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ABSTRACT
Recent advances for visual concept detection based on deep
convolutional neural networks have only been successful be-
cause of the availability of huge training datasets provided
by benchmarking initiatives such as ImageNet. Assembly
of reliably annotated training data still is a largely man-
ual effort and can only be approached efficiently as crowd-
working tasks. On the other hand, user generated photos
and annotations are available at almost no costs in social
photo communities such as Flickr. Leveraging the informa-
tion available in these communities may help to extend ex-
isting datasets as well as to create new ones for completely
different classification scenarios. However, user generated
annotations of photos are known to be incomplete, subjec-
tive and do not necessarily relate to the depicted content. In
this paper, we therefore present an approach to reliably iden-
tify photos relevant for a given visual concept category. We
have downloaded additional metadata for 1 million Flickr
images and have trained a language model based on user
generated annotations. Relevance estimation is based on
accordance of an image’s annotation data with our language
model and on subsequent visual re-ranking. Experimental
results demonstrate the potential of the proposed method
– comparison with a baseline approach based on single tag
matching shows significant improvements.

CCS Concepts
•Information systems → Image search; Data mining;

Keywords
social image retrieval, relevance estimation, language model,
visual re-ranking

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

i-KNOW ’15, October 21 - 23, 2015, Graz, Austria
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3721-2/15/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2809563.2809587

1. INTRODUCTION
Visual concept detection refers to the ability of learning

visual categories in order to automatically identify new, un-
seen instances of these categories. Typically, this task is
approached as a supervised machine learning task: by us-
ing a reliably annotated dataset of example images sepa-
rated into the categories the system should be able to rec-
ognize, a machine learns distinguishing features of the in-
dividual categories. Recently, approaches based on deep
convolutional neural networks (CNN) have significantly im-
proved over previous methods in terms of achieved classifi-
cation precision. In fact, these systems have even reported
to achieve better-than-human recognition rates in certain
benchmarks [2]. Their success must firstly be attributed
to the availability of massively parallel hardware that sup-
ports training very large and very deep neural networks in
a reasonable amount of time. The larger and deeper a net-
work becomes, the more parameters need to be optimized
which makes training prone to overfitting when only a lim-
ited amount of labeled training data is available. Hence, a
second and equally important factor for the success of deep
neural networks was the availability of vast amounts of train-
ing data. Benchmarking initiatives such as the ImageNet1 –
a database of currently more than 14 million images catego-
rized into more then 21,000 classes in a huge crowd sourcing
effort – are usually applied as data sources to train CNNs.
The declared goal of the ImageNet initiative is to support
40,000 categories each covered by 10,000 individual images
each of which evaluated as relevant by the majority of 10 hu-
man annotators [19]. Human labeling speed is estimated by
2 images per second and thus the overall human annotation
time required is calculated as more than 63 years. Clearly,
an effort as such will be difficult if not impossible to repeat
but even the extension of existing categories or adding new
ones represents a major challenge if one cannot rely on an
armada of crowd workers.

On the other hand the World Wide Web provides huge
data sources of annotated visual content almost for free.
Photo sharing platforms such as Flickrhost billions of user-
generated images2. The community aspect has motivated
millions of users to manually annotate their images with
descriptive metadata such as image titles, tags and descrip-
tions in order to increase the visibility of their photos or

1ImageNet: http://image-net.org/
2Flickr reports to host more than 6 billion photos: http:

//blog.flickr.net/en/2011/08/04/6000000000/



share their content with other users. Being able to exploit
these information as training data not only would enable en-
largement of existing datasets and categories by additional
images. Considering the potentially unlimited vocabulary
represented in user annotations a huge variety of additional
categories could instantly be made available at almost no
costs (even across a multitude of different languages).

