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ABSTRACT
Rapid growth of today’s video archives along with sparsely
available editorial metadata and too few capacities of li-
braries and archives for manual annotation demand for effi-
cient approaches of automated metadata extraction. In ad-
dition, editorial and non-authoritative metadata is usually
not fine-grained enough to describe video on a segment level,
which is often required for efficient pinpoint search and re-
trieval. We consider the use case of the AV Portal provided
by the German National Library of Science and Technol-
ogy – a web based video search engine that offers access
to educational video content from various areas of engineer-
ing and natural sciences. User studies that have been con-
ducted during the conceptional design stage of the AV Portal
have indicated a strong interest of potential users to search
for specific visual concepts, like e.g. “landscape”, “draw-
ing”, “animation”, within videos of a particular domain. We
present an approach that supports automatic content-based
classification of video segments that is tailored to the spe-
cial requirements of the AV Portal regarding its technology
oriented content and academic users. We furthermore show
that semantic analysis of the generated metadata not only
allows for better retrieval goal definition but also offers ex-
plorative search within the archive using visual concepts.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords
Video Retrieval, Visual Concept Detection, Semantic Anal-
ysis

1. INTRODUCTION
Video recordings of academic lectures and scientific experi-
ments provide a valuable source of information for students
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as well as for scientists. Libraries that collect these data
and intend to provide access to a broader audience through
newly created web portals report a rapidly growing interest
in video data. At present, a major drawback of these collec-
tions, however, is the comparatively low availability of text-
based editorial metadata that describe the contained infor-
mation, which is mandatory to provide efficient search and
retrieval within these collections. Moreover, even if avail-
able, editorial metadata often describe video recordings only
on a general level, as e.g., in terms of a video title and an
author name, which typically is too coarse for content deter-
mination by a non-expert user. With libraries usually main-
taining only little capacities for manual annotation and with
regard to the sheer mass of available video data today (not
to mention those assets newly created every day), consid-
erably large amounts of information are currently rendered
useless due to the mere fact that the respective videos are
not retrievable and thus invisible for the user.

Inevitably, new approaches for machine supported metadata
generation are required to satisfy user needs and reduce the
amount of manual labor necessary for content annotation.
The AV Portal project of the German National Library of
Science and Technology1 is a web based video search en-
gine, which offers access to scientific and educational video
recordings such as lectures and experiments from various ar-
eas of engineering and natural sciences such as information
technology and chemistry. Access to these data is currently
limited by the aforementioned lack of metadata. Research
conducted within the AV Portal project therefore focuses
on enrichment and generation of metadata from all avail-
able domains, i.e. on the one hand by analyzing and pro-
cessing the sparsely available authoritative metadata and on
the other hand by automatic extraction of metadata from
audio and video streams. Through automated classification
of the available audio-visual data streams non-authoritative
metadata can be extracted with relatively little manual in-
tervention. In this paper, we focus on detection of visual
concepts for automatic metadata generation.

During the last years, there have been numerous efforts to
open up audiovisual content for efficient retrieval and ac-

1AV Portal –
http://www.tib-hannover.de/en/
research-and-development/projects/av-portal/



