
SMART I NDEXER – Amalgamating Ontologies and Lexical Resources for
Document Indexing

H. Peter, H. Sack, C. Beckstein

Institut für Informatik
Friedrich-Schiller-Universiẗat Jena

D-07743 Jena
Germany

{hpeter, sack, beckstein}@minet.uni-jena.de

Abstract
Document index compilation is a sophisticated task that requires text understanding capabilities. SmartIndexer supports the author in
the process of index compilation. By providing information about the general structure of an index in combination with the lexical
and semantic resources of WordNet, SmartIndexer gives suggestions for arranging potential index entries according to their semantic
relationships and according to the requirements of the author. In addition,the process of index compilation can be reversed in the sense
that an existing document index can be used for automated semantic annotation of the underlying document.

1. Introduction

The index is an essential part of any document, no matter
if we consider a book, an issue of a magazine, a web page,
or any other information source. It allows fast and efficient
random access to any important topic within the document.
The process of index creation is not trivial and thus requires
extensive intellectual efforts: Appropriate headings must
be chosen, index entries must be defined sophistically, syn-
onymy, ambiguities and other relationships between index
entries must be detected and handled properly. In the end,
the creation of a sound index also affects the corresponding
document because it provokes text restructuring and disam-
biguation of the used vocabulary.
Current indexing software (e.g. LATEX’s MakeIndex (Lam-
port, 1987) or MACREX(Calvert and Calvert, 1997)) sup-
ports the author only in mechanical indexing tasks, e.g. sim-
ple management or sorting of index entries. This type of
software also does not assist the author in the much more
complex and creative task of originating accurate and sound
index entries. An entirely automated indexing process re-
quires text understanding capabilities that are beyond the
ability of prevailing computer systems.
Our goal was to develop an architecture – the SMART IN-
DEXER – that supports the author in the creative tasks of
the indexing process. For this purpose, we designed an
ontology (in the following referred to asIndex Ontology),
which contains general knowledge about index elements
and their relationships. Index quality strongly depends on
the amount of its inherent semantics. An index can be re-
garded as a network, where the index entries represent the
nodes. Subentry relationship between two index entries as
well as different cross-references among index entries con-
stitute the arcs. This network embodies the semantic in-
terrelationships inherent in the index. SMART INDEXER fa-
cilitates the creation, expansion, and management of this
network and thus, enables the generation of a high quality
index.
Providing semantic relationships between words, as e.g. hy-
peronymy or meronymy, is the main task of the electronic

lexical database WordNet (Fellbaum, 1998). SMART-
INDEXER employs WordNet in connection with its Index
Ontology to assist the author at the intellectually sophisti-
cated indexing task. Supplementary, domain ontologies – if
available – provide useful information about a document’s
subject. SMART INDEXER can use these ontologies as sig-
nificant input beyond the knowledge offered by WordNet.
The paper is structured as follows: Section 2 and Section
3 introduce the reader to the basic principles of indexing.
Section 4 covers the architecture of the SMART INDEXER,
while Section 5 gives a short overview of the SMART IN-
DEXER algorithm. In Section 6 a possible transformation
of a document index into a domain ontology is shown. Sec-
tion 7 concludes the paper with an outlook on ongoing and
future work.

2. Index and Index Elements
According to the British Indexing Standard (Mulvany,
1994) an index is a systematic arrangement of entries de-
signed to enable users to efficiently locate information in a
document or specific documents in a collection.
Index entry: An index entry consists of a heading (or main
heading) and at least one of the following components: a
subentry, a reference locator (in the following referred toas
locator), or a cross-reference. A heading is a term – nor-
mally a noun or a noun phrase – which reflects a concept in
the document.
Subentry: A subentry is similarly structured as an index
entry. It is composed of a subheading, one or more loca-
tors, and – only rarely – cross-references. The correspond-
ing concepts of the subheadings are always related to the
concept of the superordinated main heading. In the ma-
jority of cases subheadings represent subdivisions or more
specific aspects of the main heading.
Sub-subentry: A subentry can have further index entries –
so called sub-subentries. The above mentioned statements
about subentries hold analogously for sub-subentries. In
general it is not recommended to go beyond the level of
sub-subentries.



Locator: Locators follow a heading and indicate that part
of a document, where information related to the heading
can be found. In printed media, reference locators are usu-
ally page numbers, section numbers, or line numbers.
Cross-reference: Cross-references establish a relationship
between one heading and another. This makes it possible
to connect scattered information within the index. A book
index usually provides two kinds of cross-references:see
references andsee alsoreferences. The first kind is used
for variant spellings, synonyms, aliases, abbreviations,and
so on. See alsoreferences are used to guide the user to
another closely related heading that supplies additional in-
formation.
A high quality index is an essential prerequisite for efficient
information retrieval. Direct access to specific information
within a document becomes hardly viable without an in-
dex.

