
Use What You Have: Yovisto Video Search

Engine Takes a Semantic Turn

Jörg Waitelonis, Nadine Ludwig, and Harald Sack

Hasso-Plattner-Institute Potsdam,
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany

{joerg.waitelonis,nadine.ludwig,harald.sack}@hpi.uni-potsdam.de
http://www.hpi.uni-potsdam.de/

Abstract. The phenomenal increase of online video content confronts
the consuming user with an immeasurable amount of data which can
only be accessed with sophisticated multimedia search and management
technologies. Usual video search engines provide a keyword-based search,
where lexical ambiguity of natural language often leads to imprecise and
incomplete results. Semantics of keywords and metadata has to be de-
termined to overcome these shortcomings to provide high precision and
high recall. In this work, we show how to gradually transform the video
search engine Yovisto from a simple keyword-based search engine to a
fully-fledged semantic video search engine simply by using the existing
search engine infrastructure based on Lucene augmented by simple se-
mantic metadata.

1 Introduction

There is a continuous increasing demand for online videos in recent years. With
more than 14.6 billion video downloads from YouTube1 in May 2010 only in
the USA2, video and multimedia is becoming the predominant part of internet
traffic. Besides, the entire World Wide Web (WWW) with a growing amount
of realtime data has risen beyond any expectations. For the user, the only way
to orientate oneself in this huge amount of data and to find the needle in the
haystack is making use of search engines.

But, also web search engines are reaching their limits. With the sheer quantity
of retrieved documents the user is faced with an almost insolvable task of decid-
ing, whether the desired document really is among the result list or if the result
set is complete at all. A simple Google3 search often returns millions of docu-
ments ranked by link popularity. But, what if the desired result is not among the
first few result list pages? Traditional web search engines are based on keywords,
i.e. keywords are extracted from web documents for distinctive representation.
1 http://www.youtube.com/
2 http://www.comscore.com/Press_Events/Press_Releases/2010/6/comScore_
Releases_May_2010_U.S._Online_Video_Rankings

3 http://www.google.com/

Johannes
published as: Waitelonis, J.; Ludwig, N. & Sack, H.: Use What You Have -- Yovisto Video Search Engine Takes a Semantic Turn. In Proceedings of 5th Int. Conf. on Semantic and Digital Media (SAMT 2010), December 1-3, 2010, Saarbrücken, DFKI Saarbrücken, 2010.




2 Jörg Waitelonis, Nadine Ludwig, and Harald Sack

The user tries to identify the document(s) she is looking for with a query phrase
consisting out of one or more keywords, which she supposes to match the key-
words being extracted and indexed by the search engine. Unfortunately, besides
different user context and pragmatics, natural language suffers from inherent
ambiguities that cause deficits in search engine recall and precision.

One way to cope with these ambiguities is to enable a better understanding
of the meaning of the web document’s content as well as of the user’s query
string. Semantic Web technologies intend to make implicit meaning of content
explicit by providing suitable metadata annotations based on formal knowledge
representations. Instead of extracting keywords from documents the document
content is mapped to distinct entities and classes to avoid ambiguities and to
enable higher recall and precision of search results. Content-based search based
on Semantic Web technologies often is referred to as ’Semantic Search’. Besides,
the problem of different contexts and pragmatics remains, but is not taken into
consideration for this paper.

But, do we need an entire new search engine architecture for enabling se-
mantic search? We will show how an existing keyword-based search engine can
be augmented by simple means to become a fully-fledged semantic search engine
capable of content-based retrieval. To achieve this, we will show how to enable
a mapping of index keywords, user provided tags as well as the terms in the
user’s query string to Semantic Web entities and classes with the help of Linked
Open Data, linguistic and lexical resources. Entities and classes in the Semantic
Web are identified by URIs (Uniform Resource Identifiers) that will be utilized
instead of former text-based keywords within an existing open source enterprise
search platform to enable semantic search. The paper will give a step-by-step
description on how to turn a keyword-based search engine into a semantic search
engine demonstrated at the video search engine Yovisto4.

