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Abstract. This paper formalizes several independent approaches on
how to develop Semantic Web applications using object-oriented pro-
gramming languages and Object-Triple Mapping. Using such mapping,
Semantic Web applications have been developed up to three times faster
compared to traditional Semantic Web software engineering. Results
show that at the same time, developer satisfaction has been significantly
higher if they used object triple mapping. We present a formal notation
of object triple mapping and results of an experimental evaluation clearly
showing the benefits of such mapping. The work presented here may one
day help to make Semantic Web technologies part of the majority of
future applications.

1 Introduction

Using and handling RDF data in software is not trivial to implement, especially
with regards to the large number of best practices to consider. Before even that,
developers need to learn about RDF concepts and how to deal with them using
RDF programming libraries [1]. For many tasks, additional knowledge about
RDF schema and OWL is required. This makes getting started with the Semantic
Web quite a challenge for Semantic Web beginners and entry-level developers.

In general, two issues with current Semantic Web programming libraries can
be identified: First, their complete potential is always visible to developers, in-
stead of by default only revealing those parts that would be sufficient for a major-
ity of implementation problems. Second, lots of RDF- and Linked Data-related
implementation tasks, such as discovery, retrieval, and publishing of datasets
need to be implemented by hand, resulting in huge implementation efforts even
for relatively small implementation problem (cf. Section 4).

A promising approach for simplifying Semantic Web software development
is Object Triple Mapping (OTM) [2, 3]. There do exist some OTM implementa-
tions, and also some research on its expressivity (cf. Section 2). However, there
is no research on the actual building blocks needed to develop Semantic Web
applications on top of existing RDF programming libraries, and there is no re-
search on whether, or how OTM actually simplifies application development.
With our work, we are confident to lay out guidelines for the development of
future, easy-to-use Semantic Web programming libraries.
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In Section 3, wie formalize OTM and extend it by a small pseudo-code vocab-
ulary describing linked data functionality. This formalization is a starting point
for further research in this important area. We used the formalization for an
experimental evaluation of the benefits of OTM. The results of this evaluation
are presented in Section 4. Section 5 concludes the paper.

2 Related work

Linked Data has become one of the most popular topics among the emerging
Semantic Web [4]. Best practices need to be identified and described, how to effi-
ciently implement linked data applications. Design patterns formalize such best
practices; not as programming libraries, but as solutions to frequently recur-
ring problems. They have been introduced to software engineering by [5]. In the
world of relational database management systems, widely-used design patterns
on object-relational mapping (ORM) have been identified [6]. These patterns
allow developers to simply instantiate objects, and they are automatically filled
with contents from a relational database. Modifications to these objects will
automatically be persisted in the database.

The need of simplifying Semantic Web software engineering in a similar way
to ORM has been identified in [2], and an implementation called So(m)mer,
based on meta-programming, is available1. Up to now, several other tools for
OTM have been inspired by object-relational mapping. The D2RQ Platform [7]
uses a declarative language to describe mappings between relational database
schemata and Semantic Web ontologies and lets clients access RDF views on
the underlying non-RDF data. Other approaches such as RDFReactor2 take
mappings between OO programming units and Semantic Web schemas and allow
software developers simplified access to a triple store. OntoJava [8] uses a similar
approach to use auto-generated inference rules inside application source code.
Winter [9] extends So(m)mer to allow for mappings of complex patterns instead
of plain RDF classes onto Java classes.

All these solutions and the research done around them focus on specific parts
of the approach chosen, such as feasibility and expressivity of such mapping, but
do not yet aim at supporting the whole process of discovering, retrieving, pro-
cessing, and re-publishing linked data, which will involve further steps such as,
e.g., policy or data license checking [10]. To overcome this situation we have iden-
tified the principles common to these solutions and formulated design patterns
for OTM, closely resembling ORM design patterns [3]. As our contribution in
this paper, we will formalize the design pattern and evaluate how actual software
can be built upon it.