3. Index Compilation
Compiling an index is an intellectually sophisticated pro-
cess. The difficulty of that process lies in capturing the
essence of a document by means of only a few short, ex-
pressive and predictable headings or heading phrases. Fur-
thermore, synonyms, ambiguities, and various relationships
between terms have to be detected and handled properly.
The index compilation process usually consists of the fol-
lowing six steps:

1. Terms are highlighted that are considered to be main
headings or subheadings in the index. Each high-
lighted term is augmented with additional and more
specific information. This information will be used in
a subsequent step for the generation of subheadings.

2. A corresponding locator is assigned to each high-
lighted term.

3. Then, highlighted terms and locators are arranged in
order within the existing index. There are several pos-
sible index orderings. The most commonly used index
order is the alphabetical order.

The remaining three steps generate a consistent document
index from the collected temporary index entries:

4. It has to be decided, which term is transformed from a
set of synonyms or closely related terms into a main
heading. Furthermore, appropriate cross-references
have to be created that reflect the existing semantic
relationships.

5. Then, an index level has to be chosen, where the index
entries have to be placed.

6. Finally, it has to be verified that all cross-references
relate to an existing index entry that offers a locator.

The mere mechanical aspects of index creation (step two
and three) can be accomplished easily with current indexing
software. However, the author usually does not obtain any
support in the intellectual aspects of index creation. Thus,
the goal of our SMART INDEXER architecture is to assist
the author in the creative tasks of index compilation – espe-
cially in steps four to six.

4. The SMART I NDEXER Architecture
The SMART INDEXER architecture is based on a two com-
ponent framework: theIndex Generatorand theOntol-
ogy Processor(for an outline of the SMART INDEXER work
flow see figure 1).
The Index Generator receives as input a potential index en-
try from an arbitrary word processing application (1). Ad-
ditionally, an already existing document index is passed to
the Index Generator (2). After a preprocessing step con-
taining (among other things) spell checking and word stem-
ming, the author has to mark up the sense carrying sub-
string (SCS) of the potential index entry. Then, the SCS
is passed over to the Ontology Processor (3). The Ontol-
ogy Processor recalls the entire lexical field (LF[SCS]) of
the SCS by means of WordNet (4,5). LF[SCS] contains
synonyms, hyponyms, hypernyms, holonyms, meronyms,
and sister terms of the SCS. After this lookup, the SCS is
passed back to the Index Generator (6). The Index Genera-
tor uses the general knowledge about indexing represented
by the Index Ontology for making suggestions about new
potential index elements, as e.g. cross-references or suben-
tries (see section 5. for a more detailed specification of the
indexing algorithm).
In addition to lexical resources as e.g. WordNet, SMART IN-
DEXER can use different knowledge repositories. The au-
thor has the possibility to supply domain ontologies refer-
ring to the subjects discussed in the document to be in-
dexed. If there is no suitable ontology available, standard
WWW search engines as e.g. Google or specialized seman-
tic search engines as e.g. Swoogle (Ding et al., 2004) can
be used for searching better suited ontologies (see figure 2).
Typically, domain ontologies describe domain entities and
various relationships between them. In particular ’IS-A’ or
’PART-OF’ relationships are good candidates for possible
index elements, especially for cross-references.
With the help of the Index Ontology the Ontology Proces-
sor filters the found relationships and transfers them to the
Index Generator. Depending on this information the Index
Generator suggests suitable index elements and lets the au-
thor decide which of them to include in the document index.
Finally, the Index Generator returns the chosen index ele-
ments to the word processing application (7) that inserts the
new index entry into the document index (8). In certain sit-
uations inserting a new index entry requires complex index
rearrangement.
SMART INDEXER is being implemented as a Java applica-
tion independent of specific hardware or operating systems.
For the management of semantic information provided by
RDF, RDFS, and OWL ontologies, we use the JENA appli-
cation programming interface (McBride, 2002). The pre-
processing of possible index entries requires word stem-
ming, which is performed with the Java implementation of
the Porter stemming algorithm (Porter, 1980). In order to
access lexical information provided by WordNet we use the
Java Word Net Library (JWNL) (Didion, 2004).