The rest of the paper is structured as follows: Section 2 will summarize related
work on keyword-based search, multimedia search, and semantic search with a
focus on entity mapping and disambiguation. In Section 3, we will give a step-by-
step description on how we achieved the turning into a semantic search engine
with onboard means. Section 4 concludes the paper with a short summary and
an outlook on open problems and future work.

2 Related Work

2.1 Keyword-based Search

Since Google’s conquest of the web search engine universe we know that the qual-
ity of keyword-based search mainly depends on the ranking of search results, but
also lacks on problems coming with the peculiarities of natural language. Syn-
onyms and homonyms cause incomplete and inaccurate search results. Keyword-
based search presumes that the user knows the exact keyword for describing the
document she is looking for. If the user does not know the appropriate keyword
4 http://www.yovisto.com



Use What You Have: Yovisto Video Search Engine Takes a Semantic Turn 3

or if she is trying to find the right documents to answer more complex query
tasks, the search objective can become unattainable. Query expansion and sug-
gestions help the user to refine the search results and enable a step-by-step
convergence [3]. Filtering methods such as facetted search categorize search re-
sults and enable to limit the results to subsets for better overview [14]. Beyond
the simple keyword lookup, the user can reiterate a sequence of queries while
refining and/or extending the query depending on the content of the obtained
results. Search scenarios sophisticated and complex like this are referred to as
exploratory search [7].

2.2 Multimedia Search

The same inadequacies can be found in the more and more emerging multimedia
search. General video search engines such as YouTube support a keyword-based
search within the textual metadata provided by the users, accepting all the
shortcomings caused by e.g. synonyms and homonyms. For example, a search
for ”history of golf” will result in documents containing a variety of outcomes
for ’Golf’ (e.g. sports, car) and by refining the search phrase to ”history of golf
car” it is astonishing that the top ranked videos are about the ’golf cart’, which is
obviously not a product of Volkswagen, but has at least four wheels. The ranking
of the correct results is thwarted by the automated query completion. However,
multimedia search lacks the same problems as keyword-based text search. Com-
pared to textual search, multimedia search allows varied visualizations [15, 4].

The video search engine Yovisto is specialized on lecture recordings and sci-
entific presentations and provides a time-dependent video index. With sophisti-
cated video analysis techniques (such as automated scene detection, intelligent
character recognition, etc.) in combination with collaborative user annotation
Yovisto provides scene accurate access to more than 10.000 videos with pin-
point accuracy [5, 12]. To overcome some of the the shortcomings of keyword-
based search, Yovisto deploys an exploratory search navigation to allow the user
to browse the repository beyond simple fact-finding and page-turning [18–20].

2.3 Linked Data and Semantic Search

Yovisto enables the exploratory search by applying Linked Open Data5 (LOD).
Linked Data means to expose, share and connect pieces of data, information,
and knowledge on the Semantic Web using URIs for identification of resources
and RDF6 as structured data format [1]. The Linked Open Data project aims to
publish and connect open but heterogeneous databases by applying the Linked
Data principles. One of the most important interlinking LOD hubs is DBpedia [2],
which publishes encyclopedic information from the famous Wikipedia7. DBpedia
currently provides information about more than 3.4 million ”things” with over 1
5 http://linkeddata.org/
6 http://www.w3.org/RDF/
7 http://www.wikipedia.org/



4 Jörg Waitelonis, Nadine Ludwig, and Harald Sack

billion ”facts”8. Furthermore, Wortschatz Leipzig in an automatically compiled
thesaurus, which collects large volumes of natural language text from the WWW
and applies sophisticated linguistic and statistic analysis in large scale to provide
thesaurus information. Wortschatz Leipzig supports more than 17 languages and
is also publicly available as RDF Linked Data [13]. The aggregation of all LOD
data sets is denoted as LOD-Cloud.