1 https://sommer.dev.java.net/
2 http://semanticweb.org/wiki/RDFReactor



3 Formalizing OTM

It is good practice to encapsulate business or domain logic in classes and methods
of object-oriented (OO) programming languages [6]. E.g., if a software product
deals with people and relations between them, the software’s object model likely
contains a Person class and friends field for this class. To use RDF data in most
OO programming languages, the mapping from RDF properties to the domain
classes’ fields has to be implemented by hand. Our hypothesis is that large parts
of this OO handling of RDF concepts, including discovery and retrieval on the
WWW, should be hidden from software engineers, making the development of
Semantic Web software much easier, and hence encouraging software developers
to actually start creating such software. In the following sections, we introduce a
formal notation of the knowledge representation in OO programming, a mapping
between RDF and OO concepts, and a simple pseudo-code vocabulary relevant
for building applications using such mapping.

3.1 Basic concepts

The RDF data model has an established formal notation building upon the
following concepts [1].

Definition 1 (RDF data model) Let U be the set of URI references, B an

infinite set of blank nodes, and L the set of literals.

– V := U ∪B ∪ L is the set of RDF nodes,
– R := (U ∪ B) × U × V is the set of all triples or statements, that is, arcs

connecting two nodes being labelled with a URI,

– any G ⊆ R is an RDF graph.

How RDF graphs are actually constructed, handled, and transferred is subject
to standards, conventions, and technical constraints. Linked data principles [4]
suggest to provide smaller sub-graphs describing individual resources. In [11],
an abstraction on top of these principles is described providing the whole Web
of Data as one huge graph. Hence, operating on RDF data involves not only
operating on triples and resources, but also retrieving the right sub-graphs of R,
which will be described in a later section.

For OO programming, there is no single established formal notation focusing
on the information representation part. Hence, we just use some basic formal
concepts to capture OO environments form the information representation per-
spective.

Definition 2 (OO data model) Let O be a set of object identifiers, F a set

of field names.

– S := P(O)F is the set of field assignments s : F → P(O),
– Q := SO the set of system states q : O → S.



A system state q ∈ Q maps each object o ∈ O onto a field assignment s :=
q(o) ∈ S, which in turn maps each field name f ∈ F onto the object’s values
s(f) ⊆ O for this field. Note that in our notation, a field assignment returns
sets of objects as field values. This allows to represent programming concepts
such as array or collection objects. Ordered lists and formal cardinality and type
restrictions (i.e., scalar-value fields or statically typed object definitions) on OO
data models are outside the scope of this paper but can easily represented on
top of our formalism if needed.

Example 1 (comparison of RDF and OO data model) Let p1, p2, p3 ∈ U

be URI denoting three people, n ∈ U be the URI foaf:name and k ∈ U be the

URI foaf:knows. An RDF graph describing p1 and p2 might look the following.

G :=
�
�p1, n, “John Doe”�, �p1, k, p2�, �p1, k, p3�, �p2, n, “Jane Doe”�

�

Let us now have a look at this example from the OO perspective. Let o1, o2, o3 ∈
O be object identifiers denoting three people, name, friends ∈ F be field names,

q ∈ Q a system state, and s1 := q(o1), s2 := q(o2). The OO representation of G

will look the following.

s1(name) = {“John Doe”}
s2(name) = {“Jane Doe”}

s1(friends) = {o2, o3}

3.2 Mapping RDF and OO

In this sections we continue to use the set definitions from the previous section.