5. SMART I NDEXER Algorithm
The SMART INDEXER has to be able to detect relationships
between index entries to properly assist the author with in-
dex compilation. This requires that the concept of a heading



potential
index entry (1)

set of index
commands (7)

Index entry (4)

lexical field (5)

Index

Generator

Ontology

Processor

SMARTINDEXER

(6)(3)

index

processor

document

(e.g. *.doc, *.tex)

document index

(e.g. *.idx)

word processing

application / IDE

(8)

Index

Ontology
Index

Ontology
Domain

Ontologies

WordNet

author

Index

Ontology

(2)

Figure 1: Indexing Process with SMART INDEXER

is known. By knowing the concept of a heading SMART IN-
DEXER is able to identify relationships between index en-
tries by the combined use of the Index Ontology and lexical
resources as WordNet. The Index Ontology provides gen-
eral knowledge about the components of an index and their
relationships with each other.
As already mentioned, the Index Generator uses the gen-
eral knowledge about index creation and the information
offered by WordNet to make suggestions for a potential in-
dex entryi. First, the underlying concept ofi is determined
in a preprocessing step in cooperation with the author. The
preprocessing comprises the following operations:

1. Perform spell checking ofi and stop word removal
from i.

2. Ask the author to mark up the sense carrying substring
(SCS) ofi.

3. Perform word stemming ofi according to the porter
stemming algorithm (this step is already provided by
WordNet).

4. Use WordNet or available domain ontologies to deter-
mine the underlying concept ofi, which will be used
in the main index processing algorithm. This step has
to be directed by the author.

Preprocessing must be guided by the author because the
SMART INDEXER algorithm is not able to determine the un-
derlying concept ofi. In order to realize this step in an

autonomous way text understanding capabilities are indis-
pensable.
WordNet contains so called synsets representing concepts
that are identified with the help of so called sense keys. The
sense key resulting from preprocessing ofi is a prerequisite
for the identification of the semantic relationships between
i and the existing document index.
This main indexing process can be divided into two main
steps: First, a possible positionp of i within the already
existing document indexI has to be determined. Then, the
new index entryi has to be inserted at positionp either with
its locator or as a cross reference. To accomplish both steps
the semantic relationships betweeni and the existing index
entriesj ∈ I have to be located. This can be achieved in
the following way:

1. Determine the positionp of the new index entryi
within the existing document indexI. This is done
depending on the type of information available about
i:

• If i is a synonym of an already existing index en-
try j ∈ I, then the positionp of the new index
entryi can be the same as the position ofj.

• If there are already known subordinated relation-
ships (e.g. hyponyms, meronyms) of the new in-
dex entryi and the already existing index entries
j ∈ I, then i can be positioned at the position
of j, while j has to be relocated below the new
index entryi.



SMARTINDEXER

WordNet
Lexical

Resources

Ontology

DatabasesSearch Engines

Documents

Other Semantic Web Applications

Index

Ontology

Document Index
Ontology
Instances

Figure 2: SMART INDEXER Embedded in Semantic Web Framework

• If there are already known superordinated rela-
tionships (e.g. hypernyms, holonyms) of the new
index entryi and the already existing index en-
tries j ∈ I, theni can be positioned below the
already existing superordinated index entryj.

• Otherwise, if there are already known associated
terms (e.g. sister terms) of the new index entryi

and the already existing index entriesj ∈ I, they
can be used to find a suitable position for the new
index entryi in I. If i is a sister term ofj, i can
be positioned at the same index level asj.

2. Insert the new index entryi at positionp with its loca-
tor or as a cross-reference:

• seereferences can be already existing index en-
triesj ∈ I, which have a synonymic relationship
with i.

• see alsoreferences can be already existing index
entriesj ∈ I, which have any semantic relation-
ship withi.

SMART INDEXER only gives suggestions, where to insert a
new index entry into the existing document index. The final
decision, where to supply the new index entry is up to the
author.
The index compilation process is illustrated with the fol-
lowing example (see figure 3). The new index entrymouse
has to be inserted into an existing index. After the pre-
processing step SMART INDEXER determinesmouseto be a

direct hyponym of the existing main headingrodent. Addi-
tionally, mousealso is determined to be a direct hypernym
of the existing main headingfield mouse. SMART INDEXER

suggests two possible arrangements to the author, who de-
termines which of the proposed variants should be used.
Choosing the second variant requires the rearrangement of
already existing index entries. The new index entrymouse
becomes a main heading, whilefield mouseand its subor-
dinated index entries become subentries ofmouse.

