] is that adding an EE candidate
for each mention would potentially introduce noise, which, as showed in our
experiments, resulted in degraded EL decisions for the mentions referring to an
existing entity in the KB. In order to address this problem, we propose a new
solution to EED. Different from [3], our approach employs a prior EL method as
a black box and takes its results (i.e., the mappings between each mention and
its most likely referent entity in the KB) as the input for further EE detection.
In addition, it does not affect existing EL decisions for KB entities yielded by
the prior EL method.

Towards a robust solution to EED in the context of EL, we provide in this
work the following contributions:

– In order to capture both new entities and long-tail entities, we accurately
harvest the context of such emerging entities from online Web sources using
a Web search engine.



– We enrich KB entities and EE candidates with an appropriate representation
as topic distributions of their contexts, based on that develop a principled
method of topic-driven EED.

– The experiments conducted on a benchmark dataset for EED show the
superior quality of our solution compared to the state-of-the-art methods
in terms of F1 measure of EE results as well as Micro Accuracy and Macro
Accuracy of EL results.

2 Approach

Firstly, we formally formulate the task of EL by taking into account EEs. Then,
we present our solution to EED in the context of EL.

Definition 1 (Entity Linking). Let M = {m1, . . . ,mk} denote the set of all
words and phrases in a document D. Given a knowledge base KB containing a set
of entities E = {e1, . . . , en}, the objective of entity linking (ER) is to determine
the referent entities for the mentions in M , where two functions are to be found:
(1) an entity recognition (ER) function f : D → 2M that aims to identify the
set of entity mentions µ ⊆ M from D, and (2) an entity disambiguation (ED)
function g : µ → E ∪ {EE} that maps the set of mentions µ yielded by the
recognition function to entities in KB or to emerging entities that are not yet
contained in KB, denoted by the label EE.

We assume that the KB used in this work is Wikipedia, or any others
where each entity has a corresponding Wikipedia page, such as DBpedia [5]
and YAGO [6]. Now we recap the computational model of EL. Firstly, the text
document is processed by a method for ER, e.g., the Stanford NER Tagger [7],
which detects the boundaries of entity mentions. These detected mentions serve
as the input of ED in the next step, where the goal is to infer the actual referent
entities in the KB or the label EE in case that the corresponding entities do
not exist in the KB. In many existing EL methods (e.g., [8–10]), the output also
includes a confidence score for each mapping between a mention and its most
likely referent entity in the KB.

In our approach, we firstly employ a probabilistic EL method [10], which
models the interdependence between different EL decisions as a graph to capture
both local mention-entity compatibility and global entity-entity coherence, where
evidences for EL can be collectively reinforced into high-confidence decisions
based on a random walk process. In principle, many EL methods can be applied
here as long as they provide a confidence score for the individual outputs (i.e.,
mention-entity mappings). Instead of thresholding on the confidence score to
directly determine EE, we only use a threshold to filter out the mentions that
have a high-confidence mapping to an existing entity in the KB. Then, the
remaining mentions are considered as EE candidates and fed into an additional
model of EED, which involves entity context harvesting (Sec. 2.1), context
representation learning (Sec. 2.2) and EE detection (Sec. 2.3).



2.1 Entity Context Harvesting

For each mention m as an EE candidate, we firstly collect its entity context
from Wikipedia, where each page describes a corresponding KB entity. Also, a
Wikipedia page often contains hyperlinks pointing to the pages of other entities
and the anchor text of a hyperlink provides the mention of the linked entity.
Based on that, we define the context of m w.r.t. KB entities, denoted by CKB =

{pi}|CKB|
i=1 , as a set of Wikipedia pages pi linked from the anchor text m, where

each page corresponds to a KB entity referred to by m.
Although EEs do not have textual information in Wikipedia, there might

exist some associated Web pages. Therefore, we decide to acquire the entity
context for a mention m as an EE candidate by querying the Web with a
search engine4. To accurately get such context, we firstly perform coreference
resolution [11] to find all expressions that refer to the same entity as m in the
input document and based on POS tagging [12] to extract the noun phrases that
co-occur with all coreferences of m in the same sentences. Then, the mention
m and the extracted noun phrases are jointly submitted to the search engine to
retrieve a set of relevant Web pages pj as the actual entity context of m, denoted

by CActual = {pj}|CActual|
j=1 .