Definition 3 (Object triple mapping, OTM) An object triple mapping for

an RDF Graph R, fields F and objects O is some (G, mt, ma, q) such that

– G ⊆ R is an RDF graph

– mt : F � → U for mapped fields F � ⊆ F (the vocabulary map),

– ma : O� → U for mapped objects O� ⊆ O (the instance map)

– q ∈ Q a system state such that for all u ∈ U , o ∈ O�, f ∈ F � and s := q(o)
• |m−1

a (u) ∩ s(f)| ≤ 1
• |m−1

a (u) ∩ s(f)| = 1 ⇔ �ma(o), mt(f), u� ∈ R

Note that this definition does not require the instance map ma to be injective,
which would be desirable in many cases, at least from a software engineer’s
point of view. However, there might be different simultaneous OO representa-
tions oi of a single RDF resource u resulting from, e.g., different data licenses,
trust policies, or access control decisions. Hence, the injectivity of the actual
instance map presented to the developer should rather be ensured using addi-
tional formal representations of policies, contexts and the like, instead of being
a general requirement to the instance map. Also, our notion of OTM does not



necessarily require a class map for RDF and OO, since many dynamically-typed
object-oriented programming languages do not have the notion of classes. For
statically-typed programming languages, an implementation of such class map
will however be required. Treating other RDF concepts such as lists or reifica-
tion, and also the semantics of RDFS and OWL are not part of this mapping,
but subject to OTM implementations.

Example 2 (OTM) To map RDF representations of people to the correspond-

ing OO representation (cf. example 1), we need

– a vocabulary map mt : name �→ n, friends �→ k;

– mapped objects o�1, o�2, o�3 ∈ O� such that ma : o�1 �→ p1, o�2 �→ p2, o�3 �→ p3;

– a system state q ∈ Q and field assignments s�1 := q(o�1) and s�2 := q(o�2).

The mapped objects o�1, o�2 will exactly look like o1, o2 from example 1:

– s�1(name) = {“John Doe”} because �ma(o�1)� �� �
=p1

, mt(name)� �� �
=n

“John Doe”� ∈ G

– s�2(name) = {“Jane Doe”} because �ma(o�2)� �� �
=p2

, mt(name)� �� �
=n

“Jane Doe”� ∈ G

– s�1(friends) = {o�2, o�3}, because �ma(o�1)� �� �
=p1

, mt(friends)� �� �
=k

, ma(o�i)� �� �
=pi

� ∈ G.

Although several implementations of such mapping exist (cf. Section 2), for our
research we use our own OTM implementation, which is available licensed under
the GPL3. This implementation strictly follows the OTM design patterns derived
from object-relational patterns [3, 6].

3.3 Building Linked Data software

Building a linked data application using OO programming will involve handling
RDF resources as OO objects. There are only two ways to obtain objects from
resources, and we introduce the following pseudo-code notation for them:

– get(u) for u ∈ U : Request o ∈ O� such that ma(o) = u;
– query(pattern): Request O�� ⊆ O� matching a pattern, using SPARQL.

From Definition 3, it is not clear how the RDF graph G is obtained. G will be
constructed during application execution using the follwoing ways.

– Directly query a triple store, e. g., using SPARQL,
– load(u) for u ∈ U : Ensure that the dereferenced graph Gu ⊆ G,

Following linked data principles, an OTM implementation can automatically call
load(u) on occurences of get(u). Just as this simplifies resource handling, two
more pseudo-code operations are required to build linked data applications.
3 http://projects.quasthoffs.de/otm-j



– use(u) for u ∈ U : Set up the OTM implementation to use the dataset u,
i. e. evaluate the data license, and set up the SPARQL endpoint to be used.
Even further decisions can be made, such as deciding upon some statistics
whether to dereference single URIs for this dataset or rather to download a
data dump.

– publish(O��) for O�� ⊆ O: Publish objects as linked data, either by pro-
ducing serialized RDF files, or by hooking into some Web programming
framework. By configuring meta-data for publication such as licenses, sev-
eral checks, e. g. on license compatiblity, can be performed.

4 Evaluation

Our primary motivation for investigating OTM is to understand why Semantic
Web technologies have been picked up so hesistatingly by software developers,
and to show software developers how they can simply use and benefit from
these technologies. We asked software engineers with little or no experience in
Semantic Web software engineering (but yet sufficient programming skills) to
solve a problem using RDF data sources and programming libraries.

