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Abstract. This work aims to compare two competing approaches for
image classification, namely Bag-of-Visual-Words (BoVW) and Convo-
lutional Neural Networks (CNNs). Recent works have shown that CNNs
(Convolutional Neural Networks) have surpassed hand-crafted feature
extraction techniques in image classification problems. Their success is
partly attributed to the fact that benchmarking initiatives such as Ima-
geNet in a massive crowd sourcing effort gathered sufficient data neces-
sary to train deep neural networks with a very large number of model
parameters. Obviously, manually annotated training datasets on a sim-
ilar scale cannot be provided in every classification scenario due to the
massive amount of required resources and time. In this paper, we there-
fore analyze and compare the performance of BoVW- and CNN-based
approaches for image classification as a function of the available training
data. We show that CNNs benefit from growing datasets while BoVW-
based classifiers outperform CNNs when only limited data is available.
Evidence is given by experiments with gradually increasing training data
and visualizations of the classification models.

1 Introduction

Recently, approaches for image classification based on the Bag-of-Visual-Words
(BoVW) model as well as its more powerful successors (e.g. Vector of Locally
Aggregated Descriptors, VLAD [1] and Fisher Vector encodings, FV [2]) have
been significantly outperformed by approaches based on convolutional neural
networks. The fact that BoVW encodings are largely based on handcrafted image
descriptors was identified as a major drawback: Typically, a vector space repre-
sentation of an image is computed by extracting local features (usually gradient
based, e.g. SIFT [3]) at densely sampled image regions and summarizing these
features into a global image descriptor (e.g. a histogram of vector quantized local
features). Quantization of the local region descriptors (e.g. by using KMeans
or Gaussian Mixture Models) is actually the only step where the features are
adjusted to the training data. All other parameters (e.g. the number of bins
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and orientations in the SIFT gradient histogram) are kept fixed. Visual concept
models are learned on top of these feature representations (typically linear and
non-linear support vector machines are applied).

On the other hand, Convolutional Neural Networks combine several layers
of non-linear feature extractors whose weights are trained directly on the image
data at hand. Feature extraction and visual concept model training is performed
in a single step of training one neural network. The large number of model
parameters allows for a more fine-grained adjustment of the image features but
also comes at the cost of increased training complexity: deep neural networks can
only be reasonably trained on highly parallelized hardware (GPUs are exploited
in most cases) and a large number of model parameter demands for large training
data in order to avoid overfitting of the model. Especially the latter aspect
represents a significant limitation: Assembly of (manually annotated) training
data is considered a costly and time consuming process. On the other hand,
BoVW-based approaches have shown reasonable classification accuracy even in
scenarios with very little training data available.

In this paper, we therefore analyze the impact of varying training dataset size
on the achieved classification performance using either BoVW and CNNs. By
gradually increasing the number of available training data we are able to estimate
a decision threshold based on which users can decide, which method to favor.
Furthermore, we analyze the learned models by visualizing their classification
accuracy in selected scenarios. The results give insights into the differences of
the respective approaches in terms of adaptation to the training data.

This paper is structured as follows: In Sect. 2 we briefly review the related
work. We describe the setup of our experiments, the employed BoVW descrip-
tors as well as the architecture of the CNNs used in Sect. 3. Furthermore, we
present the various training and test datasets used throughout our experiments.
Section 4 provides a detailed analysis of the obtained results. Heat map visu-
alizations computed for some of the trained models give further insights into
how increased number of training images is used by the respective approach to
learn the depicted concept. Finally, Sect. 5 concludes our paper and gives a short
outlook to future work.

2 Related Work

In the first two years of the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [4] the leading participating teams all used Bag-of-Visual-Words
derived approaches such as Fisher Vector (or the closely related Super Vector)
encodings. In 2012, the authors in [5] proposed an approach based on Deep
Convolutional Neural Networks that outperformed the BoVW competitors by
a large margin. The neural network architecture presented has more than 60
million parameters which made training on a GPU a necessity (training on two
GTX 580 GPUs took between 5 to 6 days) and which makes the approach prone
to overfitting – only attenuated by the large number of training images available
in ILSVRC (1.2 million images were manually assigned to 1,000 categories).
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By 2014 almost all participating teams had adopted CNN-based approaches.
One straightforward way of improving the performance of deep neural networks
is by increasing their size – the winning team in the 2014 ILSVRC used a CNN
with up to 144 million parameters [6] – which, however, likewise increases the
risk of overfitting. Hence, several efforts have focused on exploring approaches
that work in low training data scenarios as well.

