
Scheduling Refresh Queries for Keeping Results from a
SPARQL Endpoint Up-to-Date

(Short Paper)

Magnus Knuth1, Olaf Hartig2, and Harald Sack1

1 Hasso Plattner Institute, University of Potsdam, Germany
{magnus.knuth|harald.sack}@hpi.de

2 Dept. of Computer and Information Science (IDA), Linköping University, Sweden
olaf.hartig@liu.se

Abstract. Many datasets change over time. As a consequence, long-running ap-
plications that cache and repeatedly use query results obtained from a SPARQL
endpoint may resubmit the queries regularly to ensure up-to-dateness of the re-
sults. While this approach may be feasible if the number of such regular re-
fresh queries is manageable, with an increasing number of applications adopting
this approach, the SPARQL endpoint may become overloaded with such refresh
queries. A more scalable approach would be to use a middle-ware component at
which the applications register their queries and get notified with updated query
results once the results have changed. Then, this middle-ware can schedule the
repeated execution of the refresh queries without overloading the endpoint. In this
paper, we study the problem of scheduling refresh queries for a large number of
registered queries by assuming an overload-avoiding upper bound on the length
of a regular time slot available for testing refresh queries. We investigate a variety
of scheduling strategies and compare them experimentally in terms of time slots
needed before they recognize changes and number of changes that they miss.

1 Introduction

Many datasets on the Web of Data reflect data related to current events or ongoing
activities. Thus, such datasets are dynamic and evolve over time [9]. As a consequence,
query results that have been obtained from a SPARQL endpoint may become outdated.
Therefore, long-running applications that cache and repeatedly use query results have
to resubmit the queries regularly to ensure up-to-dateness of the results.

There would be no need for such regular tests if SPARQL endpoints would pro-
vide information about dataset modifications. There exist manifold approaches for pro-
viding such information. Examples are cache validators for SPARQL requests (using
HTTP header fields such as Last-Modified or ETag) [15] and publicly available da-
taset update logs (as provided by DBpedia Live at http://live.dbpedia.org/changesets/).
Unfortunately, existing SPARQL endpoints rarely support such approaches [6], nor is

This work was funded by grants from the German Government, Federal Ministry of Education
and Research for the project D-Werft (03WKCJ4D).

http://live.dbpedia.org/changesets/


update information provided in any other form by the dataset providers. The informa-
tion needed has to be generated by the datastore underlying the SPARQL endpoint or
by dataset wrappers that exclusively control all the updates applied to the dataset, which
is often not possible, e.g. in the case of popular RDB2RDF servers, as they typically
work as one-way RDF exporters.

With an increasing number of applications re-executing their queries, the SPARQL
endpoint might become overloaded with the refresh queries. A more scalable approach
would be to use a middle-ware component at which the applications register their
queries and get notified updates once the query results have changed. A main use case
of such a middle-ware is the sparqlPuSH approach to provide a notification service for
data updates in RDF stores [11]. sparqlPuSH tracks changes of result sets that are pub-
lished as an RSS feed and broadcasted via the PubSubHubbub protocol. However, the
existing implementation of sparqlPuSH is limited to the particular use case of micro-
posts and circumvents the problem of detecting changes by expecting dataset updates
to be performed via the sparqlPuSH interface. To generalize the idea of sparqlPuSH
scheduling the re-evaluation of SPARQL queries has been identified as an unsolved
research problem [8].

In this paper, we study this problem of scheduling refresh queries for a large number
of registered SPARQL queries; as an overload-avoiding constraint we assume an upper
bound on the length of time slots during which sequences of refresh queries can be run.
We investigate various scheduling strategies and compare them experimentally. For our
experiments, we use a highly dynamic real-world dataset over a period of three months,
in combination with a dedicated set of queries. The dataset (DBpedia Live) comprises
all real-time changes in the Wikipedia that are relevant for DBpedia.

The main contributions of the paper are an empirical evaluation of a corpus of real-
world SPARQL queries regarding result set changes on a dynamic dataset and an experi-
mental evaluation of different query re-evaluation strategies. Our experiments show that
the change history of query results is the main influential factor, and scheduling strate-
gies based on the extent of previously recognized changes (dynamics) and an adaptively
allocated maximum lifetime for individual query results provide the best performances.