cess. Yovisto2 is an academic video search engine collect-
ing video recordings of university lectures and courses as
well as recordings of scientific presentations from interna-
tional conferences. Yovisto enables pinpoint content-based
search via state-of-the-art video analysis technologies, as
e.g., shot boundary detection, video OCR, and automated
speech analysis (ASR) [10]. Users are able to tag and com-
ment video segments for educational purposes. Moreover,
Yovisto also applies semantic analysis to annotate videos
with semantic metadata that are published for further us-
age as Linked Open Data and enable semantic exploratory
video search [15]. In difference to yovisto, the AV Portal
also applies visual concept detection to open up video con-
tent. The mediaglobe project established the prototype of
a semantic video search engine for documentary video con-
tent of a limited domain. Besides shot boundary detection,
video OCR, and ASR, also manually trained visual concept
detection has been applied to open up the video content for
retrieval. Semantic search in mediaglobe is supported via
facetted browsing [4]. Although mediaglobe also applies vi-
sual concept detection, the proprietary scientific and techni-
cal content of the AV Portal demanded special requirements
wrt. to determining the appropriate visual concepts accord-
ing to the users’ demands. In [5] Kobilarov et al. present the
BBC’s approach to join up all of its resources using linked
data principles and a tailored ontology for BBC’s program
data. Later on, the NoTube3 project harnessed BBC’s pro-
gram information by analyzing it with a NLP-tool to extract
named entities and to map them to linked data resources
[11]. Both approaches are limited to editorial program data
and consider the annotated asset as a whole rather than its
temporal segments. In contrast to the BBC program data
and the NoTube project the limiting aspect in the AV Por-
tal is the lack of rich editorial material. As a large-scale
European library project the Europeana4 concentrates vari-
ous research efforts in media archiving, analysis and retrieval
in order to protect Europe’s cultural heritage. Within this
context the authors in [6] recognize the importance of auto-
matic visual content classification and propose an approach
for analysis of Europeana images based on principles very
similar to the methods applied in this paper for video data.
The European AXES project5 aims at enabling users to ex-
plore audiovisual archives. Research efforts target the ex-
ploitation of visual concepts for metadata generation and
the combination with textual metadata derived from speech
transcripts [9].

Visual concept detection (VCD) has been successfully ap-
plied to images or video frames to automatically assign la-
bels depending on the presence or absence of depicted ob-
jects (e.g. “diagrams”) and scenes (e.g. “lecture”). We apply
visual concept detection at video segment level and thus are
able to provide a comparatively fine granular generation of
metadata, having the strong advantage for the user to re-
trieve only those parts of a video recording, showing the
respective aspects of interest. The implemented approach
(see Section 3) follows the well-known Bag-of-Features ap-
proach using aggregated local histogram of gradient features

2Yovisto – http://www.yovisto.com
3NoTube – http://notube.tv
4Europeana – http://http://www.europeana.eu/
5AXES – http://www.axes-project.eu

for video frame description and supervised machine learning
based on support vector machines. We have identified rele-
vant visual concepts by conducting a small user survey and
carefully selected representative video frames as training ma-
terial. Finally, we map visual concept labels to unambiguous
semantic entities via Named Entity Mapping in order enrich
the semantic metadata context and to provide more accurate
and complete search results.

This paper is structured as follows: We first give a brief in-
troduction to the AV Portal, the contained videos and the
covered domains. We continue with a description of the
survey that was designed to find out, which specific visual
concepts a user of a particular discipline would find useful if
supported as filter or search target by the AV Portal search
engine. Furthermore, we describe the process for ground
truth data generation. Section 3 presents related work in
the domain of visual concept detection in visual data and
briefly sketches the approach applied here. Based on a man-
ually created training and testing dataset we evaluate our
approach in section 4. In Section 5 we describe the advan-
tages of mapping visual concepts to semantic entities. Fi-
nally, we conclude the paper by giving a brief summary of
the obtained results as well as an outlook to future work.

2. THE AV PORTAL
The German National Library of Science and Technology
(TIB) ranks as one of the largest specialized libraries world-
wide covering more than 6 million media units pertaining to
all areas of engineering, as well as architecture, chemistry, in-
formation technology, mathematics and physics. The TIB’s
task is to comprehensively acquire and archive literature
from around the world in order to provide access to stu-
dents and scientists as well as to preserve cultural heritage.
Next to textual data such as books, journals and patents the
TIB provides access to non-textual media formats such as
3D models, research data, or audio-visual media [2]. While
archiving and access of text-based information relies on well-
established principles for indexing, search, and retrieval, video
data demands for completely new techniques for extracting
the comprised information and to provide access via appro-
priate retrieval interfaces. Currently, the TIB archives 2,000
hours of video data (e.g. computer animations, and video
recordings of university lectures, scientific conferences and
experiments) with an approximated growth of 1,000 hours
added every year. The TIB AV Portal is a current research
project established in order to create workflows and to de-
velop tools that allow academic libraries to treat audiovisual
data in the same way as text documents within the library
processing chain and to make it as easy for users to locate
and use the growing stock of non-textual material.