To access and to make use of the Semantic Web information, search engines
need to index semantic data. Commonly, this can be achieved by storing the data
in RDF databases (triple stores). This allows to query the data with structured
languages such as SPARQL [11]. Search engines such as sindice [8, 17] or swoogle9

are crawling the Semantic Web to obtain a data set as large as possible and pro-
vide a label and entity based search. Those search engines are already operating
on the existing Semantic Web, while this work focusses on how to turn a non-
semantic web search engine into a semantic web search engine. Therefore, the
already existing keyword-based textual metadata has to be mapped to Semantic
Web entities.

The most challenging problem on mapping data to Semantic Web entities is
the existence of ambiguous names and thus resulting in a set of entities, which
have to be disambiguated. Related work fields are word-sense disambiguation
in text documents, named entity (reference) resolution, and feature based en-
tity matching amongst others. The presence of assumed same named entities
in different triple stores of the LOD-Cloud necessitates similarity based com-
parison of the entities and their respective features or properties [16]. In the
context of named entity resolution in text documents the semantic information
needed for disambiguation of potential entities has to be extracted automatically
and compared to adequate knowledge resources [9]. Further research approaches
are using the LOD-Cloud itself as RDF graph to find relations between enti-
ties co-occurring in a text maintaining the hypothesis that disambiguation of
co-occurring elements in a text can be obtained by finding connected elements
in an RDF graph [6].

3 How to turn Yovisto into a Semantic Video Search

Engine

Turning Yovisto from a keyword-based search engine to a semantic video search
engine needs several steps. Fig. 1 shows an overview of the process sequence to
enable semantic search with Yovisto. Yovisto’s time-dependent as well as time-
independent metadata is mapped to entities of LOD, respectively DBpedia (a).
The Wortschatz Leipzig co-occurence network is applied to support entity dis-
ambiguation and ranking of entity candidates (b). Within the indexation process
the old keyword index is extended by additional semantic information (c). On
the users hand, the query is disambiguated with an auto-suggestion select box,

8 http://dbpedia.org
9 http://swoogle.umbc.edu/



Use What You Have: Yovisto Video Search Engine Takes a Semantic Turn 5

providing the URIs of the requested entity (d). Finally, the index lookup returns
a list of documents containing the entity (e).

According to the Linked Data principles, Yovisto’s metadata has been linked
to the LOD-Cloud by connecting organizations, categories, and persons (speaker)
to DBpedia entities including a mapping of Yovisto’s metadata structure to an
appropriate ontology10 representation [19]. To ensure interoperability, mappings
and references to existing ontologies have been used whenever possible. All meta-
data has been published through a SPARQL-endpoint11 and embedded via RDFa
in Yovisto’s web pages.

The mapping of video content to LOD entities is the subject of this paper.
The video content is described as well by metadata referring to the entire video
(e.g. title) as also by information assigned to a distinct time position within
the video. Among these time-dependent metadata are collaboratively generated
user tags, user comments, and text extracted from the simple video frames. The
following section deals with the entity mapping of both kinds of metadata.

Yovisto Metadata
time-dependent: user 

tags, script
time-independent: title, 

descriptions, ... 

Entity Mapping
(Disambiguation)

Indexation
Old Index:

TITLE:”Big Bang and the 
Milky Way”
TAG: “joerg, 52525, hubble”

New Semantic Index with URIs
TITLE: ”Big Bang and the Milky Way”
TITLE_URIs: ”dbp:Big_Bang, dbp:Milky_Way”
TAG: “joerg, 1234, hubble dbp:Hubble_Space_Telescope”

User Query
Disambiguation on enter

dbp:Milky_WayQuery Index for: 

Result

dbp:Milky

dbp:Milky_Way

dbp:Milky_Way_bar

Search Result
Videos containing dbp:Milky_Way

“Big Bang and the Milky Way”

PREFIX dbp: <http://dbpedia.org/resource/>

(a)

(b)

(c)

(d)

(e)

Fig. 1. Overview of the processes of semantic search with Yovisto.