The paper is structured as follows: Sec. 2 discusses related work. Sec. 3 provides
definitions and prerequisites. These are needed for Sec. 4 which introduces the schedul-
ing strategies used for the experiments. Sec. 5 and Sec. 6 describe the experimental
setup and the applied evaluation metrics, respectively. In Sec. 7 we present the experi-
mental results and discuss them in Sec. 8.

2 Related Work

A variety of existing applications is related to change detection of query results on dy-
namic RDF datasets, such as (external) query caching [10], partial dataset update [2],
as well as notification services [11]. However, even though Williams and Weaver show
how the Last-Modified date can be computed with reasonable modifications to a
state-of-the-art SPARQL processor [15], working implementations are rare. In fact,
Kjernsmo has shown in an empirical survey that only a miniscule fraction of public
SPARQL endpoints actually support caching mechanisms on a per-query basis [6].



To overcome this lack of direct cache indicators, alternative approaches are required
to recognize dataset updates. The most common approach is to redirect updates through
a wrapper that records all changes [10,11]. However, this approach is not applicable for
datasets published by someone else. If data publishers provide information on data-
set updates, this information can be analyzed. For instance, Endris et al. introduce an
approach to monitor the changesets of DBpedia Live for relevant updates [2] (such a
changeset is a log of removed and inserted triples). Tools for dataset update notification,
such as DSNotify [12] and Semantic Pingback [14], are available but rarely deployed.

Since the aforementioned cache indicators and hints for change detection are miss-
ing almost entirely in practice, we rely on re-execution of queries. Apparently, such an
approach causes overhead in terms of additional network traffic and server load.In order
to reduce this overhead we investigate effective scheduling strategies in this paper. A
similar investigation in the context of updates of Linked Data has been presented by
Dividino et al. [1]. The authors show that change-aware strategies are suitable to keep
local data caches up-to-date. We also evaluate a strategy adopted from Dividino et al.’s
dynamicity measure. We observe that, in our context, this strategy performs well for
highly dynamic queries, but it is prone to starvation for less dynamic queries.

Query result caches are also used for database systems where the main use case is
to enhance the scalability of backend databases for dynamic database-driven websites.
The most prominent system is Memcached3 which supports the definition of an expi-
ration time for individual cache entries, as well as local cache invalidation, e. g. when
a client itself performs an update. Consequently, updates from other sources cannot be
invalidated. More sophisticated systems, such as the proxy-based query result cache
Ferdinand [3], use update notifications to invalidate local caches.

3 Preliminaries

In this paper we consider a dynamic dataset, denoted by D, that gets updated continu-
ously or in regular time intervals. We assume a sequence

#»T = (t1, t2, . . . , tn) of con-
secutive points in time at which the dataset constitutes differing revisions. Additionally,
we consider a finite set Q of SPARQL queries. Then, for every time point ti in

#»T and
for every query q ∈ Q, we write result(q, i) to denote the query result that one would
obtain when executing q over D at ti. Furthermore, let Ci ⊆ Q be the subset of the
queries whose result at ti differs from the result at the previous time point ti−1, i.e.,

Ci =
{
q ∈ Q | result(q, i) 6= result(q, i− 1)

}
.

The overall aim is to identify a greatest possible subset of Ci at each time point ti.
A trivial solution to achieve this goal would be to execute all queries from Q at all time
points. While this exhaustive approach may be possible for a small set of queries, we as-
sume that the size of Q is large enough for the exhaustive approach to seriously stress,
or even overload, the query processing service. Therefore, we consider an additional
politeness constraint that any possible approach has to satisfy. For the sake of simplic-
ity, in this paper we use as such a constraint an upper bound on the size of the time

3 http://www.memcached.org/

http://www.memcached.org/


slots within which approaches are allowed to execute a selected sequence of queries for
the different time points. Hereafter, let KmaxExecTime be this upper bound, and, for any
possible approach, let Ei ⊆ Q be the (refresh) queries that the approach executes in the
time slot for time point ti. Hence, if we let execTime(q, i) denote the time for executing
q over the snapshot of D at ti, then for all past time points we have

KmaxExecTime ≥
∑
q∈Ei

execTime(q, i).