A major focus of the AV Portal project lies in the exploita-
tion of techniques for automatic indexing of the visual con-
tent depicted in video recordings. The user will be able
to retrieve specific video segments that depict a particular
aspect (object or scene) of the respective scientific subject
by keyword based retrieval methods. Research efforts in
machine vision target the growing demand for efficient au-
tomatic visual content classification. The task usually is to
automatically recognize categories of depicted objects and
scenes (i.e. the visual concepts) – very similar to the re-
quirements posed by the AV Portal. Recognition is usually



considered as a classification problem of separating positive
from negative examples of a given visual concept. Most
approaches rely on supervised machine learning techniques
that require a set of manually annotated data for training a
model of a specific concept.

As for the AV Portal project, we follow a similar approach.
During the initial stage we decided to focus on video record-
ings of 6 subject areas: architecture, chemistry, information
technology, mathematics, physics, and engineering. New
videos to be archived by the TIB can be easily related to
one of these subjects since the content provider is always
known and thus the respective discipline. Analysis of the
video content therefore concentrates on the recognition of
visual concepts per subject meaning that we take advantage
of the domain knowledge by training subject specific visual
concept classifiers. Our intention was to provide temporal
video annotations associated with those video segments that
depict the corresponding concept. The selection of visual
concepts is based on a user survey and in close cooperation
with TIB experts responsible for one of the aforementioned
subject areas.

2.1 Concept Definition
In order to evaluate the user needs for video retrieval based
on visual concepts we have conducted a small survey among
23 potential users. Using the example of the subject ’ar-
chitecture’, we intended to find out, which specific visual
categories a user interested in a particular subject would
find useful if supported as filter or search target by the AV
Portal search engine. Together with subject experts at the
TIB we have devised a number of different ’architecture’-
related visual concepts that we proposed as search targets
to the survey participants. We divided the available video
material (e.g. computer animations, recordings of lectures,
scientific conferences or experiments) into animated film vs.
real film and queried the desired concepts for both types sep-
arately. Figure 1(a) shows the votes for particular concepts
for graphical AV material. As depicted, users draw a huge
interest in different kinds of (technical) drawings in videos.
Figure 1(b) shows the same evaluation for real film record-
ings. Here, the concepts“interior”and“building”are favored
filters to narrow down the search. We have also identified
concepts (“urban open space” and “painting”) that were con-
sidered to be interesting according to the participants’ vote,
but could hardly be found in the video material under con-
sideration and for which model training therefore had to be
postponed until more material becomes available.

Based on the results obtained for the subject ’architecture’
and together with the respective subject experts at the TIB
we have decided on a final list of visual concepts for the
remaining five subjects. Our goal was to obtain concepts
that are fully disjoint as we assumed this would simplify
the ground truth generation process since the decision of
whether a particular key frame belongs to a specific concept
would then be unambiguous. A few cross-subject concepts
have been considered as equally important for all 6 subjects.
Additional subject-specific concepts have been defined by
the TIB subject experts by taking into consideration the
results of the ’architecture-survey’. Table 1 shows the list
of visual concepts used for video annotation. The visual
concept label names have been carefully aligned with labels

Cross-Subject Computer animation, Drawing, Graph, In-
terview, Lecture/Conference, Screencast,
Technical drawing

Architecture Construction Indoor, Construction site, In-
terior, Facade Detail, Building, Landscape,
Model, Cityscape, 3D/Perspective, Object

Chemistry Experiment indoor, Experimental lecture,
Molecular drawing, Microscopy, Molecular
structure, Techniques/ Methods

Information
Tech.