3.1 Entity-Mapping

Currently, user-generated tags and automatically extracted data are provided
as text elements essentially for the keyword-based search. To transform the

10 http://www.yovisto.com/ontology/
11 http://sparql.yovisto.com/



6 Jörg Waitelonis, Nadine Ludwig, and Harald Sack

keyword-based search engine to a semantic video search engine the text elements
need to be mapped to semantic web entities to set a certain segment respectively
a whole video in the context of the LOD-Cloud. The following section describes
how to use the existing tags and keywords to create a semantic context mapped
to entities of the LOD-Cloud. An overview of all steps of the entity mapping
process are shown in Fig. 2.

Term and Group Mapping Yovisto provides several methods to equip a
video with metadata: video-related keywords and video-time-related keywords
and tags. Video-related keywords are supplied by the user who uploaded a video
to the portal and this metadata is applied to the whole video. Video-time-related
metadata are on the one hand keywords that are automatically extracted from
the video on a certain timestamp (e.g. by OCR methods) and on the other hand
user-generated tags also on a certain timestamp in the video.

Fig. 2. Overview of Steps in the Entity Mapping Process

Metadata exist in a certain context and have to be mapped to Semantic Web
entities within this context. We define the context of a term (tag or keyword) in
a video as the tags and keywords at and around the timestamp in the video the
term is occurring at. All tags and keywords are stored separately with timestamp
and video ID in the database.

In a preprocessing step we generated a ”term mapping table” by using la-
bels, normalized URI-suffix, and labels of redirects and assigning them to the
corresponding DBpedia URI. These terms are single words, as well as composed
groups of words e.g., names (”Albert Einstein”).

The first step to map the metadata of a video to Semantic Web entities is to
gather all tags/keywords of a context and build groups to be able to also map
groups of tags to entities. Let us consider the following example: a user tagged
”hubble”, ”deep”, ”space”, ”exploration”, ”field” in that order. In that context
it might be useful to allocate the DBpedia entities for ”deep space exploration”,



Use What You Have: Yovisto Video Search Engine Takes a Semantic Turn 7

”hubble” (space telescope), and ”hubble deep field”. Therefore a variation with-
out repetition (to avoid combinations of a tag with itself) on this set of all tags
in this context has to be constructed. In this example the set contains n = 5
elements and groups of k = 1, 2, 3 elements have to be built.

(n)k =
n!

(n− k)!

For our example, this leads to (n)k = 85 combinations in total. However not all
combinations are needed, only the groups that match to a term (from the term
mapping table) are stored with their respective URI. This term matching adds
up to 13 URIs. As every matching group is stored, there are also URIs for single
terms like ”field”. Such single terms are often assigned to ambiguous URIs and
after resolving these ambiguous URIs (also for the terms ”deep”, ”field”, ”deep
space”, ”hubble”, ”space”) the result set of possible applicable URIs at this
timestamp in this video contains 152 URIs. This enormous amount of matching
URIs to a set of only five tags in a context leads to the inevitable problem of
disambiguation and ranking of the matching URIs.

Problems of ambiguous URIs in DBpedia: In the example mentioned above we
only disambiguated the resulting URIs in one ”lap”. The 152 URIs still contain
three ambiguous URIs leading to 24 additional URIs. That means the algorithm
for resolving ambiguous URIs has to be run repeatedly taking into account that
DBpedia contains ”circles” of disambiguations referencing back to already re-
solved URIs and these circles have to be detected and erased. For performance
reasons we constrain the process of resolving ambiguous URIs to two runs.

Currently, Yovisto maintains approximately 22.936 user tags in 9271 contexts
(timestamps) in 517 videos. The tags were mapped as single words and groups of
2 and 3 words – 30.417 groups were mapped to DBpedia URIs. The ambiguous
URIs were resolved in a first run resulting in 162.523 URIs, after a second run
of resolving 192.056 URIs were found.