One promising idea are CNN models pre-trained on a larger dataset (e.g.,
ILSVRC) and fine-tuned on the new target outputs [7–9]. Another approach uses
the pen-ultimate layer of the pre-trained CNN as a powerful feature descriptor
and then applies machine learning (e.g. linear Support Vector Machines) to train
the target models (e.g. [10,11]). However, both approaches rely on the assump-
tion that the data used to train the initial CNN exhibits features similar to
the data that is actually supposed to be classified. In [9], Wei et al. compare
both methods to a Fisher Vector based implementation and report the superior
performance of the CNN approaches in a multi label classification experiment
conducted on the PASCAL VOC-2007 dataset [12]. Similarly, the authors in [7]
conclude that using CNNs as feature descriptors (pre-trained on ILSVRC2012
data) and SVMs as linear predictors outperform Improved Fisher Encodings
when tested on the VOC and Caltech [13] datasets. Both datasets – PASCAL
VOC and Caltech – show real world objects and scenes and should be considered
as visually similar to the ILSVRC dataset (with some images from the Caltech
datasets being also present in the ILSVRC 2012 dataset).

Using a CNN without pre-training immediately on a comparatively small
dataset such as the Caltech datasets, leads to significantly worse results than
BoVW-based classifiers as reported in [11], which underlines the above men-
tioned necessity of large datasets for CNN training. Furthermore, this makes
BoVW like implementations a competitive candidate for scenarios with low
amounts of training data.

In this paper, we therefore analyze the impact of incrementing training set
sizes on the classification performance of FV and CNN based approaches for
image classification. We directly train both approaches on the datasets, i.e. with-
out relying on pre-trained CNN models, in order to avoid a bias induced by
dataset similarities. Thus, the reported results are valid even in scenarios where
the data to be classified differs strongly from the ImageNet datasets typically
used to pre-train CNNs. Our assumption is that FV are better candidates when
limited training data is at hand.

3 Experimental Setup

In this section we will detail the two image representation and training
approaches that we compared in our experiments: linear Support Vector
Machines trained on (improved) Fisher Vector encodings as well as Convolu-
tional Neural Networks. Furthermore, we describe the dataset employed and the
different experiments conducted.
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3.1 Improved Fisher Encodings and Linear Predictors

In [14] the authors compared different local feature encodings in a large scale
experiment and conclude the superior performance of FV encodings which we
therefore adopted in our experiments as well. Consistent with the FV implemen-
tations proposed in [2], our approach starts by extracting SIFT descriptors [3] at
a dense grid with a stride of 4 pixels at 7 different scales. We use the implemen-
tation provided by [15] which uses triangular feature reweighting (as opposed
to Gaussian feature weighting proposed by Lowe). Following [2] we decorrelate
and reduce the original feature dimensions from d = 128 to d = 80 by means
of Principal Component Analysis (PCA). We further enhance the local descrip-
tors by spatially extending the features with the (normalized) sampling point’s
coordinates, yielding a d = 82 dimensional local descriptor

A FV encoding is then obtained by first computing the Gaussian Mixture
Model (GMM) with k = 256 components on a random subset of n = 256, 000
local descriptors equally selected from all training images. Subsequently, each
local descriptor of an image is soft-quantized using the obtained mixtures and
first and second order statistics between the descriptor and its Gaussian cluster
are accumulated. Finally, the improved version of FV (IFV, as suggested by the
authors in [2]) applies signed square-rooting to the individual components of the
encoding followed by a ‖ · ‖2 normalization.

Usually, visual concept models are trained based on these global feature rep-
resentations using Support Vector Machines ([7,14]). Our implementation learns
a linear SVM per image class (using a one-vs-rest pattern) by minimizing the
hinge loss function. While in theory the regularization C hyperparameter should
be optimized using cross validation, we fix it to C = 10 in order to reduce
training time. Empirical results in small test scenarios have shown no significant
disadvantage incurred from this simplification, however, clearly this leaves room
for future improvements.

3.2 Convolutional Neural Networks

The CNN-based classifiers follow the architecture as proposed by Krizhevsky,
et al. in [5] with some minor modifications. These modifications address the
sequence of pooling and normalization layers (compared to the original model
we flip the order, i.e. pooling is applied before normalization) and mainly help to
speed up the forward run without sacrificing the accuracy. The remainder of the
architecture is left unchanged: The network consists of five convolutional layers
activated by a Rectified Linear Unit (ReLU) and followed by a max pooling layer
(applied to 1st, 2nd and 5th convolutional layer). Local Response Normalization
is applied after the 1st and 2nd pooling layer. Layers 6 to 8 are fully connected
layers and a softmax layer computes a probability for each target class.