Electronic Components

Mathematics Computer simulation
Physics Experiment indoor, Molecular structure,

Microscopy
Engineering Experiment indoor, Bridge, Construction

site, Meeting, Microscopy, Machine, Ship-
ping, Aircraft technology, Agricultural ma-
chine, Landscape

Table 1: Subject-specific and cross-subject concepts
in the AV Portal

provided by the German Authority File Gemeinsame Norm-
datei (GND)6 used for cataloging in library context in order
to guarantee proper integration of the video meta data in the
library process in future. We have specified 7 cross-subject
genre and one (mathematics, information technology) to 10
(architecture, engineering) subject-specific genres. Several
visual concepts are shared by related disciplines like “molec-
ular structure” and “microscopy” by chemistry as well as
by physics. In contrast to visually rich subjects such as
engineering or architecture, concept identification for more
theoretical subjects such as ’mathematics’ has proven to be
difficult. Here, object and scene recognition seems to be less
important than, for example, transcription of mathematical
formulas.

2.2 Ground Truth Data Generation
In the next step, a representative ground truth per visual
concept needed to be compiled to serve as training exam-
ples in the machine learning process. This was achieved by
manually selecting single video key frames depicting the re-
spective concept as positive examples. As this process has
been performed by several assistants a detailed description
for each of the concepts was required in order to guarantee
a homogeneous selection of key frames per concept. There-
fore, a number of visual characteristics has been assembled,
attributing each concept meaningfully. These descriptions
have been provided by the subject experts who had a clear
idea in mind when selecting the concepts as potential re-
trieval candidates. This process not only was important in
order to guarantee training data quality but also as a veri-
fication step in which humans have crosschecked whether a
set of characteristics and thus a concept itself was mutually
exclusive from all other concepts as it was assumed that this
would increase classification accuracy.

We have started by selecting up to 80 different videos per
subject with varying run time. In an automated key frame
extraction process (see Section 3) a number of representa-
tive frames for each video has been selected. An average
amount of 100 key frames has been annotated per visual
concept. The number of examples required eventually de-

6Gemeinsame Normdatei – http://d-nb.info/gnd



(a) Computer graphics (b) Real film

Figure 1: Illustration of user demands concerning the classification of AV material

pends on the AV material and the visual variance within
the respective concept. Visually more complex concepts re-
quire more key frames to cover the overall variance. Missing
coverage would most likely lead to false dismissals in the
classification process since the classifier did not learn the
concept in its entirety. Special attention has been payed to
concepts that were particularly desired by users and subject
experts in order to provide a comprehensive ground truth.
Key frames that could not be assigned to any of the defined
concepts have been left out and were thus not considered
as training or testing examples. As one might expect, not
every visual concept appears equally frequent in the video
material (see Section 4). Thus, the obtained examples sets
vary largely wrt. the total number of key frames.

3. CONTENT-BASED CLASSIFICATION
In this Section we briefly present the applied approach for
content-based classification of video data. As mentioned in
Section 2, we aim at fine-granular, i.e. segment level, con-
cept detection. We therefore start by automatically struc-
turing a video into segments of homogeneous visual charac-
teristics. We especially identify shot boundaries, i.e. tran-
sitions resulting from varying camera positions and video
editing processes. Based on the obtained shot boundaries,
representative key frames are extracted, i.e. single video
frames that represent the content of the respective video
segment. First, these key frames are used as training data
by annotating them with the respective depicted concept
(cf. 2). Subsequently, they serve as the entity based on
which the classifiers will decide for new videos whether the
originating video segment should be annotated with the as-
sociated concept label. We therefore consider content-based
video classification as a special case of image classification,
since key frames are nothing but still images extracted from
video streams.