4.1 Setup

Each participant was assigned two tasks, one of which was to be solved without
OTM, and the other one using OTM. The order of the two tasks and the order of
using/not using OTM was randomized to ensure the results will not be distorted
by learning effects. Participants used the Eclipse programming environment and
the jUnit framework to test their results4. To simulate the usual work-flow of
Web programmers, we provided the participants with example source code of
similar solutions [12].

Tasks. The experiment dataset consisted of 12,726 fictious foaf:Person re-
sources, 100 foaf:Document resources, 15 foaf:Group resources, and 169 bldg:Room

resources5. Each document had between 2 and 4 authors, each group between 8
and 15 members, and each person knew a number of other people. All resources
could be dereferenced by their URI. The following tasks needed to be solved.

Task 1. Given a set of URI identifying documents, construct the set of all the
documents’ authors’ names.

Task 2. Given a URI identifying a person, construct the set of all person’s
friends’ friends’ names.

The participants were expected to find a solution close to the following pseudo-
code (using the vocabulary from Section 3.3), which was however not presented
to the participants.
4 http://eclipse.org/, http://junit.org/
5

foaf: http://xmlns.com/foaf/0.1/, bldg: http://example.org/buildings/



Solution 1. GET_AUTHOR_NAMES(publication_uris):
load(dataset_uri)
for each uri in publication_uris

publication = get(uri)
for each person in publication.authors

return person.name
Solution 2. GET_SECOND_ORDER_FRIENDS(person_uri):

load(person_uri)
person = get(person_uri)
for each friend in person.friends

load(friend.uri)
for each friend2 in friend.friends

load(friend2.uri)
return friend2.name

4.2 Metrics

Difficulty. After each of the two assignments, participants were asked to esti-

mate the difficulty of the assigment, the maintainability of the resulting source

code, and how difficult a solution would have been using XML stores or RDBMS

instead of RDF, on a scale from 0 (trivial) to 10 (too hard). After the first as-
signment only (which randomly had to be solved either using OTM or without
OTM), participants were asked whether they see potential use of RDF in their
near-future projects. Along with these subjective measures, we tracked the time

required to find a working solution, and the number of edit-debug cycles.

Source code. Since OTM encapsulates large parts of RDF data handling it
is expected that solutions building on OTM will have less lines of code than
solutions than non-OTM solutions. To get a deeper understanding of how lines
of code will be reduced, we separately counted lines of code carrying

– language constructs such as loops, variable declarations etc.;
– RDF library initialization code, i. e. creation of or connection to data stores;
– data access code, i. e. imperative statements for URI handling such as get,

load, use, or query operations, (cf. Section 3.3), and RDF concept manip-
ulation using RDF libraries; and

– business or domain logic, i. e. lines of code manipulating domain objects
such as people, publications or names, e. g., by handling or accessing fields
of domain objects.

Feedback. Besides these rather quantitative metrics, we gathered feedback dur-
ing and after the experiment. In a questionnaire, we asked the participants to
identify the biggest problems during finding the solutions, and to name other
types of support they wished they had.



4.3 Participants

Undergraduate computer science students at Hasso Plattner Institute, University
of Potsdam were invited to to participate in the experiment. Ten participants
aged 19 to 27 (mean 22.6) actually took part in the experiment. All participants
had between 4 and 9 years of programming experience (mean 6.6). According
to their estimation on a scale from 0 (none) to 10 (expert) prior to solving the
assignments, only three of them said having some basic knowledge about RDF,
the others none (mean 0.9). All participants were experienced with the Java
programming language (mean 5.4). Also, most participants had some experience
using traditional information stores such as XML documents (mean 3.4) and
RDBMS (mean 3.9).