However, a major drawback of these user annotations aris-
ing from the uncontrolled environment in which they are
generated is that they need to be considered incomplete,
highly subjective and not necessarily related to the visual
content of the respective photo ([4, 12, 14]). This contrasts
sharply with highly reliable image annotations required for
learning visual concept classifiers and aimed at by initiatives
such as ImageNet. Incompleteness – meaning that not all
photos which depict a specific visual concept are actually
annotated with a textual label identifying that concept – is
usually of minor importance due to the potentially unlim-
ited amount of annotated data available in photo communi-
ties. Subjective annotations and annotations with missing
relevance to the depicted content, however, pose a major
challenge when trying to retrieve images suitable to train a
specific visual concept classifier.

In this paper, we present an approach to automatically
select photos – which are considered relevant to a given vi-
sual concept label by a majority of users – from a large
collection of publicly available Flickr images. Our key as-
sumption is that the majority of all users in a community
shares a common (and thereby objective) interpretation of
a visual concept. This is reflected by the fact that users
in general employ a highly similar vocabulary to describe
a visual concept whereas overly subjective annotations will
exhibit a comparatively low inter-annotator agreement.

In order to verify our assumptions, we have downloaded
authoritative and social metadata for almost 1 million Flickr
images. The metadata corpus will be released upon publi-
cation of this paper. We have trained a language model on
the entire corpus which allows us to extract contextually
similar terms for a given query term, e.g. a visual concept
label. Using these terms, we extract candidate images for a
specific visual concept based on their textual similarity with
our language model. In order to further increase relevance
we apply a visual re-ranking of the top ranked candidate im-
ages using deep feature representations. Evaluation results,
reported Average Precision scores, prove the validity of our
approach.

This paper is structured as follows: In Section 2 we briefly
review the related work. The learned language model as well
as our approach for visual re-ranking is presented Section 3
where we also introduce the dataset that we have assembled
as well as our experimental setup. We present and discuss
evaluation results in Section 4. Finally, Section 5 concludes
the paper and gives a brief outlook to future improvements.

2. RELATED WORK
The availability of large photo communities or web-based

image collections as well as user generated annotations has
triggered many researchers to exploit these information in
completely different scenarios. Next to the obvious research
goal to increase relevance for search and retrieval within
these collections research scenarios include retrieval of pho-
tos related to a tourist attraction [17], landmark recognition
[9] as well as automatic image labeling [21], which is also

our declared goal. All approaches denote the comparatively
large amount of noise within community based annotations
and propose different strategies to increase the relevance of
the retrieved results. Typically, these approaches rely on the
textual annotations, compute visual similarities between im-
ages or employ a combination of both strategies.

Text-based retrieval typically tries to increase relevance
by extending the initial query. In [11] a dictionary lookup
reveals additional tags which are expected to be suited for
describing visual content. Later, a neighbor voting algo-
rithm is applied to the identified tags. However, a dictio-
nary usually does not describe visual content in a similar
way it is described by users of a social community. Related
tags indicated by resources such as external knowledge bases
like DBpedia or taxonomies as e.g. WordNet usually do not
provide enough relevant information for user annotation re-
lationship modeling. In [5] we used DBpedia to model inter-
tag relationships and found out that relevant information is
usually not available as direct link pattern. Here, we there-
fore use a language model trained on the corpus of available
user annotations itself.

Approaches based on visual similarity estimation assume
that all images relevant to a specific visual concept tend to
have similar visual patterns such as color and texture. Typ-
ically, density estimation methods are used to find the dom-
inant visual pattern in the form of clustering [16, 6]. The
typically large feature dimensionality as well as insufficient
number of samples usually, however, renders density estima-
tion inaccurate and makes similarity computation expensive
[12]. Our approach uses feature representations based on
deep convolutional neural networks that are known to gener-
ate compact visual features. Furthermore, to decrease com-
putational complexity, we compute visual similarities only
for a subset of candidate images returned by prior textual
ranking. In [20] the authors exploit visual consistency to
quantify the representativeness of Flickr images with respect
to a given tag. Relevance in our approach is estimated by
a language model directly trained from the textual annota-
tions of millions of users and thereby considered to be objec-
tive. Visual consistency is further increased by re-ranking
candidate images based on visual features.