Content-based classification of image data has been subject
of research for many years and Bag-of-Visual-Words (BoW)
image representations have emerged as a successful state of
the art when aiming at re-usable visual descriptors capable
to represent a wide (potentially unlimited) range of visual
concepts ([3, 7, 12]). Their advantage lies in the aggregation
of local image features (typically histograms of gradients) in
order to describe statistical properties of depicted visual con-

cepts, i.e. by counting representative local features similar
to counting words in text retrieval.

In our approach, we extract SIFT (Scale-Invariant-Feature-
Transform, [8]) features at a fixed grid of 6×6 pixels on each
channel of a key frame in RGB color space. By concate-
nating these features we obtain a 384-dimensional feature
vector at each grid point. Based on these features a visual
vocabulary is computed via k-means clustering that delivers
a set of representative visual words (codewords). For our ap-
proach k = 4, 000 cluster centers are computed on the RGB
SIFT features computed on all key frames from a particu-
lar subject. By assigning each of the extracted RGB-SIFT
features of a key frame to its most similar codeword (or
cluster center) using a simple approximate nearest neighbor
classifier, a normalized histogram of codeword frequencies is
computed, i.e. a Bag-of-Words, representing this key frame.
The combination of SIFT for local key frame description
and the BoW model makes the approach invariant to trans-
formations, changes in lighting and rotation, occlusion, and
intra-class variations [3].

Once the key frame descriptors have been computed the
problem of visual concept recognition can be approached by
standard machine learning techniques. Kernel-based Sup-
port Vector Machines (SVM) have been widely used in image
classification scenarios (cf. [3, 13, 16]). For our approach,
we apply a Gaussian kernel based on the χ2 distance mea-
sure, which has proven to provide good results for histogram
comparison. Following [16] the kernel parameter γ is ap-
proximated by the average distance between all training key
frame BoW-histograms. Therefore, the only parameter to be
optimized in a 4-fold cross-validation is the cost parameter
C of the support vector classification. New key frames can
be classified using the aforementioned Bag-of-Words feature
vectors and the trained SVM model.

We consider the classification task a one-against-all approach
– one SVM per given visual concept is trained to separate the
key frames from this concept from all other given concepts.
Hence, the classifier is trained to solve a binary classification
problem, i.e., whether or not a key frame depicts a specific
visual concept. The ground truth generated in Section 2.2
is split into 50% training and 50% testing data. Since video



data tend to be visually rather similar when considering dif-
ferent segments taken from the same sequence and in order
to avoid testing on training data we have split our data
based on video files, i.e. considering all key frames taken
from one video either as training or as testing data, which
however may lead to imbalanced training/testing datasets
since the various videos may differ in length and number of
segments and thus number of extracted key frames. As men-
tioned before, due to archiving regulations of the TIB, the
video author is always known and thus the originating sub-
ject can be automatically derived. This domain knowledge
has been introduced into the classification process by train-
ing classifiers on a per subject area level in order to slightly
alleviate the classification task to result in better classifier
accuracy. Furthermore, we have decided not to merge the
cross-subject concepts (e.g. ’lecture/conference’, cf. Table
1) into a single training and to train a cross-subject classifier.
This decision was made due to the fact that e.g. a lecture in
chemistry significantly differs from a lecture in architecture
(one shows a scientific experiment, the other shows a power
point presentation of buildings) and it is assumed that the
variance within all disciplines would distort the classifier re-
sulting in inferior accuracy. Negative training examples for
a given concept are obtained by assembling all key frames
of the respective subject that do not depict the concept.

4. EVALUATION
Based on the testing data generated by splitting the avail-
able ground truth data, the classification performance of
the trained concept models has been evaluated. As already
discussed, we have trained subject-specific models and thus
tested the performance on subject-specific testing data like-
wise. By thresholding the classifier output, precision and
recall values have been computed for each visual concept.
Figures 2(a) - 2(f) visualize the harmonic mean of both val-
ues in terms of the F1Score.