Given a mention m, its actual entity context CActual could correspond to
either a KB entity or an EE, while CKB captures the context of all existing
entities in the KB that can be referred to by m. In order to perform EED on
m as an EE candidate, our basic idea is to check if the actual entity context
CActual is dissimilar enough to the KB entity context CKB. If so, we assume
that there should be an EE that has quite different context from all the referent
KB entities of m. To compare the textual contexts CKB and CActual, the
bag-of-words (BOW) model is the most common method to represent text as
vectors, and based on that we can apply standard functions (e.g., Euclidian
distance, dot product and cosine) to calculate the vector similarity. However,
the textual contexts are extracted from different sources, i.e., Wikipedia and
various websites, that vary a lot in wording styles, such that the same words in
CKB and CActual could be of low frequency even though they share common
information. Therefore, the BOW model may not work well in this scenario.

2.2 Context Representation Learning

To address the problem of the BOW model, we try to discover the topics of CKB

and CActual with a topic model, i.e., Latent Dirichlet allocation (LDA) [13], such
that we can compare these two kinds of contexts based on their representations
as topic distributions.

Suppose the corpus C = CKB∪CActual = {pj}|CKB|
j=1 ∪{pi}|CActual|

i=1 contains
|CKB| + |CActual| documents, W distinct words and K topics expressed over
the individual words in these documents. The topic indicator variable is denoted
by zin ∈ [1,K] and zjn ∈ [1,K] for the n-th word in the Wikipedia page

4 We choose Microsoft Bing as the Web search engine in this work.



Algorithm 1: Generative Process of CKB and CActual

1 initialize: (1) set the number of topics K;

2 (2) set the values of Dirichlet priors α and β;

3 foreach topic k ∈ [1,K] do

4 sample: φk ∼ Dir(β);

5 sample: θ ∼ Dir(α);
6 foreach Wikipedia page pi ∈ CKB do

7 foreach of Ni word win ∈ pi do

8 sample: zin ∼Multinonimal(θi);

9 sample: win ∼Multinonimal(φzin );

10 foreach Web page pj ∈ CActual do

11 foreach of Nj word wjn ∈ pj do

12 sample: zjn ∼Multinonimal(θj);

13 sample: wjn ∼Multinonimal(φzjn );

pi ∈ CKB and in the Web page pj ∈ CActual, respectively. For each topic k, the
corresponding word distribution is represented by a W -dimensional multinomial
distribution φk with entry φwk = P (w|z = k). In addition, we employ a
K-dimensional multinomial distribution θi = {θki }Kk=1 and θj = {θkj }Kk=1 with

θki = θkj = P (z = k) to describe the topic distributions of each pi ∈ CKB and
each pj ∈ CActual. Following the convention of LDA, the hyperparameters α
and β are set as the Dirichlet priors. Based on that, the generative process of
CKB and CActual is described in Algorithm 1. Accordingly, the probability of
generating both CKB and CActual can be expressed as follows:

P (CKB,CActual|α, β)

=

K∏
k=1

P (φk|β)

|CKB|∏
i=1

[
P (θi|α)

[ Ni∏
n=1

∑
zin

P (zin|θi)P (win|zin, φ)
]]

×
|CActual|∏

j=1

[
P (θj |α)

[
(

Nj∏
n=1

∑
zjn

P (zjn|θj)P (wjn|zjn, φ)
]]

(1)

It is usually intractable to perform exact inference in such a probabilistic
model, therefore we adopt Gibbs sampling [14] to conduct approximate inference.
More specifically, we estimate the posterior distribution on zin (zjn) and then
sample the topic for each word win (wjn). Based on the sampling results after
a sufficient number of iterations, we can estimate the parameters θi and θj that
represent the topic distributions of each Wikipedia page pi ∈ CKB and each
Web page pj ∈ CActual. In our experiments, we set the number of topics K as
25. For the hyperparameters α and β, we take the fixed values, i.e., α = 50/K,
β = 0.01.