In order to jointly exploit visual and semantic consistency,
in [13] tag relevance estimation is approached as a semi-
supervised multi-label learning problem. The authors in [24]
attempt to solve the same problem by decomposing an im-
age tag co-occurrence matrix and Yang et al. [22] present a
framework, which simultaneously refines the noisy tags and
learns image classifiers. In [12] the authors consider the task
of estimating the relevance of a Flickr tag for the depicted
visual concept. Based on visual similarity of the k nearest
neighbors of an image, co-occurring tags are ranked higher.
While this helps to boost relevant tags within the respective
neighborhood, it does not help to solve the problem of select-
ing images as training examples. Contextual information is
ignored and thus different meanings of the same tag cannot
be distinguished. Our approach uses contextual information
in order to select images matching the most likely meaning
of an annotation within a photo community.

3. RELEVANT IMAGE RETRIEVAL
In this sections we present our approach to retrieve photos

relevant for a given visual concept from a large collection of 1
million Flickr images. We start by presenting the collection



that we have used and extended throughout our experiments
as well as some statistics on the downloaded metadata. Sec-
ond, we detail our approach for text-based image retrieval
using a language model trained on the available metadata.
We further describe our visual re-ranking step achieved by
computing image similarity using deep visual feature rep-
resentations. Finally, we present our experimental setup in
order to evaluate the relevance of the retrieved photos with
regard to potential use as traning data.

3.1 Dataset
The Flickr platform provides a public API3 to query their

database and has already been used by many research ac-
tivities in the past as it has become relatively easy to ac-
cess a huge amount of photos and metadata. Various offi-
cial datasets and benchmarking initiatives in content based
image classification and image retrieval have made use of
images downloaded from the Flickr community. As an ex-
ample, the MIRFLICKR-1M collection was published in [7]
and consists of 1 million images crawled from Flickr. The
selection of images has been made based on the Flickr inter-
estingness score – a measure that aggregates factors such as
clickthrough rate, user comments as well as users selecting
an image as favorite. The data has been made available un-
der a Creative Commons Attribution license (meaning that
each image can be used as long as the photographer is cred-
ited for the original creation) and includes EXIF metadata
as well as raw user tag data. Although the authors attribute
the value of additional descriptive and social metadata such
as title and description as well as information about the
owner’s social network, the dataset unfortunately does not
contain these data. Fortunately, the provided license infor-
mation for each individual image permits to download these
information based on the unique photo id using the Flickr
API.

Being a social community, the information stored by Flickr
are not static i.e. photos as well as accompanying metadata
undergo changes throughout time. Users may delete exist-
ing photos and add, remove or change metadata, aggregate
photos in public groups and private sets or comment on the
photos of other users. The data downloaded, hence, should
be considered as a snapshot taken at a specific time and
very likely to be different at any time in the future. Conse-
quently, since 5 years elapsed between the initial assembly of
the MIRFLICKR-1M collection and our most recent exten-
sion, some of the photos have been removed by their own-
ers meanwhile and no metadata can be retrieved. For the
majority of 90.2% of the entire collection (902,672 photos),
however, we were able to assemble additional information.
Table 1 gives a detailed overview of the amount of available
metadata.

In addition to the metadata content itself we have also
downloaded the unique id of the responsible user (available
for comments, tags, notes, and photo ownership) that will
make it more easy to identify connections between photos
within the social network. We make all metadata publicly
available as individual JSON files4 to be used in future re-
search projects.