As can be seen, the classification performance varies largely.
Figure 2 also shows the number of positive training (’train+’)
and testing (’test+’) examples available. As stated in Sec-
tion 2 in the current selection of videos used to extract the
ground truth not every visual concept is equally well pre-
sented. Despite our initial assumption, not all of the 7 cross-
subject concepts are truly of equal prominence for all sub-
jects. While ’interview’ scenes as well as ’screencast’ are con-
cepts, for which we have found representative key frames in
videos from almost all subjects, key frames depicting ’com-
puter animation’, ’graph’, ’drawing’, and ’technical drawing’
as well as ’lecture/conference’ did not provide enough train-
ing material (we have decided to limit classifier training to
an availability of at least 16 positive training samples) in
order to learn models for all subjects.

Concept classifiers for the different ’interview’-scenes have
shown a rather satisfying performance (average F1Score =
0.58) with a strong exception for mathematics, which should
be attributed to a comparatively small set of training ex-
amples. Similarly, lower classification performance of ’lec-
ture/conference’ (information technology as well as physics),
’graph’ (architecture, physics), and ’technical drawing’ (chem-
istry, engineering) can be explained. In general, it should be
noted that often a correlation between low training set sizes
and low classification performance can be observed. Ex-

Figure 3: Visual variance for example key frames of
the visual concept ’bridge’ taken from training (left)
and testing (right) data sets.

tremely low classification accuracy (with an F1Score < 0.1)
always is attended by very few training examples (< 20)
as can be seen for ’engineering/bridge’, ’architecture/graph’
and ’chemistry/computer animation’. Few training exam-
ples typically do not cover sufficient visual variance within
the concept and thus the trained classifiers do not recog-
nize respective examples within the testing set. This can
be demonstrated, as e. g., in Fig. 3, where the example
taken from the training set for the concept ’bridge’ clearly
differs from the one in the testing set. These findings are
in line with the results presented in [1], were the authors
have shown that classification performance correlates with
trainings set size. On the other hand, comparatively high
classification performance, which is based on a small set (see
e.g. ’Physics/Technical drawing’) should be doubted as they
are for once typically due to high recall values. Moreover,
visual variance in small test sets is necessarily low and re-
sults could have been based on the mere coincidence of these
few examples covered in the training data.

We consider a few examples for visually similar concept
classes that may distort the classification accuracy. In Fig. 4,
one can clearly observe that examples from both concepts
show dominant vertical and horizontal lines necessarily af-
fecting gradient based classifiers. By adding features such
as color histograms extracted from color spaces that sepa-
rate artificial from natural lighting condition, these concepts
should possibly be better distinguishable. Similarly, Fig. 5
can easily be confused due to common features such as hard
contrasts and large homogeneous background areas. Since
both concepts currently only compete in the subject archi-
tecture, a general statement is yet difficult to make. How-
ever, once they become important for other subjects too, a
closer investigation is required.

Finally, Fig. 6 shows visual concepts, where the aimed idea
of fully disjoint concepts proved to be difficult to maintain.
Buildings are usually part of cityscapes, but sometimes also
are present in landscape scenes. While this is not a signifi-
cant problem to the classification approach presented (mul-
tiple classifiers can predict different concepts for the same
key frame) it shows that often an initial clear idea of a visual
concept is distorted by real-world examples. This, on the
other hand, requires fine tuning of the manual annotation
process since otherwise an annotator cannot decide whether,
as e.g.. Fig. 6(c) is a ’landscape’ or ’building’ example.