To select a sequence of queries to be executed within the time slot for a next time
point, the approaches may use any kind of information obtained by the query executions
performed during previous time slots for earlier time points. For instance, to select the
sequence of queries for a time point ti, an approach may use any query result result(q, j)
with j < i and q ∈ Ej , but it cannot use any result(q′, j′) with q′ /∈ Ej′ or with j′ ≥ i.

As a last preliminary, in the definition of some of the approaches that we are going to
introduce in the next section we write prevExecs(q, i) to denote the set of all time points
for which the corresponding approach executed query q ∈ Q before arriving at time
point ti; i.e. prevExecs(q, i) = {j < i | q ∈ Ej}. In addition, we write lastExec(q, i) to
denote the most recent of these time points, i.e. lastExec(q, i) = max

(
prevExecs(q, i)

)
.

4 Scheduling Strategies

This section presents the scheduling strategies implemented for our evaluation. We be-
gin by introducing features that may affect the behavior of such strategies.

Typically, dataset providers do not offer any mechanism to inform clients about data
updates, neither whether the data has changed nor to what extent. Therefore, we focus
on scheduling strategies that are dataset agnostic, i. e. strategies that do not assume in-
formation about what has changed since the last query execution. Hence, all features
that such a strategy can exploit to schedule queries for the next refresh time slot origi-
nate from (a) the queries themselves, (b) an initial execution of each query, and (c) the
ever growing history of successful executions of the queries during previous time slots.

We have implemented seven scheduling policies known from the literature. We clas-
sify them into two groups: non-selective and selective policies. By using a non-selective
scheduling policy, potentially all registered queries are evaluated according to a rank-
ing order until the execution time limit (KmaxExecTime) has been reached. For every time
point ti in

#»T , a new ranking for all queries is determined. The queries are ranked in
ascending order using a ranking function rank(q, i). In a tie situation, the decision is
made based on the age of the query, and finally the query id.

Round-Robin (RR) treats all queries equal disregarding their change behavior and ex-
ecution times. It executes the queries for which the least current result is available.

rankRR(q, i) =
1

i− lastExec(q, i)
(1)

Shortest-Job-First (SJF) prefers queries with a short estimated runtime (to execute as
many queries per time slot as possible). The runtime is estimated using the median



value of runtimes from previous executions. Additionally, the exponential decay
function e−λ(i−lastExec(q,i)) is used as an aging factor to prevent starvation.

rankSJF (q, i) = e−λ(i−lastExec(q,i))medianj∈prevExecs(q,i)
(
execTime(q, j)

)
(2)

Longest-Job-First (LJF) uses the same runtime estimation and aging as SJF but prefers
long estimated runtimes, assuming such queries are more likely to produce a result.

rankLJF (q, i) =
e−λ(i−lastExec(q,i))

medianj∈prevExecs(q,i)
(
execTime(q, j)

) (3)

Change-Rate (CR) prioritizes queries that have changed most frequently in the past.
A decay function e−λt is used to weight the change added by its respective age.

rankCR(q, i) =
∑

j∈prevExecs(q,i)

(
e−λ(i−j) ∗ change(q, i)

)
, (4)

where: change(q, i) =

{
1 if result(q, j) 6= result(q, lastExec(q, j)),

−1 else.
(5)

Dynamics-Jaccard (DJ) has been proposed as a best-effort scheduling policy for data-
set updates [1]. Here, for DESCRIBE and CONSTRUCT queries we compute the Jac-
card distance on RDF triples, and on the query solutions for SELECT queries. For
ASK queries, the distance is either 0 or 1.

rankDJ(q, i) =
∑

j∈prevExecs(q,i)

(
e−(i−j) ∗ jaccard(q, j)

)
(6)

where: jaccard(q, j) = 1−
∣∣result(q, j) ∩ result(q, lastExec(q, j))

∣∣∣∣result(q, j) ∪ result(q, lastExec(q, j))
∣∣ (7)

Instead of ranking all queries, the selective scheduling policies select a (potentially
ranked) subset of queries for evaluation at a given point in time ti. Queries from this
subset that do not get evaluated due to the execution time limit (KmaxExecTime) are priv-
ileged in the next time slot ti+1.

Clairvoyant (CV) is assumed to have full knowledge of all query results at every point
in time and, thus, is able to determine the optimal schedule.