Most of the downloaded metadata is stored in form of un-
structured free text (title, description, user comments) or

3The Flickr API: https://www.flickr.com/services/api/
4The MIRFLICKR-1M s16a extension: http://s16a.org/

mirflickr

Table 1: Amount of available metadata for photos
of the MIRFLICKR-1M collection

Total no. of photos 1,000,000

w/ title 864,081

w/ description 607,663

w/ tags 858,918

w/ EXIF data 688,294

w/ geo information 282,091

w/ album allocation 760,702

w/ user comments 851,174

w/ notes 102,252

w/ group allocation 740,263

single word labels (tags). In [4] the authors analyze differ-
ent usage pattern of collaborative tagging systems which can
be extended to annotations in general and likewise hold for
photo communities such as Flickr. The overwhelming ma-
jority of user annotations is reported to be used to identify
the topic or content of the annotated data – an important
prerequisite when aiming to match described and depicted
content in photos. In [5] we have analyzed Flickr photos and
user generated tags for relatedness. We’ve found out that
annotations next to identifying the depicted content may
also be used with an organizational or viewpoint defining
purpose. Thus, even when an annotation explicitly mentions
a visual concept this does not necessarily mean it is actu-
ally depicted. An algorithm that selects photos for usage
as training data based on textual annotations should there-
fore be able to identify these photos as not being relevant
for the respective visual concept. In this paper we define a
photo being relevant for a given visual concept if it depicts
a clearly-visible version of the scene or object without any
major occlusion.

3.2 A Community Language Model
For the aforementioned reasons, selecting photos solely

based on the usage of the visual concept term within the
annotations will likely fail to provide relevant photos. How-
ever, when considering the annotation context we assume
that the majority of all users will use a similar vocabulary
to describe the content. As an example, a photo depicting
a sunset in many cases will also contain annotations such
as “sea”, “ocean”, “clouds”. When extending the query for
“sunset” by these additional terms the retrieved photos will
tend to exhibit higher relevance to the initial concept. Yet,
manual creation of an extended query vocabulary per visual
concept is prone to errors, subjective and most likely does
not capture every relevant term.

In [5] we therefore used tag disambiguation and link anal-
ysis to automatically extract related tags from a knowledge
base (DBpedia). Based on the number of tags of an im-
age that have a direct link to the visual concept within the
knowledge base we have estimated how strongly a tag set of a
given image is related semantically to the respective concept
and thus, how much related the image is. However, we have
found out that frequently co-occurring tags such as “bridge”
and “river” do not exhibit direct links in the knowledge base
and are thus much harder to identify.



In this paper, we therefore decided to learn annotation re-
lationships based on contextual similarity immediately from
the metadata corpus itself. This not only reduces a poten-
tially error-prone manual query extension but also extracts
additional terms based on the community users’ applied vo-
cabulary.

The authors in [15] present a neural network based ap-
proach to learn vector representations of single words, ac-
cordingly named word2vec. Training is performed in a com-
pletely unsupervised fashion – given a sufficiently large cor-
pus, such as textual image annotations. A trained word2vec
model allows to make highly accurate predictions about a
word’s meaning based on past contextual appearances. The
authors suggest two architectures to learn the underlying
word representation: Continuous Bag-of-Words (CBOW)
and continuous skip-gram. Both architectures define a way
of how to create labels for training word representations in
an unsupervised scenario. While CBOW predicts a word
given its surrounding words (or context), skip-gram predicts
the context given a specific word. In both cases, the window
size parameter defines the size of the respective context. Ac-
cording to the authors, training of the skip-gram model is
slightly slower but the architecture is better suited to repre-
sent infrequent words. The output of a word2vec model is a
vocabulary of all learned words and their respective vector
representations. These can be used to compute the cosine
similarity of words. For a more detailed description and
comparison of both algorithms we refer the reader to [15].

For our experiments, we have used the skip-gram imple-
mentation as provided in the gensim python package [18].
By training a word2vec model on the textual user anno-
tations we enable extraction of similar terms given a visual
concept label according to the language used by Flickr users.
As an example, we have extracted the 10 most similar terms
for the concept ’sunset’:

sunset dusk, sundown, sun, twilight, sunrise,
cloud, silhouette, settingsun, nightfall,
sky

Apparently, our initial assumption of the model being able
to extract community specific related terms holds: while
terms such as ’sun’, ’sunrise’, ’cloud’ and ’sky’ could have
also been manually selected as plausible query extension,
the artificial term ’settingsun’ can be only learned from the
data itself.