Disambiguation of URIs The result set of URIs mapped to the matching
groups of tags contains duplicate URIs with different matching groups - e.g.,
the matching groups ”deep field” and ”hubble deep field” were both assigned to
the URI <http://dbpedia.org/resource/Hubble_Deep_Field>. So these du-
plicate records can be filtered by deleting the records with synonyms as matching
groups. In the example, the URI contains as label the term ”hubble deep field”,
so that the record with the matching group ”deep field” can be removed from
the result set.

For the further disambiguation steps of the diverse URIs in one matching
group we assume that entities that are related to each other are also referenced
over few properties in the LOD-Cloud (sample relationships of the example en-
tities ”Hubble Space Telescope”, ”Hubble Deep Field”, and ”Deep Space Explo-
ration” are shown in Fig.3. Therefore, the applicable URIs from the set of URIs



8 Jörg Waitelonis, Nadine Ludwig, and Harald Sack

for one matching group should be linked to one or more other URIs of the con-
text. We consider an algorithm, which is detecting paths (with properties and
other entities as nodes) between the entities of a context. The result set of this
path-detecting algorithm is one or more sub-graphs of the LOD-Cloud. Because
the amount of properties in the LOD-Cloud is quite large, we need to identify
the most meaningful properties that link related entities in a certain context.
Also, the degree of relationship - conveyed by the length of the path between two
entities - has to figured to meet the right measurement to find both entities from
the same context and filter out relations that are too distant to be considered
from the same context [6].

Fig. 3. Relation of relevant URIs for the examples tag set {hubble, deep, space, explo-
ration, field}

Special Case – Simply one Ambiguous Tag in a Context: In case there is only one
tag / keyword at a certain timestamp we have to create a context by comprising
adjacent contexts.

The algorithm for detecting related entities generates a graph of entities.
Related entities should be linked to each other and entities not applicable for the
concerning context should stand alone. The set of entities derived from resolving
ambiguous entities is disambiguated by detecting a path between the applicable
URI from the set and other URIs from the context.

Ranking of URIs The path-detecting algorithm produces n graphs of size
k = 1...m. Graphs of size k = 1 will be deleted in case the concerning entity is
retrieved from resolving an ambiguous URI, because there is no relation to any
other element from the context. In case of an URI building an own graph of size
k = 1 and not being retrieved from resolving the URI will be ranked very low in
this context, because the URI is probably of low relevance for this context. The
elements of graphs of size k > 1 will be ranked higher with increasing k. Within
a graph the entities are ranked by the amount of in-going / out-going edges.



Use What You Have: Yovisto Video Search Engine Takes a Semantic Turn 9

Additionally, the already disambiguated URIs are ranked by their co-occur-
rences. Wortschatz Leipzig provides amounts of co-occurrences for single words
as well as composite word groups. The co-occurences of a term contain weight-
ings that we are using to apply an additional score to our clusters of URIs.
The ranking of URIs is then weighted regarding their co-occurrences and their
relations in the LOD-Cloud.

Special Case – Name Components of Person Names: The group mapping algo-
rithm maps single words and groups of 2 and 3 words to entities. Thus, in case
of the context {peter, goddard} the algorithm will find mappings for ”peter”,
”goddard”, and ”peter goddard”. Certainly, the mapped URI for the whole name
should be ranked higher than the URIs forname components. But, besides the
whole name the URIs for the male name ”Peter” and the family name ”God-
dard” should also be included in the set of assigned URIs to a video. In case a
user searches for videos involving male persons in it or all persons with the family
name ”Goddard” these URIs need to be included rather than deleting them from
the result set. This special case also affects the disambiguation process as the URI
<http://dbpedia.org/resource/Peter> disambiguates to 31 further URIs,
but in this case (and any other case the URI is referenced to a part of a person’s
name) only the URI <http://dbpedia.org/resource/Peter_(first_name)>

is needed.