4.4 Results

Difficulty. The results for developer satisfaction were surprisingly clear (Fig. 1).
Implementing the assignments was found to be significantly easier using OTM
(mean 2.4, σ = 1.8) than using the Jena RDF library only (mean 6.4, σ = 2.1).
Also, the participants judged their solution significantly easier to maintain (both
for themselves: 1.13, σ = 1.6, and if they let somebody else do it: 2.13, σ = 1.5),
if OTM had been used compared to non-OTM (means 4.3, σ = 1.8 and 5.9,
σ = 1.1). However, whether the first assignment was to be solved using OTM or
without OTM had no influence on the participants’ estimation of the difficulty of
integrating Semantic Web technologies in their own future projects (means 4 and
5). Regarding the estimated difficulties, we can eliminate variance by comparing
the differences of the difficulty of the implementation and the estimated difficul-
ties of alternative approaches using XML or RDBMS (Fig. 2). By means, the
non-OTM solution has been rated more difficult compared to traditional data
formats, whereas the OTM solution has been rated easier to implement than
traditional data formats. However, the differences for these relative difficulties
are not significant. For Task 1 (finding the names of publication authors), both
the number of edit cycles (non-OTM mean 29, σ = 6.6) and the time needed to
find the solution (mean 1.2 hours, σ = 0.5) was significantly lower using OTM
(8.8 edit-debug cycles, σ = 6.2 and 0.4 hours, σ = 0.2, Fig. 3). For Task 2
(finding the names of friends’ friends), the mean number of edit-debug cycles
was increased from 8 to 19, while the mean time needed to find the solution was
decreased from 0.6 hours (σ = 0.3) to 0.4 hours (σ = 0.4) using OTM. However,
the differences for Task 2 are not significant. The combined figures for Task 1
and Task 2 show that the number of edit-debug cycles remains stable, but the
development time has been decreased significantly using OTM. It is unclear why
the number of edit-debug cycles is larger for Task 2 using OTM. But since the
development time was not increased, we do not consider this a general weakness
of OTM. It will however be interesting to direct further research in this direction.

Source code. The figures for the source code metrics are clear again (Fig.
4). The overall lines of code are reduced from 20.9 (σ = 5.4) not using OTM



Fig. 1. Difficulty (0 – easy, 10 – too hard) of implementing the solution, and estimated
difficulty of maintaining the result’s source code and using Semantic Web technologies

in future projects for non-OTM (white) and OTM (streaked). Error bars show 95% CI.

Fig. 2. The mean difference of the difficulty of implementing the solution and the
and estimated difficulties of implementing alternative solutions using XML and HTTP

or RDBMS is higher for non-OTM (white) solutions than for the OTM solutions
(streaked). Error bars show 95% CI.

to 11.3 (σ = 7.7) using OTM. The number of lines of code carrying language
constructs (mean 5.1 for non-OTM and 4.4 for OTM) and lines carrying business
and domain logic (means 5.1 and 3.5) remain about the same, no matter if
OTM is used or not. But lines of code for library initialization (non-OTM mean
4.8, σ = 1.8) and data access (12, σ = 5.4) are reduced significantly to 1.5
(σ = 1.4) and 2.8 (σ = 3.9) if OTM is used. This is plausible as using OTM no
objects simply representing vocabulary (such as Jena’s Property) or data access
interfaces (such as Jena’s StmtIterator) need to be instantiated. Additionally,
using our OTM implementation the load operation can be omitted, as on calls to
get and on field access load is called automatically. However, the main benefit
of these implicit calls is not reduced lines of code, but improved separation of
concerns, i. e. data access is separated from domain logic.



(a) number of edit-debug cycles (b) time in hours needed to find solu-
tion

Fig. 3. Depending on the implementation task, the number of edit-debug cycles can be
reduced significantly using OTM (streaked), compared to OTM (white), 3(a). OTM
can also significantly reduce the implementation time of Task 1. In spite of increased
number of edit-debug cycles for Task 2, the time needed to find the solution is not
increased, 3(b). Error bars show 95% CI.

Fig. 4. The significant decrease in lines of code using OTM is achieved by reducing
library initialization and data access code. Error bars show 95% CI.