Time-To-Live (TTL) determines specific time points when a query should be exe-
cuted. To this end, each query is associated with a value indicating a time interval
after which the query needs to be re-evaluated. After an evaluation, if the query re-
sult has changed, this time-to-live value is divided in half or, alternatively, reset to
the initial value of 1; if the result did not change, the value is doubled up to a fixed
maximum value (max). We investigate different values as maximum time-to-live.

5 Experimental Setup

This section describes the test setup with which we evaluated the effectiveness of the
scheduling strategies, and in the next section we introduce the evaluation metrics.



For our experiments we use the DBpedia Live dataset [5] because it provides con-
tinuous fine-grained changesets, which are necessary to reproduce a sufficient number
of dataset revisions. Moreover, while DBpedia Live and DBpedia share the same struc-
tural backbone (both make use of the same vocabularies and are extracted from English
Wikipedia articles), the main difference is that the real-time extraction of DBpedia Live
makes use of different article revisions. Therefore, queries for DBpedia work alike for
DBpedia Live. We selected the three-months period August–October 2015 for replay-
ing the changesets, starting from a dump of June 2015 (http://live.dbpedia.org/dumps/
dbpedia 2015 06 02.nt.gz) applied with subsequent updates for June and July 2015. In
total we have 2,208 hourly updates for our three-months period (92 days * 24 hours),
and there are 437 revisions (hours) without any changes. The dataset size varies between
398M and 404M triples for the different revisions.

To perform SPARQL query executions on a dynamic dataset it is essential to use
queries that match the dataset. We use a set of real-world queries from the Linked
SPARQL Queries dataset (LSQ) [13] which contains 782,364 queries for DBpedia. We
randomly selected 10,000 queries from LSQ after filtering out those having a runtime
of more than 10 minutes or producing parse or runtime errors. The query set contains
11 DESCRIBE, 93 CONSTRUCT, 438 ASK, and 9458 SELECT queries, and is available
at https://semanticmultimedia.github.io/RefreshQueries/data/queries.txt. DBpedia Live
changes gradually, but obviously the structural backbone of DBpedia remains. As a
result, 4,423 out of our 10,000 queries deliver a non-empty query result on the first
examined revision (4,440 over all examined revisions). Concerning result changes4 we
observe that only a small fraction of the queries is affected by the dataset updates (up to
32 queries per revision, 352 queries within all revisions). Furthermore, we observe that
query results may also change after being constant for a long time. The majority (191) of
the 352 queries affected by the dataset updates change exactly once, 38 queries change
twice, and we recognize that the query results change in very irregular intervals with
a high variation between the individual queries. The overall runtime of all queries per
revision ranges from 440 to 870 seconds, whereas the runtime for all affected queries
ranges up to 50.1 seconds. For more details about the characteristics of the dataset re-
visions and the queries we refer to the extended version of this paper [7].

The dataset replay and the query executions have been performed on a 48-core
Intel(R) Xeon(R) CPU E5-2695 v2 @2.40GHz and an OpenLink Virtuoso Server 07.10
with 32GB reserved RAM. We provide the data gathered from the experiments in form
of a MySQL database dump and an RDF dump with the query executions as planned
by the evaluated strategies5.

6 Evaluation metrics

An ideal scheduling strategy should satisfy a number of requirements:

4 We consider the result of a query as changed if it is not isomorphic to the result returned for
the query in the previous evaluation. For queries that use the ORDER BY feature we also check
for an equal bindings sequence. If ORDER BY is not used in the query, the binding order is
ignored as SPARQL result sets are then expected in no specific order [4].

5 Both datasets are available at https://semanticmultimedia.github.io/RefreshQueries/

http://live.dbpedia.org/dumps/dbpedia_2015_06_02.nt.gz
http://live.dbpedia.org/dumps/dbpedia_2015_06_02.nt.gz
https://semanticmultimedia.github.io/RefreshQueries/data/queries.txt
https://semanticmultimedia.github.io/RefreshQueries/


– Effectiveness: It should only evaluate queries that have changed, which reduces
unnecessary load to the SPARQL endpoint.

– Efficiency: It should evaluate queries that have changed as soon as possible, which
reduces the out-of-date time and helps to not miss result changes.