3.2 Indexation of Semantic Data

Entity-mapping and disambiguation are key problems in enabling a semantic
search. Nevertheless, sophisticated indexing of the generated semantic data can-
not be neglected to facilitate efficient search. This section shows that it is rather
simple to extend a state-of-the art keyword-based search index with additional
semantic information to enable an entity-based search.

The Yovisto Index The Yovisto index is based on Solr12, a Java open source
enterprise search platform from the Apache Lucene13 project. Major features are
full-text search, hit highlighting, facetted search, and dynamic clustering. The
indexing of documents requires the configuration of index fields, which make up
the index schema. The schema specifies, which fields a document can contain
and how those fields should be handled, when adding new documents to the
index, or when querying those fields.

Corresponding to the structure of Yovisto’s metadata, there are three differ-
ent kinds of metadata:

(1) information referring to the entire resource such as the video title, subtitle,
description, etc.,

(2) user generated tags assigned to a specific point in time of the video [5],
12 http://lucene.apache.org/solr/
13 http://lucene.apache.org/



10 Jörg Waitelonis, Nadine Ludwig, and Harald Sack

(3) time related text/keywords from automated analysis of the video (such as
OCR on video frames).

In accordance with the type of metadata the indexing scheme has to be
designed. For simple metadata (e.g. title) a single index field is sufficient to enable
proper indexation. Time-dependent metadata carries the temporal information
and is indexed either in one single field as (time, data)-tuple or in two dynamic
fields with a mutual identifier, such as TIME i, DATA i. In case of user generated
tags, the username has to be taken into account. Therefore, a (username, time,
text)-triple is stored in one single field.

(a)
TITLE: "The Future of the Web"
DESCRIPTION: "We’re approaching the end of 2010, and many people are

wondering what the future will bring."
AUTHOR: "Cameron Chapman"

(b)
TAG: "[joerg, 31234] future"
TAG: "[joerg, 51231] internet"
TAG: "[nadine, 31215] future "

(c)
SEG_1_TEXT: "iPhone, MySpace, Facebook in 2025"
SEG_1_TIME: "121000"
SEG_2_TEXT: "No Print Magazines Have to Die"
SEG_2_TIME: "127000"

Fig. 4. The indexing scheme for simple metadata (a), time-dependent user tags (b),
time-dependent text/keywords (c). The numbers represent the time point in millisec-
onds of the metadata within the video.

Fig. 4 shows the indexing structure of simple metadata, time-dependent user
tags, and text/keywords in Yovisto. For every index document single valued fields

are used for simple metadata (e.g. TITLE), multi valued fields are used for user
generated tags (e.g. TAG), and dynamic fields are used to index more complex
time-dependent data (e.g. SEG * TEXT). When the fields are indexed, analyzing
and tokenizing filters are applied to transform and normalize the field values. For
example the solr.WhitespaceTokenizer creates tokens of characters separated by
splitting on whitespace, and the solr.PorterStemFilterFactory applies the Porter
stemming algorithm [10] on the tokens to enable to search regardless of inflection
forms. The stemming filter is not applied to the tag fields, because an exact match
is desired here.



Use What You Have: Yovisto Video Search Engine Takes a Semantic Turn 11

Extending the Index with Semantic Data As explained in section 3.1 for
every metadata keyword a list of URIs with a corresponding rank is created.
The rank indicates how confidently the URI was mapped to the keyword. To
supplementarily index the corresponding URIs besides the original metadata,
the idea is, to simply create additional fields. These additional fields comprise
the URIs with corresponding rank and the corresponding position within the
text data. In some cases it is even possible to extend the field instead of creating
a new one. Note that adding new fields makes it very easy to adapt a regular
search index scheme and extend it with the semantic information. Therefore,
it is not necessary to modify the indexer implementation to enable a semantic
supported search.