2.3 Emerging Entity Detection

Given the topics derived from CKB and CActual, we represent the topic
distributions of the KB entity context, denoted by θKB and the actual entity
context, denoted by θActual, as follows:

θKB =
1

|CKB|

|CKB|∑
i=1

θi (2)

θActual =
1

|CActual|

|CActual|∑
j=1

θj (3)

Then, we measure the difference between CKB and CActual using the
Kullback Leibler (KL) divergence between the topic distributions θKB and
θActual as follows:

DKL(θKB ||θActual) =

K∑
t=1

θKB
t · log2

θKB
t

θActual
t

(4)

Eq. 4 measures how one probability distribution, i.e., θKB , diverges from another
distribution, i.e., θActual, which is equal to zero when θKB

t = θActual
t for all

topics t. As the KL divergence is asymmetric, we apply a symmetric measure to
calculate the final divergence between CKB and CActual as follows:

D(CKB,CActual) =
1

2
[DKL(θKB ||θActual) +DKL(θActual||θKB)] (5)

Based on Eq. 5, we learn a threshold τ for D(CKB,CActual) to determine
whether a mention m refers to a KB entity or an EE. The assumption behind
it is that if the actual entity is an EE that is not yet contained in the KB,
its context CActual should be generated by a topic distribution that is to some
extent divergent from the topic distribution of the context CKB for the candidate
KB entities.

3 Experiments and Achieved Results

We now discuss the experiments we have conducted to assess the performance
of our approach to EED.

3.1 Experimental Settings

We firstly describe the experimental settings with respect to Data and Evaluation
Measures.

Data. In the experiments, we employ the AIDA-EE dataset, also used by [3],
which consists of 150 news articles published on October 1st and 150 published
on November 1st, 2010, taken from the GigaWord 5 corpus [15], where each



Total number of documents 300
Total number of mentions 9,976
Total number of mentions with EE 561
Average number of words per article 538
Average number of mentions per article 33
Average number of entities per mention 104
Table 1. AIDA-EE GigaWord dataset statistics.

mention was manually annotated with EE if the referent entity is not present
in Wikipedia as of 2010-08-17, otherwise the correct entity. The statistics of
the dataset is given in Table 1. Accordingly, the knowledge base used in the
experiments is based on the Wikipedia snapshot from 2010-08-17.

Evaluation Measures. We evaluate the quality of the overall EL (for both
KB entities and EEs) with Micro Accuracy and Macro Accuracy. Additional
measures to evaluate the quality of EED include EE Precision, EE Recall and
EE F1. Let D be the collection of documents, Gd be all mentions in document
d ∈ D annotated by a human annotator with a gold standard entity, GEE

d be the
subset of Gd annotated with an emerging entity EE, Ad be all mentions in d ∈ D
automatically annotated by a method and AEE

d be the subset of Ad annotated
with EE. Based on that, the measures of Micro Accuracy and Macro Accuracy
are defined as follows:

Micro Accuracy =
|
⋃

d∈D Gd ∩
⋃

d∈D Ad|
|
⋃

d∈D Gd|
(6)

Macro Accuracy =

∑
d∈D

|Gd∩Ad|
|Gd|

|D|
(7)

Regarding the EE Precision and EE Recall, we firstly calculate these two
measures for each document d ∈ D as follows:

EE Precisiond =
|GEE

d ∩AEE
d |

|AEE
d |

(8)

EE Recalld =
|GEE

d ∩AEE
d |

|GEE
d |

(9)

Based on Eq. 8 and Eq. 9, the final EE Precision and EE Recall are averaged
over all documents in D. The EE F1 is the harmonic mean of EE Precision and
EE Recall, calculated per document then averaged.