Our implementation uses the Caffe framework [16]. Different from [5], we
train the model on a Tesla K20X GPU with 6GB of memory (instead of using
two independent GPUs with less memory). Following Krizhevsky, et al., every
image is resized to 256×256 pixels and the center crop (224×224) is used as input
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image for the model. Additionally, mean subtraction – obtained by averaging the
pixel values from all training images – is carried out for each input image. No
further data augmentation is applied in this experiment since it was reported to
contribute only slightly to the results.

3.3 Dataset

Since our primary goal is to analyze the impact of trainingset size on the two
competing approaches – IFV and CNN – we had to make sure, to provide enough
training data for CNN to be able to show its true power. We therefore opted
for the ILSVRC 2012 training and validation datasets, which likewise provides
comparability to other experiments.

In order to reduce the overall training time, we decided to limit our exper-
iments to train and test models for only 10 out of the entire 1,000 classes pro-
vided in the ILSVRC. Considering the mean error from the top 5 predictions
from all submissions to the 2012 ILSVRC1, we took the 5 best and worst per-
forming classes respectively yielding a total number of 12,424 training and 500
test images. Figure 1 shows example images for each class.

(a) Best performing classes (b) Worst performing classes

Fig. 1. Example images for best and worst performing classes according to the 2012
ILSVRC submissions. From left to right: (a) geyser, odometer, canoe, website, yellow
lady’s slipper ; (b) hook/claw, muzzle, spatula, hatchet, ladle.

While keeping the test data fixed, we conducted 7 individual training runs by
selecting between 5% and 100% of the original data, uniformly distributed over
all classes. In order to test the impact of additional negative data, in two further
tests, we added training images from 90 and 190 classes randomly selected from
the remaining categories provided in the ILSVRC 2012 dataset. Since our linear
predictors in the IFV approach were trained in a one-vs.-rest fashion, we simply
added the additional images to the negative sets. In the CNN-based training
scenario, however, in order to avoid problems arising from imbalanced datasets,
we actually trained a total of 100 and 200 classes. Test results were always
evaluated based on the achieved scores for the initial set of 10 classes. Just like
in the original 10-class scenario, we generated uniformly sampled subsets of the
1 See http://image-net.org/challenges/LSVRC/2012/ilsvrc2012.pdf for more informa-

tion.

http://image-net.org/challenges/LSVRC/2012/ilsvrc2012.pdf
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100- and 200-class training sets as well. Table 1 provides and overview over the
respective number of classes and available training images. In total, we trained
and tested models based on 7 × 3 = 21 ILSVRC 2012 subsets.

Table 1. Training sets generated by taking the top and least performing classes from
the ILSVRC 2012 dataset (10 classes) and subsampling the obtained train images.
Further sets are obtained by adding additional 90 and 190 randomly selected classes.

No. Classes No. of images per subset

5% 10 % 20 % 40% 60 % 80 % 100%

10 classes 622 1,242 2,485 4,969 7,455 9,939 12,424

100 classes 6404 12,808 25,615 51,230 76,846 102,461 128,076

200 classes 12,866 25,728 51,456 102,911 154,368 205,823 257,279

4 Analysis

Based on the trained models and the separated test set we have computed Aver-
age Precision (AP) scores for all 10 test classes and each individual run. Figure 2
shows the mean AP scores for both approaches, IFV and CNNs.

The plots show that adding more positive samples (i.e. going from 5% to
100% of the individual subsets) increases the performance for both approaches –
most significant improvements occurring between 5% to 40%. However, incre-
menting the number of training samples from 80% to 100% contributes little
to the achieved MAP score (i.e., less than 1% MAP increase) for both models.
On the other hand, while IFV based models seem to saturate at around 80%
of the entire dataset sizes (MAP even drops slightly), the CNN models seem to
continue growing if going beyond 100%.

Interestingly, when increasing the number of negative samples (i.e. going from
10 to 200 classes) we observe a clear drop in the achieved accuracy for the IFV
based model (MAP score dropping from 76 % to 71 %) whereas CNNs benefit
from the increased number of (negative) examples. In fact, the best performance
by the IFV model (MAP = 76.5 %) is achieved when using the initial set of 10
classes for training whereas the best CNN-based model reaches an MAP score of
78.6 % when using 100 % of the data of the 200 class scenario. One reason may
be that IFV models do not learn enough features to be able to separate classes
on a more fine-grained level. When analyzing the individual per class AP scores
(see Fig. 3) we observe that the best performing classes can be mostly predicted
correctly by both approaches whereas the worst performing classes are equally
hard to capture for CNNs as well as IFV.