For every single valued field an additional URI field (TITLE URI) is defined
(cf. Fig. 5a). The user tag fields can be extended with the URIs. The text position
can be omitted, because it would always be 0 (cf. Fig. 5b). The dynamic fields
also require an additional field for the URIs, similar to the single value fields
(cf. Fig. 5c).

(a)
TITLE: "The Future of the Web"
TITLE_URI: "<http://dbpedia.org/resource/Future> 0.9432 1 <http://dbpedia

.org/resource/Future_tense> 0.487 1 <http://dbpedia.org/resou
rce/Web> 0.9342 4"

(b)
TAG: "[joerg, 31234] future <http://dbpedia.org/resource/Future> 0.9432

<http://dbpedia.org/resource/Future_tense> 0.487"

(c)
SEG_1_TEXT: "iPhone, MySpace, Facebook in 2025"
SEG_1_TEXT_URI: "<http://dbpedia.org/resource/IPhone> 1.0 0 <http://dbpe

dia.org/resource/MySpace> 1.0 1 <http://dbpedia.org/resource/
Facebook> 1.0 2 "

SEG_1_TIME: "121000"

Fig. 5. The indexing scheme extended with URIs, ranks, and text positions. Note, that
the resource ”Future tense” has a lower rank than ”Future” because the disambiguation
algorithm considers ”Future” more related to the resource.

To index the new URI fields properly, only the solr.WhitespaceTokenizer

should be used. This is the reason, why new URI fields have to be created for
origin fields with natural language values. In that case, usually other tokenizer
and normalizers are used, e.g. word stemming. Since the user tag fields are only
using the whitespace tokenizer, the URIs can be appended to the tag field values
instead of creating a new field.



12 Jörg Waitelonis, Nadine Ludwig, and Harald Sack

Querying the Semantic Data Besides storing the data in an index struc-
ture the querying for an entity (URI) can be done by simply querying on the
additional URI fields instead on the origin text fields. The result comprises all
documents containing the requested URI. The document rank in the result is
based on the Lucene document score. To map the user’s query string to an entity
an auto-suggestion widget can be used to support the user to disambiguate the
query string by herself (c.f. Fig 6). The auto-suggestion list for URIs is generated
from the entities labels, names, and titles. If the user wants to search for more
than one entity at one time, she can select more entities simply by continuing
typing. This would provoke another suggestion list for the new query term.

Fig. 6. Automated suggestion of entities while typing the user query. When the
user selects an entity a query for its URI is issued, e.g. for ”Beaujolais Region”:
http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#BeaujolaisRegion is is-
sued. If the user does not select an entity, a regular keyword-based search is issued.

4 Conclusion

In this paper, we showed how to transform a keyword-based video search en-
gine to a semantic video search engine. We extended the existing Yovisto key-
word/tag index by semantic information, which we determined by mapping the
video content to semantic entities. Furthermore, we have explained how to store
the newly-acquired semantic information in an efficient state-of-the-art search
index without modifying its implementation or using special Semantic Web tech-
nologies. Finally, we provided the user a semantic search engine, that enables
to search for LOD entities in the entire video repository of Yovisto without the
typical shortcomings on keyword-based search.

The mapping process of keywords respectively user tags to DBpedia entities
is a core problem in this research field and the challenging details of our approach
are still under further development. To estimate how a user can be supported
by providing a fully-fledged semantic search instead of a keyword-based search
future work will in first place include a comparative evaluation of both search
types. An evaluation of the entity mapping method with state-of-the-art bench-
marks will be addressed in future work.