6. Embedding SMART I NDEXER within the
Semantic Web Framework

A document index provides direct access to specific infor-
mation within the document. It can be considered as a very
condensed summary of the underlying document and thus,
also providing access to essential concepts within the doc-
ument.
By reversing the index compilation process, SMART IN-
DEXER can also be utilized to transform an already existing
document index into an ontology that captures important
semantic knowledge about the document. For this purpose,
the already mentioned Index Ontology has to be considered
to be a generic class framework for the index at large. Ac-
cordingly, a document index has to be considered to be a
specific instance of the general Index Ontology.
By making use of this consideration, we have the possi-
bility to transform any document index file into an RDF
file reflecting all the relationships defined by the underly-
ing document index instance. The resulting RDF file can
be used to provide a traditional index representation, i.e.an



Index (before insertion)

fieldmouse, 13, 15
prairie vole, 16
meadow vole, 16
habitat, 15
see alsorodent

rodent, 1
beaver, 10, 11
dentision

incisor, 4
rotation of teeth, 5

hamster, 6, 8 – 10
see alsofield mouse

Index (after insertion)

mouse, 12
fieldmouse, 13, 15

prairie vole, 16
meadow vole, 16
habitat, 15
see also rodent

rodent, 1
beaver, 10, 11
dentision

incisor, 4
rotation of teeth, 5

hamster, 6, 8 – 10
see alsofield mouse

Figure 3: Example of Index Entry Insertion of the new Index Entry mouse

alphabetically ordered list of index entries.
In addition, one can use the RDF data structure to display
the index in different alternative ways that provide supple-
mentary information. It is possible to display the document
index as a topic map or as a graph, clarifying the relation-
ships between the index entries by graphical visualizations
that can be used for inner document navigation. Further-
more, the RDF index instance of the document index iden-
tifies the significant keywords of a document, thus provid-
ing information about what is important and what is not.
According to this kind of interpretation, index entries with
a large number of references in the document can be con-
sidered to be of higher significance than index entries with
only a single reference.
Index entries also reflect how index keywords do interact,
e.g. by giving information about hyperonymy, meronymy,
homonymy, synonymy, and other kind of associations. This
additional semantic information can be used to draw new
links between different sections of the document. It enables
the reader to break out of the linear text flow of the docu-
ment by using cross connected index keywords (seeandsee
alsoreferences) like the hypertext links.
The semantic relationships provided by the index can be
utilized as a starting point for further semantic annotation
of the document related to the index. Also corresponding
domain ontologies, which match the concepts provided by
the document can be identified more easily.

7. Conclusions and Outlook
Document index compilation is a sophisticated task. It re-
quires smart knowledge processing. SMART INDEXER sup-
ports the author during the process of index compilation.
The compilation of a sound document index requires the
identification of circles or blind references. This is ac-
complished by using a semantic index description (Index
Ontology) in combination with the lexical resources pro-
vided by WordNet. The document and the index ontology
together with WordNet’s semantic relationships fosters the
emergence of a new ontology from the document’s index.
This ontology can be used for visualization and navigation

issues. Furthermore, it can as well supply additional se-
mantic information for the underlying document. There-
fore, SmartIndexer can be considered as being a first step
towards semantic document annotation, which is manda-
tory for enabling the semantic web.

8. References
Grigoris Antoniou and Frank van Harmelen. 2004.A Se-

mantic Web Primer. The MIT Press, Cambridge, Mas-
sachusetts.

Hilary Calvert and Drusilla Calvert. 1997. MACREX
Manual for Version 6.5.

John Didion. 2004. The Java WordNet Library.
Li Ding, Timothy W. Finin, Anupam Joshi, Rong Pan,

R. Scott Cost, Yun Peng, Pavan Reddivari, Vishal Doshi,
and Joel Sachs. 2004. Swoogle: A Search and Meta-
data Engine for the Semantic Web. In Grossman et al.
(Grossman et al., 2004), pages 652–659.

C. Fellbaum. 1998.WordNet – An Electronic Lexical
Database. MIT Press.

David Grossman, Luis Gravano, ChengXiang Zhai, Otthein
Herzog, and David A. Evans, editors. 2004.Proceed-
ings of the 2004 ACM CIKM International Conference
on Information and Knowledge Management, Washing-
ton, DC, USA, November 8-13, 2004. ACM.

Leslie Lamport. 1987. MakeIndex: An Index Processor for
LATEX.

Brian McBride. 2002. Jena: A Semantic Web Toolkit.
IEEE Internet Computing, 6(6):55–59.

Nancy C. Mulvany. 1994.Indexing Books. The University
of Chicago Press, Chicago.

Martin F. Porter. 1980. An Algorithm for Suffix Stripping.
Program, 14(3):130–137.

Laurent Pŕevot, Stefano Borgo, and Alessandro Oltramari.
2005. Interfacing Ontologies and Lexical Resources. In
Proceedings of OntoLex 2005 - Ontologies and Lexical
Resources, Jeju Island, Republic of Korea, 15 October.

Frank van Harmelen, Jeen Broekstra, Christiaan Fluit,
Herko ter Horst, Arjohn Kampman, Jos van der Meer,



and Marta Sabou. 2001. Ontology-Based Information
Visualisation. InInternational Conference on Informa-
tion Visualisation, IV 2001, pages 555–562, London,
England, 25-27 July.