Considering our initial hypothesis, we observe that our assumption of IFV
outperforming CNNs in low training set scenarios holds. Especially when con-
sidering the individual per class AP scores of the best performing classes we see
that IFV-based models achieve high accuracies even when provided with as little
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(a) IFV (b) CNN

Fig. 2. A comparison of IFV and CNN MAP scores on the different ILSVRC subsets.

Fig. 3. Comparison of per class Average Precision scores obtained by the best per-
forming IFV and CNN models.

as 5%–20% of the original data. Similarly, IFV achieves better results for most
of the least performing classes, whereas CNNs need up to 60% of the training
data to catch up. This makes IFV a valid candidate when the effort to manually
label large amounts of training images cannot be taken.

4.1 Model Visualization

In order to better understand what the individual models learn and how they
evolve over different number of training images, we computed heat map visu-
alizations. The method we use follows the one presented in [11], and works by
stepwise occluding parts of a test image prior to classification. By that, we are
able to visualize, which regions of the image have the highest impact on the
overall classification score. A sliding window of 64 × 64 pixels is moved over the
image pane partially setting the occluded pixel values to 0. The models trained
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(a) IFV, 10 classes (b) IFV, 100 classes (c) IFV, 200 classes

(d) CNN, 10 classes (e) CNN, 100 classes (f) CNN, 200 classes

Fig. 4. An test image taken from the muzzle class superposed by heat maps depicting
the impact of individual image regions. Blue color denotes higher impact. All heat maps
are based on models trained with the maximum number of available images when using
10, 100 and 200 classes of the 2012 ILSVRC dataset (Color figure online).

in Sect. 3 are used to compute a prediction score for the true class label of that
test image – each partially occluded image will give a different score. Finally, all
scores are aggregated to compute the heat map.

Figure 4 presents heat maps computed using IFV and CNN models trained
on 10, 100 and 200 classes (using the entire sets, i.e. 100% of the data as we have
shown that both approaches benefit from increased number of positive samples).
The figure shows an image from the class muzzle – one of the hardest classes to be
correctly predicted – superposed with the computed heat maps. Colors represent
the achieved classification score when obstructing the respective region. A blue
color here denotes a lower score meaning that the region is more important for
the overall classification than a region superposed with a red color (denoting a
higher classification score).

When comparing the heat maps of IFV and CNN based models, one can
clearly see, that with increasing number of training examples, the CNN focuses
more on the region of the object to be classified (muzzle): while in the smallest
example (10 classes) the grassy region in the lower part of the image is consid-
ered important, in the 200 class setting, the CNN almost perfectly concentrates
on the region depicting the muzzle. In contrast, the IFV-based approach right
from the beginning covers the object (which might explain the higher accuracy
in the 10 class scenario), however, likewise large parts of the background as well.
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Fig. 5. Heat maps computed for some of the easier classes (canoe [top left]) and yellow
lady’s slipper [bottom left]) show that CNNs focus better on the depicted object when
adding more (negative) data. Example images taken from one of the harder classes
(spatula [right]) convey that both approaches have difficulties in locating meaningful
regions. IFV models (top rows) and CNN model (bottom rows) have been trained on
10, 100 and 200 classes datasets (Color figure online).

While this changes slightly with increased number of classes, the IFV-based app-
roach never reaches the precision of the CNN. Similar observations can be made
when analyzing heat maps from other classes (see Fig. 5).

5 Conclusions

In this paper we evaluated the impact of growing trainingset sizes on the clas-
sification performance of Convolutional Neural Networks and Improved Fisher
Vector-based image predictors. In line with our initial hypothesis, we have shown,
that while CNNs largely benefit from bigger datasets, IFV is a competitive candi-
date when limited amounts of training data are available. Furthermore, we have
presented that CNNs may use negative images to learn better feature represen-
tations. On the other hand, the precision of IFV-based models suffer from the
increased diversity. Computed heat map visualizations underline our findings.

Future work will target the comparison of CNNs and IFV with feature repre-
sentations obtained from CNNs pre-trained on large datasets. We aim to explore
whether these representations can generalize well to significantly smaller and
visually completely different datasets and how these representations compare to
BoVW-like representations.
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