Future work needs to focus on incrementing the ground truth
data in order to be able to validate the current classification
results on a larger test set. Moreover, visual concepts like



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
F1-Score

Object (0.26, train+:45, test+:43)
3D/ Perspective (0.11, train+:32, test+:36)
Cityscape (0.37, train+:91, test+:109)
Model (0.20, train+:29, test+:52)
Landscape (0.57, train+:72, test+:149)
Building (0.35, train+:165, test+:183)
Interview (0.63, train+:148, test+:200)
Interior (0.41, train+:235, test+:213)
Facade detail (0.47, train+:254, test+:270)
Lecture/ Conference (0.61, train+:48, test+:156)
Screencast (0.38, train+:66, test+:121)
Technical drawing (0.47, train+:21, test+:63)
Construction site (0.12, train+:41, test+:64)
Drawing (0.26, train+:40, test+:18)
Graph (0.06, train+:16, test+:3)

(a) Architecture

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
F1-Score

Techniques/ Methods (0.66, train+:107, test+:108)

Experimental lecture (0.16, train+:19, test+:73)

Microscopy (0.69, train+:40, test+:26)

Experiment indoor (0.63, train+:177, test+:287)

Graph (0.23, train+:85, test+:32)

Interview (0.51, train+:59, test+:474)

Lecture/ Conference (0.63, train+:311, test+:367)

Screencast (0.83, train+:184, test+:303)

Computer animation (0.07, train+:18, test+:42)

(b) Chemistry

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
F1-Score

Interview (0.87, train+:18, test+:56)

Electronic components (0.26, train+:42, test+:17)

Lecture/ Conference (0.30, train+:24, test+:17)

Screencast (0.96, train+:34, test+:52)

(c) Information Technology

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
F1-Score

Computer simulation (0.12, train+:17, test+:40)

Interview (0.21, train+:23, test+:45)

Graph (0.72, train+:35, test+:60)

Computer animation (0.54, train+:54, test+:87)

Lecture/ Conference (0.76, train+:247, test+:290)

Screencast (0.37, train+:107, test+:65)

(d) Mathematics

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
F1-Score

Interview (0.62, train+:79, test+:42)

Technical drawing (0.44, train+:16, test+:7)

Microscopy (0.52, train+:49, test+:38)

Computer animation (0.46, train+:22, test+:25)

Experiment indoor (0.47, train+:25, test+:60)

(e) Physics

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
F1-Score

Computer animation (0.09, train+:18, test+:28)

Screencast (0.76, train+:46, test+:220)

Agricultural machine (0.11, train+:37, test+:13)

Interview (0.61, train+:17, test+:140)

Landscape (0.73, train+:21, test+:27)

Shipping (0.45, train+:45, test+:29)

Machine (0.36, train+:34, test+:42)

Experiment indoor (0.11, train+:78, test+:62)

Construction site (0.40, train+:33, test+:60)

Bridge (0.00, train+:16, test+:12)

(f) Engineering

Figure 2: Visual Concept Evaluation Results (F1Score)

(a) Facade (b) Interior

Figure 4: Examples taken from concepts “Facade” and “Interior” show similar dominant horizontal and
vertical lines.

(a) Drawing (b) Technical drawing

Figure 5: The cross-subject concepts “Drawing” and “Technical drawing” exhibit similar features in contrast
and background.



(a) Cityscape (b) Building (c) Landscape

Figure 6: Visual concepts where examples cannot uniquely be mapped to either concept.

’drawing’ and ’technical drawing’ or ’computer animation’
and ’screencasts’ that have proven to be difficult to distin-
guish in an automatic process should be merged into a sin-
gle superclass. Special attention should also be payed to the
selection of negative training examples. As described in Sec-
tion 3, negative examples currently are obtained by taking
all non-positive examples of a given visual concepts. Since
many key frames extracted from a video, however, cannot
be assigned to any of the described visual concepts, nega-
tive training data sampling remains incomplete. Integrating
these frames as negative examples in the training process
will most like improve the classification accuracy.