– Avoid starvation: Results of queries that are susceptible to change (i.e., there is no
reason to believe the query will always produce the same result) may change at any
point in time even if the results have been constant so far. It should be ensured that
such queries are executed at some point.

To compare the query execution strategies we simulate their query selection with
different configurations over all 2,208 dataset revisions (t1, . . . , t2208). The initial query
results {∀q ∈ Q : result(q, 0)} for t0 < 08/01 are available to every scheduling strategy
right from the start. We compute the following key metrics:

Total query executions number of query executions performed.
Irrelevant executions query executions without recognizing a change, equals to the

total number of executions minus the relevant ones. Irrelevant executions create
unnecessary load to the endpoint and reduce the effectiveness.

Relevant executions query executions where a change could be detected compared to
the last execution, i. e. there was at least one result change since the execution; if
there was more than a single change, these updates are counted as missed.

Effectivity the ratio of relevant query executions to total executions.
Absolute delay time between the optimal and actual re-execution (q, i), summed over

all queries, which allows to measure the overall efficiency of the scheduling strategy.
Maximum delay the longest delay for an individual query execution determines the

maximum out-of-date time to be expected from the scheduling strategy for an indi-
vidual query result. Overly long out-of-date times indicate a starvation problem.

Absolute miss number of changes that are recognized, summed over all queries.
Maximum miss the maximum number of missed result updates across all queries.

7 Experimental Results

We have conducted the experiment for three different values of KmaxExecTime: 10 sec,
50 sec, and 1,000 sec. This variation of the upper bound execution time allows us to
pretend different workloads: As we assume a fixed one-hour interval stepping with
10,000 queries, the workload can be scaled in terms of the number of queries and the
time interval, respectively. In the following we present the results for each configuration.
The metrics as introduced in Sec. 6 are listed in tabular form.

Table 1 shows the results for KmaxExecTime = 1,000 sec, which, for our query set, is
equivalent to unlimited runtime; that is, all queries could be executed for every revision.

Consequently, the theoretically optimal CV policy has no misses and delay, and ex-
ecutes only relevant queries. In contrast, as the non-selective scheduling policies (RR/
SJF/LJF/CR/DJ) execute all queries and therefore detect all relevant changes, they exe-
cute a massive amount of irrelevant queries as overhead, resulting in a low effectivity.

The selective TTL policy reduces the number of query executions effectively, and
more updates are detected by resetting a query’s time-to-live when a change has been



detected. The best performing configuration tested (TTLmax=32,reset) detects 81 % of
all changes (12,311 of 15,256) while performing only 3.4 % of the query executions
compared to the non-selective policies (738,566 vs. 22,064,744). And still, TTLmax=256

detects 75 % (11,459) with 0.75 % query executions (154,185). The reduced query over-
head comes at the expense of more delay and in particular higher maximum delay times.

For a runtime limitation of 50 seconds, which corresponds roughly to the maxi-
mum runtime needed for executing all relevant queries of the query set (cf. Sec. 5),
the CV policy has no miss, but cannot execute all queries on time; instead, it delays
three relevant executions for one revision each. As expected, SJF has most and LJF has
least query executions given an execution time limitation, because short respectively
long running queries are preferred. As the decay factor λ is increased, in both cases
the number of executed queries tends towards RR. Nevertheless, none of both strategies
outperforms RR regarding relevant query executions, delay, or number of misses. The
change rate based policies (CR) show that the result history is a good indicator and
92.9 % of changes were detected by CRλ=0.0 and 66.7 % by CRλ=0.5. The dynamicity-
based policy (DJ) detects by far the most result updates (99.7 %) and produces the least
delay; the effectiveness is above CR. The TTL configurations show comparable results
to the 1000 seconds runtime limitation, i. e. the number of total query executions, de-
tected changes, and the delay remain stable with the 50 seconds limit. Again, we see
most result updates are detected by the TTLmax=32,reset configuration.

By looking on the results for the most restrictive execution time limit of 10 seconds
in Table 2, we observe that even an optimal scheduling algorithm is not able to detect
all result updates in the dataset anymore: the CV policy misses 722 query updates.