3.3 Visual Re-ranking
As discussed in Sect. 1 we aim at increasing relevance

by re-ranking candidate images based on their visual sim-
ilarity. It has been shown that features extracted from
the activation of a deep convolutional neural network which
has been trained to separate individual visual concept cat-
egories on a large dataset can be reused and adapted to
novel classification tasks [3, 23]. It has been further shown
that these novel tasks may differ from the original training
scenario and that deep feature encodings significantly out-
perform any previously presented “shallow” encodings (e.g.
Bag-of-Visual-Words, Fisher encoding etc., for a comparison
of shallow and deep encodings in generic image classification
tasks, see [1]). In [23] the authors explored how discrimina-
tive the features in each layer of a CNN model trained on one
dataset are for classifying a different dataset. This is done

by forward propagating test images through a varying num-
ber of layers of the trained model and training a linear SVM
classifier. The results showed that with increasing number
of layers, the classification results also improved supporting
the notion that the first layers in a neural network learn
“low-level” features, whereas the latter layers learn semantic
or “high-level” features.

In order to obtain compact visual feature representations
we make use of these findings by taking a deep convolutional
neural network pre-trained on the ILSVRC-2012 dataset5.
The model is provided as part of Caffe CNN implementation
[8] and extends from the successful architecture presented in
[10]. Specifically, compared to the original architecture the
authors use slightly different data augmentation techniques
and switch the order of the pooling and normalization layer
achieving a slightly reduced classification time. For a de-
tailed discussion of the CNN architecture and training pro-
tocol we refer the reader to [10].

In our experiments, we have used the vector of activities
of the penultimate, fully-connected (seventh) layer (fc7) as
feature descriptors, obtaining a 4,096 dimensional descriptor
vector per image. We extracted the fc7-features for all im-
ages in the MIRFLICKR-1M collection. Using an NVIDIA
Tesla K20 GPU, feature extraction took about 3 hours. We
publish the extracted features as an additional extension of
the collection4.

Now we can determine the similarity of two candidate
images i1, i2 by computing the cosine similarity of their re-
spective layer-7 activity representations fc7:

k(i1, i2) =
fc7(i1)fc7(i2)T

‖fc7(i1)‖‖fc7(i2)‖ . (1)

3.4 Experimental Setup
We test our approach on 10 selected visual concept cat-

egories. These categories comprise 8 object-level concepts
(’airplane’, ’bicycle’, ’boat’, ’bridge’, ’car’, ’dog’, ’flower’,
and ’tiger’) and 2 scene-level concepts (’beach’ and ’moun-
tain’) and follow the categories chosen by the authors in
[12].

At this stage we train the language model using tag-based
annotations only. While we plan to extend to other annota-
tions, tags provide the immediate advantage of being single
word terms whereas titles, descriptions and user comments
for example may appear as HTML encoded full-text strings
that makes parsing and tokenization more error-prone.

We preprocess all tags by running lemmatization and stop-
word removal. Currently, we focus on English language only
meaning that any other language is ignored for preprocess-
ing. Analysis of the downloaded metadata corpus shows that
users add an average of |tags| = 12 unique tags per photo
(µ = 12.429, σ = 10.235). We therefore set the window size
for training our word2vec model to w = |tags|/2 = 6 words
and ignore all words with a total frequency of f < 5. We
train 300-dimensional feature vectors on the tag data and
compute the k = 20 most similar terms for each visual con-
cept label. Table 2 shows the concept labels and the (top-10)
most similar terms according to our model.

The advantages of our model become easily visible: not
only are relevant synonyms extracted (e.g. airplane: [air-

5ImageNet Large Scale Visual Recognition Chal-
lenge 2012 (ILSVRC2012): http://www.image-net.org/
challenges/LSVRC/2012/



craft, aeroplane, plane]) but also terms obviously related to
the concept are selected (e.g. beach: [sand, ocean, shore]).
Furthermore, frequent instances (e.g. flower : [dahlia, spi-
derwort, hyacinthaceae], car : [ford]) are extracted as well as
translations of the original concept into different languages
(e.g. dog : [chien]). Similarly, the model captures sub- and
superclass relationships (e.g. boat : [fisherboat, sailboat, sail-
ingships] and tiger : [flickrbigcats]) automatically from the
dataset without having to extract them from an external
knowledge base.