3.2 Evaluation Results

We evaluate our EED approach on top of a EL system, denoted by RW-EEour,
where we adopt a probabilistic EL model based on random walks [10], denoted
by RW, which generates mention-entity mappings with their probabilities as a
direct confidence measure. We compare our solution with two state-of-the-art



EL Methods EED Methods
Measure AIDAsim AIDAcoh RW AIDA-EEsim AIDA-EEcoh RW-EEour

Mic. Acc. 0.7602 0.7581 0.7616 0.7611 0.7133 0.7900
Mac. Acc. 0.7340 0.7258 0.7522 0.7290 0.7040 0.7709
EE Prec. 0.7284 0.5349 0.4328 0.9797 0.9392 0.8847
EE Rec. 0.8909 0.9092 0.7111 0.7069 0.7172 0.7478
EE F1 0.6661 0.4980 0.4023 0.6892 0.6792 0.6954

Table 2. Evaluation results (with the best results in bold font).

EED approaches [3], denoted by AIDA-EEsim and AIDA-EEcoh, which
are accordingly based on two variants of the AIDA EL system [4], denoted
by AIDAsim and AIDAcoh respectively, where the difference lies in using
keyphrase-based similarity or graph link-coherence for disambiguation. As
additional baselines, we also consider the traditional EL methods, i.e., RW,
AIDAsim and AIDAcoh, which all detect EE based on a threshold of the output
confidence score.

Similar to [3], we estimate the parameters for all methods using the set of
150 documents from 2010-10-01 and based on that, the experiments are run on
the 150 documents from 2010-11-01. All the methods use the same Stanford
NER Tagger [7] for entity recognition, such that our comparison can focus on
the ability of different methods to distinguish between existing and emerging
entities, not the ability to recognize mentions in the input text.

The evaluation results in Table 2 clearly show that our approach RW-EEour

achieves the best result in terms of EE F1. It is observed that the traditional EL
methods (i.e., AIDAsim, AIDAcoh and RW) yield relatively high EE recall but
low EE precision. This is because they determine EE only based on the absence
of indication for KB entities such that a mention will be simply considered as an
EE if there are no enough evidences for existing entities that can be extracted
from the KB. Instead, the EED approaches (i.e., AIDA-EEsim, AIDA-EEcoh

and RW-EEour) detect EE by leveraging its direct positive indication harvested
from external sources, where RW-EEour achieves an optimal trade off between
EE precision and recall, which results in a better EE F1.

Furthermore, the results in Table 2 also show that RW-EEour outperforms
all the competitors in terms of Micro Accuracy and Macro Accuracy in the
full EL setting (w.r.t. both KB entities and EEs). While RW-EEour improves
the performance of RW for the general EL, AIDA-EEsim and AIDA-EEcoh

yield degraded EL performance compared with AIDAsim and AIDAcoh in
some cases, such as Micro Accuracy for AIDA-EEcoh and Macro Accuracy
for both AIDA-EEsim and AIDA-EEcoh. This is due to the fact that for
each mention AIDA-EEsim and AIDA-EEcoh add an additional EE candidate
for disambiguation and feed the expanded set of candidate entities back to
the prior EL methods, i.e., AIDAsim and AIDAcoh, which would potentially
introduce noise and result in degraded EL decisions for KB entities. In contrast,
RW-EEour uses a prior EL method (i.e., RW) as a black box to generate the
EE candidates for further EE detection, such that it does not affect existing EL
decisions for KB entities yielded by the prior EL method.



4 Conclusions

In this paper, we aimed to address the challenge of discovering EEs in text by
discriminating them against existing entities in the KB. In order to resolve the
problems of existing methods, we devised a new EE detector for each mention as
an EE candidate by comparing its KB entity context collected from Wikipedia
and its actual entity context harvested from online Web sources based on the
context representation learned as topic distributions. Our experiments show the
superior quality of our solution in terms of higher F1 measure in detecting EEs
compared with the state-of-the-art methods. More importantly, our approach
considerably outperforms the existing methods in the full EL setting, where the
measures of Micro Accuracy and Macro Accuracy w.r.t. both KB entities and
EEs are considered. As future work, we would like to develop methods and tools
to add the detected EEs with a canonicalized representation into the KB to
improve its up-to-dateness and completeness.
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