LJF closely outperforms RR regarding update detection. RR again has the smallest
maximum delay per query. SJF is worse than both LJF and RR in all aspects. The
change-based policy (CR) detects updates more effectively. Without decay (λ = 0.0) it
happens that queries that did not change so far are executed very rarely, which results
in high delays. Since the maximum miss is relatively high and the total miss is low, we
infer that only a small number of frequently changing queries is affected.

The dynamicity-based policy (DJ) detects relatively many updates without execut-
ing too many irrelevant queries and, thus, is most effective for the scarce time limita-
tion. Nevertheless, this policy is not starvation-free; it ignores queries with less updates.
Due to the low dynamicity measure they reach at some point, they henceforth receive a

Table 1. Config KmaxExecTime = 1000sec

total qe irrelevant relevant eff. (%)
abs

delay
max
delay

abs
miss

max
miss

CV 15,256 0 15,256 100 0 0 0 0
RR/SJF/LJF/CR/DJ 22,080,000 22,064,744 15,256 .07 0 0 0 0
TTLmax=32 744,565 732,685 11,880 1.60 26,866 31 3,376 19
TTLmax=32,reset 750,877 738,566 12,311 1.64 23,492 31 2,945 19
TTLmax=64 405,175 393,507 11,668 2.88 40,747 63 3,588 19
TTLmax=128 245,246 233,683 11,563 4.71 61,639 127 3,693 19
TTLmax=128,reset 252,714 240,550 12,164 4.81 53,655 127 3,092 19
TTLmax=256 165,644 154,185 11,459 6.92 86,202 255 3,797 19



Table 2. Config KmaxExecTime = 10sec

total qe irrelevant relevant eff. (%)
abs

delay
max
delay

abs
miss

max
miss

CV 14,484 0 14,484 100 2,481 2 772 2
LJFλ=0.5 690,086 687,542 2,544 .37 45,619 35 12,712 31
RR 865,105 862,632 2,473 .29 43,097 31 12,783 28
SJFλ=0.5 1,001,825 999,526 2,299 .23 43,498 38 12,957 34
CRλ=0.0 109,715 99,791 9,924 9.05 152,346 678 5,332 210
CRλ=0.5 676,868 671,640 5,228 .77 45,489 58 10,028 46
DJ 17,519 11,363 6,156 35.1 499,860 2,206 9,100 1750
TTLmax=32 621,510 615,662 5,848 .94 37,332 39 9,408 15
TTLmax=256 162,407 152,767 9,640 5.94 95,893 258 5,574 18

very low rank and are not executed anymore. In contrast, queries with more frequently
changing results are preferred and get executed repeatedly. The policy actually only se-
lected 6,282 queries6 from the query set in total, which indicates a cold start problem.
As a result, both the maximum delay and the maximum miss rise significantly.

The TTL policies produce high detection rates for short runtime limitations as well.
The maximum delay grows with the maximum time-to-live and max = 32 gives the
lowest total delays. It can be seen that more changes are detected with a larger time-to-
live, but this comes at the cost of delayed update recognition. The maximum numbers
of missed updates are low for all TTL configurations compared to the other policies,
even though the delay increases.

8 Conclusions

This paper investigates multiple performance metrics of scheduling strategies for the re-
execution of queries on a dynamic dataset. The experiments use query results gathered
from a large corpus of SPARQL queries executed at more than 2,000 time points of the
DBpedia Live dataset, which covers a period of three months. The data collected in the
experiments has been made public for comparison with other scheduling approaches.

From the experimental results we conclude that there is no absolute winner. The
execution-time-based policies, Longest-Job-First and Shortest-Job-First, are not able
to compete. Compared to Round-Robin they generally perform worse. The main advan-
tage of Round-Robin, besides its simplicity, is the constantly short maximum delay, but
in any setting it can not convince regarding total delay and change detection. Change-
Rate is able to detect a fair amount of changes. An aging factor should be used under
scarce execution time restrictions to prevent long delays. Assuming a limited execution
time, the Dynamics-Jaccard policy shows best change recognition rates. The effective-
ness of this policy as shown in prior work can be confirmed by our results. But, as the
execution time limit becomes shorter, this policy tends to disregard queries with low
update frequencies. Therefore, it is also not starvation-free. As Dividino [1] considered

6 The number of distinct executed queries is not shown in the table, since it is usually 10,000 for
all policies except CV.



only four iterations, the update frequency of less frequently updated resources could
not be measured, but is likely to happen in the dataset update scenario as well. The
Time-To-Live policy shows a good performance for update detection and can be well
adjusted to a certain maximum delay. It keeps the number of maximum missed changes
constant. The alternative configuration to reset the time-to-live value instead of dividing
it in half when a change has been detected, proves a better performance and results in
higher detection rates and also in reduced delays.