Based on these 20 most similar terms, we construct an
extended query including the visual concept label. For each
concept we then select those photos from the collection that
best match the extended query assuming that images ranked
higher are more likely to be relevant candidate images. We
therefore rank images based on the number of query terms
found in the respective tagset. Table 3 shows the top ranked
images including the corresponding list of user generated
tags. Tags that match our extended vocabulary are typed
in boldface.

Visual re-ranking is applied to further increase the rele-
vance of the top ranked images. We assume that the highest
ranked image based on our extended query exhibits a high
relevance for the visual concept and therefore re-rank the
remaining images based on visual similarity to the top can-
didate. We compute the cosine similarity on the extracted
deep feature representations as presented in Sect. 3.3.

4. RESULTS
This section presents the results obtained for each step in

the retrieval process. We compare our approach to a simple
baseline algorithm (thus referred to as baseline hereafter),
which selects photos based on whether or not the tagset
contains the visual concept label (i.e. without any query
extension). The number of candidate images based on this
simple approach is considerably large. In order to evaluate
the accuracy of the baseline method, we randomly sample
n = 200 images for each visual concept category.

In order to evaluate a potential gain in accuracy by the in-
dividual steps, we have separately evaluated retrieval results
based on the learned language model as well as based on ad-
ditional visual re-ranking. Since both approaches generate
ranked result set, we take the top n = 200 ranked candi-
dates for evaluation. We manually assess the relevance of
candidates for all three approaches following our definition
in Section 3.1: A photo is considered relevant if it clearly
depicts the scene or object without any major occlusion.
Evaluation results are reported as average precision scores
corresponding to the area under the precision-recall-curve.
Given a ranked list L with length n, average precision is
defined as:

AP =
1

R

n∑
k=1

Rk

k
∗ rel(k) (2)

where R is the number of relevant photos in L, Rk the
number of relevant images among the top k ranked instances,
rel(k) = 1 is an indicator function equaling 1 if the photo
at rank k is relevant, 0 otherwise.

The results reported in Table 4 show the superiority of the
proposed method. In general, the approach based on visual
re-ranking of the results obtained from the trained language
model outperforms the baseline approach as well as ranking

Table 2: Visual concept labels and most similar
terms according to skip-gram community language
model

concept similar terms

airplane aircraft (0.90), aviation (0.88), aeroplane
(0.86), plane (0.85), jet (0.85), airliner
(0.84), jetliner (0.82), cockpit (0.81),
regionaljet (0.78), planespotting (0.77)

beach sand (0.78), ocean (0.70), shore (0.70),
surf (0.69), wave (0.68), sea (0.67),
zwemmen (0.64), kontikiinn (0.62),
lowtide (0.62), capehenlopenstatepark
(0.61)

bicycle bike (0.88), cycle (0.88), cycling (0.85),
citycycling (0.77), cyclist (0.77),
bikelanes (0.77), bikelane (0.76),
ridealong (0.76), citycycle (0.76), biking
(0.76)

boat sailing (0.79), ship (0.79), sail (0.77),
moored (0.74), dock (0.74), yacht (0.73),
fishingboats (0.73), sailboat (0.73),
sailingship (0.72), port (0.72)

bridge suspensionbridge (0.62), river (0.61),
suspension (0.56), footbridge (0.56),
swingbridge (0.53), building (0.52),
brigde (0.52), riverhumber (0.51), barge
(0.51), reka (0.51)

car automobile (0.79), auto (0.76), sportscar
(0.76), convertible (0.74), coupe (0.74),
luxurycar (0.73), 6car (0.72), sedan
(0.72), customcar (0.71), ford (0.71)