Use What You Have: Yovisto Video Search Engine Takes a Semantic Turn 13

References

1. Berners-Lee, T.: Linked Data. World wide web design issues (July 2006), http:
//www.w3.org/DesignIssues/LinkedData.html

2. Bizer, C., Heath, T., Idehen, K., Berners-Lee, T.: Linked data on the web. In: Proc.
of the 17th Int. Conf. on World Wide Web. pp. 1265–1266. ACM (2008)

3. Carpineto, C., de Mori, R., Romano, G., Bigi, B.: An information-theoretic ap-
proach to automatic query expansion. ACM Trans. Inf. Syst. 19(1), 1–27 (2001)

4. Christel, M.G.: Supporting video library exploratory search: when storyboards are
not enough. In: Proc. of the Int. Conf. on Content-based image and video retrieval.
pp. 447–456. ACM, New York, NY, USA (2008)

5. H. Sack and J. Waitelonis: Integrating Social Tagging and Document Annotation
for Content-Based Search in Multimedia Data. In: Proc. of the 1st Semantic Au-
thoring and Annotation Workshop. Athens (GA), USA (2006)

6. Kleb, J., Abecker, A.: Entity reference resolution via spreading activation on rdf-
graphs. The Semantic Web: Research and Applications pp. 152–166 (2010)

7. Marchionini, G.: Exploratory search: from finding to understanding. Commun.
ACM 49(4), 41–46 (2006)

8. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.:
Sindice.com: a document-oriented lookup index for open linked data. IJMSO 3(1),
37–52 (2008)

9. Pilz, A., Paa, G.: Named Entity Resolution Using Automatically Extracted Seman-
tic Information. In: Workshop on Knowledge Discovery, Data Mining, and Machine
Learning. pp. 84–91 (2009)

10. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
11. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C (Jan-

uary 2008)
12. Repp, S., Waitelonis, J., Sack, H., Meinel, C.: Segmentation and Annotation of

Audiovisual Recordings based on Automated Speech Recognition. In: in Proc. of
8th Int. Conf. on Intelligent Data Engineering and Automated Learning (2007)

13. Richert, M., Quasthoff, U., Hallensteinsdottir, E., Biemann, C.: Exploiting the
Leipzig Corpora Collection. In: Proceedings of the IS-LTC 2006. Ljubliana, Slove-
nia (2006), http://wortschatz.uni-leipzig.de/

14. Schraefel, Wilson, M., Russell, A., Smith, D.A.: mSpace: improving information
access to multimedia domains with multimodal exploratory search. Commun. ACM
49(4), 47–49 (April 2006)

15. Snoek, C., Sande, K.v.d., Rooij, O.d., Huurnink, B., Gemert, J.v., Uijlings, J., He,
J., Li, X., Everts, I., Nedovic, V., Liempt, M.v., Balen, R.v., Yan, F., Tahir, M.,
Mikolajczyk, K., Kittler, J., Rijke, M.d., Geusebroek, J., Gevers, T., Worring, M.,
Smeulders, A., Koelma, D.: The MediaMill TRECVID 2008 semantic video search
engine. National Institute of Standards and Technology (NIST) (2009)

16. Stoermer, H., Rassadko, N.: Results of OKKAM Feature based Entity Matching
Algorithm for Instance Matching Contest of OAEI 2009. In: OM (2009)

17. Tummarello, G., Delbru, R., Oren, E.: Sindice.com: Weaving the Open Linked
Data. The Semantic Web pp. 552–565 (2008)

18. Waitelonis, J., Sack, H., Kramer, Z., Hercher, J.: Semantically Enabled Exploratory
Video Search. In: Proc. of Semantic Search Workshop at the 19th Int. World Wide
Web Conference. Raleigh, NC, USA (2010)

19. Waitelonis, J., Sack, H.: Augmenting Video Search with Linked Open Data. In:
Proc. of Int. Conf. on Semantic Systems 2009 (2009)



14 Jörg Waitelonis, Nadine Ludwig, and Harald Sack

20. Waitelonis, J., Sack, H.: Towards Exploratory Video Search Using Linked Data. In:
Proc. of the 11th IEEE Int. Symp. on Multimedia. pp. 540–545. IEEE Computer
Society, Washington, DC, USA (2009)