Qualitative Feedback. Asked for the biggest problems they faced solving the
non-OTM tasks, participants found it generally hard to understand the Jena
API. Participants found it difficult to understand the central Jena classes Model,
Resource, and Property, which is due to their lacking knowledge of RDF con-
cepts. Also, participants had problems understanding Model.read, which loads
RDF data from the URI specified, and Model.getResource, which only creates
a Resource object to be further processed in Java. Some were unsure when a
String in Jena was a literal value, and when it represented a URI. One partici-
pant commented “The source code contains weird objects, which do not have to
do anything with the problem domain. This causes programming mistakes, be-
cause these objects are untyped.” He mentioned the example of deciding whether
RDFNode is a Literal or a Resource. Also, Jena’s StmtIterator, which needs to
be used in order to read triple information, was criticized for being confusing to
use. All in all, participants highly valued the source code examples we provided,
and said finding a solution would have taken much longer without the example.
However, some would have preferred more comprehensive examples, featuring
nested loops, or complete howto documents.

OTM received less comments, which is probably due to the fact that each
participant was to solve two assignments–one using OTM, one without–and the
OTM task was easier to solve than the non-OTM task. Still, we received valuable
feedback. Participants found it hard to find the mapped Java class representing
resources of a specific RDF type. Some participants have been observed analyzing
all mapped Java classes available, others just read the example source code
provided and concluded the right classes to use. However, one participant just
guessed arbitrary (wrong) classes to be used in his source code and got stuck
for a while. Although our OTM implementation simplifies URI dereferencing by
implicitly loading RDF graphs when instantiating mapped objects, it took one
participant a while to find out how to explicitly load a whole dataset as needed
for Task 1. Some participants had trouble in dealing with generic Java types
used for collections of objects, and hence could not fully benefit from our OTM
framework.

Both the OTM and non-OTM solutions shared some comments. Participants
said a graphical representation of the RDF schema, or the mapped class model,
and a graphical browser for the dataset would have helped them to understand
the data structures and would have improved their implementation performance.
Also, participants complained about not having understood how or where the
data had actually been stored. Only very few participants had the idea of viewing
the URI provided by the test framework in a Web browser window.

5 Conclusion

In this paper, we presented a formalism for Object Triple Mapping (OTM),
a promising approach to structuring the development of Semantic Web soft-
ware. Our OTM formalism harmonizes several implementions seeking to simplify
Semantic Web application development and adds process elements to describe



complete programs operating on linked data. Our second contribution is an ex-
perimental evaluation of OTM. We presented the results of this experiment,
clearly showing that

– OTM speeds up the development of Semantic Web software.
– Lines of code needed to solve several tasks are reduced by half using OTM,

and the share of “purely technical” lines of code is diminished so that using
OTM, business logic and program structure stands out in the code.

– Improved programming experience can be measured, as developers without
Semantic Web programming experience find it simpler to develop software
using OTM, and are more satisfied with the quality of their results.

The experiment material, assignments, datasets etc. can be downloaded from
the experiment web site6. We encourage readers to join the evaluation, and share
their results with us. To obtain a broader view on what are the Semantic Web
software engineers’ pains, how we can help them, and which technology they
actually prefer, we will extend our evaluation to more programming languages
and RDF programming libraries. Besides this planned continuous evaluation, we
will publish the direct and indirect feedback we receive from participants, and
will incorporate that feedback into our own OTM implementation for further
evaluation, and are willing to contribute to other existing OTM implementations.

As the results of our experiment are very promising, we are confident to
contribute in further spreading the word about positive experience using Se-
mantic Web standards and technologies. Once software engineers and managers
are convinced that Semantic Web technologies can be introduced in software
projects without adding costs, or even reducing costs, software will start to con-
tain more and more Semantic Web technologies, fostering interoperability and
data mash-ups. By then, software engineers will be willing to learn more about
these technologies and more complex software projects going beyond the features
of off-the-shelf OTM implementations can finally be done.7
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