dog puppy (0.89), canine (0.81), mutt (0.78),
k9 (0.77), terrier (0.77), chien (0.76),
interestingdogsposes (0.76), retriever
(0.75), doggy (0.75), pup (0.74)

flower bloom (0.74), daisy (0.72), flora (0.71),
dahlia (0.70), spiderwort (0.69),
hyacinthaceae (0.69), columbine (0.68),
petal (0.68), flowercloseup (0.68),
coneflower (0.67)

mountain peak (0.73), hiking (0.69),
mountainrange (0.68), snowcapped
(0.68), valley (0.67), glacier (0.66),
mountaineering (0.65), alpine (0.65),
treck (0.64), gipfel (0.63)

tiger flickrbigcats (0.61), pantheratigris
(0.59), amurtiger (0.57), siberiantiger
(0.56), cub (0.56), whitetiger (0.55),
tigercub (0.55), sumatrantiger (0.55),
bengaltiger (0.55), eagle (0.54)

based on textual features only. There are two major excep-
tions: While the results obtained for the category “airplane”
based on the language model clearly outperform the baseline



Table 3: Top-ranked candidate images according to skip-gram language model. User tags that match our
extended vocabulary are typed in boldface.

concept user tags top ranked image

airplane passenger, vliegtuig, aéroport, jetplane, traveller, airliner, lesavions, economysection,
traveler, vacation, fuselage, motor, jetliner, transportation, airplane, legroom,
transport, sky, passengerjet, jet, travel, flying, avion, airport, inflight, rudder,
flugzeug, tail, bin, ptvs, aerial, cabin, passengerplane, aircraftpicture, schipholairport,
flap, nederland, avião, amsterdam, landinggear, cockpit, luggagebins, aircraft,
plane, aviation, seat, economyclass, airship, aisle, netherlands, nosegear, holland,
luggage, aircraftcabin, engine, aeroport, ptv, aeroplane, aeroplano, wing, paysbas

beach sea, blackandwhite, ca, reflected, bright, seascape, seashore, coastal, monochrome,
pacificocean, touristdestination, placeofinterest, usa, torreypines, travel, shore, black,
weather, white, january08, beach, surf, evening, colorless, grayscale, sunshine, sunny,
stonematerial, coast, reflect, bw, california, coastline, wave, tourism, glow, water,
touristattraction, reflection, sandiego, light, seaside, ocean, sand, reflecting, sunset,
rock, beachculture, blackwhite

bicycle cyclist, 2wheelsgood, whatswheeliegood, cycling, cog, bicyclist, bicycling,
fixiewhippingood, bike, fixie, bicycle, fixed, biking, fixedgear

boat vell, marinaportvell, engaged, boardwalk, street, vatalonia, port, boat, sailboat,
portvell, engagement, sail, espana, band, marina, pier, spain, engage, reflection,
harbor, barcelona, mast, tonemapped, 400d

bridge beautiful, bridge, lavender, high, city, wire, luz, sky, greenville, suspension, white,
greenvillesc, park, dark, southcarolina, fall, cityscape, line, upstate, light, tree,
suspensionbridge, night, sc, river

car harney, ford, illinois, myoldpostcards, leeannharney, il, owner, coupe, chromeengine,
backend, taillight, automobile, route66, custom, tail, motorvehicle, vintagecar,
fomoco, international, fin, collectiblecar, 2012, custombuilt, september21232012, auto,
dougthompson, motherroadfestival, 1950, 9212312, convertible, fordmotorcompany,
classiccar, 2door, worldcars, car, ghostflames, vonliski, rearend, sidepipes,
antiquecar, springfield, frankharney, deluxe, carsonconvertibletop, oldcar

dog k10d, cute, pentax, cane, labrador, golden, sweet, canon, canine, retreiver, portrait,
funny, eye, winter, pet, lake, perro, animal, puppy, happy, brown, play, abigfave,
labradorretriever, lab, bw, sigma1020mm, pup, chala, retriever, dog, nose, fun,
chien