It could be shown, that scheduling strategies based on previously observed changes
produce better predictions. The Time-To-Live policy can be well adapted to required
response times. While the Change-Rate and Dynamics policies proved to detect most
updates, they tend to neglect less frequently changing queries. Given a less strict ex-
ecution time limit, Dynamics-Jaccard is the best candidate, else Time-To-Live can be
recommended because it is starvation-free. For future applications it seems reasonable
to combine these scheduling approaches into a hybrid scheduler.

References

1. Dividino, R., Gottron, T., Scherp, A.: Strategies for efficiently keeping local linked open data
caches up-to-date. In: The Semantic Web - ISWC 2015, pp. 356–373. Springer (2015)

2. Endris, K.M., Faisal, S., Orlandi, F., Auer, S., Scerri, S.: Interest-based RDF update propa-
gation. In: The Semantic Web-ISWC 2015, pp. 513–529. Springer (2015)

3. Garrod, C., Manjhi, A., Ailamaki, A., Maggs, B., Mowry, T., Olston, C., Tomasic, A.: Scal-
able query result caching for web applications. Proc. of the VLDB Endowment 1(1) (2008)

4. Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C Recommendation (2013),
https://www.w3.org/TR/sparql11-query/

5. Hellmann, S., Stadler, C., Lehmann, J., Auer, S.: DBpedia Live extraction. In: On the Move
to Meaningful Internet Systems: OTM 2009, vol. 5871, pp. 1209–1223. Springer (2009)

6. Kjernsmo, K.: A survey of http caching implementations on the open semantic web. In: The
Semantic Web. Latest Advances and New Domains. pp. 286–301. Springer (2015)

7. Knuth, M., Hartig, O., Sack, H.: Scheduling Refresh Queries for Keeping Results from a
SPARQL Endpoint Up-to-Date (Extended Version). CoRR abs/1608.08130 (2016)

8. Knuth, M., Reddy, D., Dimou, A., Vahdati, S., Kastrinakis, G.: Towards linked data update
notifications - reviewing and generalizing the sparqlPuSH approach. In: Proc. NoISE (2015)

9. Käfer, T., Abdelrahman, A., Umbrich, J., O’Byrne, P., Hogan, A.: Observing linked data
dynamics. In: The Semantic Web: Semantics and Big Data: ESWC. Springer (2013)

10. Martin, M., Unbehauen, J., Auer, S.: Improving the performance of semantic web applica-
tions with SPARQL query caching. In: Proc. of ESWC. Springer (2010)

11. Passant, A., Mendes, P.N.: sparqlPuSH: Proactive notification of data updates in RDF stores
using PubSubHubbub. In: Proc. of Scripting for the Semantic Web Workshop (2010)

12. Popitsch, N., Haslhofer, B.: DSNotify–a solution for event detection and link maintenance
in dynamic datasets. Journal of Web Semantics 9(3), 266–283 (2011)

13. Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.C.N.: LSQ: The linked SPARQL
queries dataset. In: The Semantic Web - ISWC 2015. Springer (2015)

14. Tramp, S., Frischmuth, P., Ermilov, T., Auer, S.: Weaving a social data web with semantic
pingback. In: Knowledge Engineering and Management by the Masses. Springer (2010)

15. Williams, G.T., Weaver, J.: Enabling fine-grained HTTP caching of SPARQL query results.
In: The Semantic Web–ISWC 2011, pp. 762–777. Springer (2011)

https://www.w3.org/TR/sparql11-query/

	Scheduling Refresh Queries for Keeping Results from a SPARQL Endpoint Up-to-Date
	Introduction
	Related Work
	Preliminaries
	Scheduling Strategies
	Experimental Setup
	Evaluation metrics
	Experimental Results
	Conclusions