5. SEMANTIC CONCEPT LABELING
The label names of visual concepts, as specified in Sec-
tion 2.1, are rather limited when aiming at semantic inter-
pretation and understanding. Therefore, we have devised a
mapping of visual concepts to semantic entities. As in phi-
losophy, ontology denotes the study of the nature of being,
while epistemology on the other hand is concerned with the
nature and scope of knowledge by questioning what knowl-
edge is, how it is acquired, and the possible extent to which
a given subject or entity can be known and experienced via
our senses. Therefore, we also distinguish pure semantic en-
tities that represent an ontological concept or individuals
from visual concepts that merely depict semantic entities,
but are not the same as the semantic entities they do de-
pict. Nevertheless, to support the ontological existence of
visual concepts for further processing, we have decided to
introduce URIs (Uniform Resource Identifiers) for the visual
concepts under consideration within our own namespace, as
e.g. the visual concept ’building’ has been be assigned the
URI http://av.getinfo.de/resource/Building.

For further semantic processing, the fact that a visual con-
cept also represents a semantic entity being depicted must
be expressed. This can simply be achieved by making use
of the well known FOAF vocabulary7 and DBpedia8 entities
to create appropriate RDF statements, as e.g.,

av:Building foaf:depicts dbpedia:Building .9

This relation enables the inclusion of the visual concepts
into the context-sensitive semantic processing of the other
text-based video metadata, such as e.g., audio transcripts,
video OCR, or authoritative archival data, to increase the

7FOAF vocabulary – http://www.foaf-project.org/
8DBpedia – http://dbpedia.org
9the following namespace prefixes are used:
av: for http://av.getinfo.de/resource/,
foaf: for http://xmlns.com/foaf/0.1/, and
dbpedia: for http://dbpedia.org/resource/

accuracy of the Named Entity Mapping. All visual concepts
have been manually mapped to semantic entities, which are
generally depicted by these visual concepts. In this way,
semantic entities represented via visual concepts define part
of the context in which potential ambiguities of the text-
based metadata can be solved. The process of context-based
Named Entity Mapping is explained in further detail in [14].

The AV portal utilizes semantically mapped visual concepts
as facet filters to enable exploratory search on the video
content, i.e. besides for keywords or semantic entities, also
visual concepts can be applied as search query or query re-
finement. As e.g., the search query for the famous architect
’Norman Foster’ can be endorsed by applying the visual con-
cept ’building’ as a filter facet to achieve search results of
videos that are dealing with Norman Foster while simulta-
neously depicting buildings.

6. SUMMARY AND OUTLOOK
By means of content-based classification manual annotation
of video material in the AV Portal is minimized to an initial
training stage of visual classifiers. This enables automatic
metadata generation supporting user needs in search and re-
trieval. Confirmation of the derived visual concepts finally
will be provided by a user study with a first integrated AV
Portal prototype. We have shown that current approaches
for visual concept detection provide satisfying results but
require a sufficient amount of training examples to cover the
visual variance. In order to validate our results on larger
corpora of video data, additional manual annotation work
is required to put our findings on a firm footing. Further-
more, we have given evidence that careful concept definition
is necessary in order to provide unambiguous descriptions for
annotation to generate clean training data. From the per-
spective of a user, fine granular video annotation at segment
level adds a significant value by providing additional meta-
data that allows for immediate determination of video seg-
ments depicting the aspect of interest. This new search ex-
perience for video portals remains completely illusive when
limited to manual annotation processes. Thereby, an archi-
tect is able to narrow down his search by the subject-specific
filter ”building”, or a chemist is able to conduct a targeted
search for videos depicting chemical experiments.

Finally, we have briefly outlined the idea of combining visual
concept classification and semantic analysis in order to pro-
vide semantic unambiguous search results by formalizing the
meaning targeted by a particular concept label. However,
future work is required in order to fully exploit the mapping
of semantic visual concepts to knowledge bases such as DB-
pedia, as e.g., also to enable reasoning over visual concepts.
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