flower stamen, plant, flower, tamron90mmlens, garden, 360pxflash, blossom, petal,
000afflash, pentaglottissempervirens, sonya100, 4, bloom, dioptrelenses,
kenkouniplus25extensiontube

mountain mountain, september, canada, provincial, chilliwack, mountjudgehoway, snow,
pacificranges, staveriver, coastmountains, granite, bc, park, judgehoway, judge, howay,
alpine, double, mount, thejudge, summit, britishcolumbia, fraservalley, peak

tiger tigris, zurich, panthera, felid, flickrbigcats, impressedbeauty, portrait, close, face,
openmouth, siberiantiger, feline, young, zoo, bigcat, standing, head, big, kitty,
tiger, wild, closeup, stripe, schweiz, coto, striped, wildcat, nikon, zürich,
amurtiger, goldstaraward, tigre, cat, d300, pantheratigris, switzerland



Table 4: Comparison of proposed approaches for rel-
evant image retrieval. Skip-gram is our approach
based on the proposed community language model
only. Skip-gram+vr denotes results obtained after
additional visual re-ranking. Reported scores are
average precision. Best results are marked in bold-
face.

concept baseline skip-gram skip-gram+vr

airplane 0.457 0.797 0.237

beach 0.512 0.615 0.812

bicycle 0.476 0.850 0.993

boat 0.549 0.712 0.936

bridge 0.450 0.611 0.513

car 0.621 0.597 0.162

dog 0.758 0.885 0.953

flower 0.828 0.941 0.980

mountain 0.619 0.863 0.977

tiger 0.551 0.803 0.959

Mean AP 0.582 0.765 0.752

approach, we see a significant drop in the reported average
precision when applying visual re-ranking. This is likewise
true for “car” where the baseline approach even outperforms
the textual model by 2%. Considering the top ranked image
used as seed image for visual re-ranking for both classes (see
Table 3) we see that the image ranked highest according to
our language model for the category “airplane” actually de-
picts an airport (although the number of found vocabulary
tags indicate a high relevance for the “airplane” category).
Visual re-ranking is therefore based on an airport image and
fails to capture essential features of airplanes. Similarly, the
highest ranked image for the category “car” actually depicts
the rear light of an old car. Both misclassifications heavily
decrease the achieved AP score and thus also affect the mean
average precision score which is therefore slightly worse for
the combination of language model and visual re-ranking.
To avoid this in future, we plan to include more than just
the top ranked photo for computation of visual similarities.
An option that we consider is to train a single-class classifier
based on the top-n highest ranked candidates according to
our language model.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have presented an approach to retrieve

relevant images from a large corpus of Flickr images. We
have started by extending the MIRFLICKR-1M collection
by additional user generated annotations data which we
make publicly available. Using the tagset of all images we
have trained a word2vec based community language model.
Our method starts by retrieving the top-n candidate images
according to the language model and we further refine results
based on computation of deep visual feature representations.
Reported evaluation results prove the superiority of our ap-

proach over a baseline method that retrieves images based
on exact tag matching.

The work presented here is only a first step towards ex-
ploitation of community photo data for visual concept clas-
sification. Currently, image relevance estimation for a given
concept is based on manual assessment of a single user. An
image is considered relevant if it clearly depicts the scene
or object without any major occlusion. As a matter of fact,
this implies a strong bias towards the respective evaluator.
In future, we will therefore consider relevance estimations
of different evaluators and use inter-annotator agreement in
order to obtain more objective assessments.

As discussed we aim to include further annotation data
such as title, description and Flickr group information into
our language model. Second, we aim to optimize parame-
ters such as the number k most similar terms used to extend
our initial query. Furthermore, we will train a classifier that
considers the top-n candidate images to improve visual re-
ranking. Finally, we will test the retrieved results in clas-
sification scenarios, i.e. we will evaluate the performance
achieved by visual concept classifiers when trained on pho-
tos returned using our methods.
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