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Abstract. Domain modeling is an important activity in the early stages
of software projects to achieve a common understanding of the problem
area among project participants. Domain models describe concepts and
relationships of respective application fields using a modeling language
and domain-specific terms. Creating these models requires software engi-
neers to have detailed domain knowledge and expertise in model-driven
development. Collecting domain knowledge is a time-consuming man-
ual process that is rarely supported in current modeling environments.
In this paper, we describe an approach that supports domain model-
ing through formalized knowledge sources and information extraction
from text. On the one hand, domain-specific terms and their relation-
ships are automatically queried from existing knowledge bases. On the
other hand, as these knowledge bases are not extensive enough, we have
constructed a large network of semantically related terms from natural
language data sets containing millions of one-word and multi-word terms
and their quantified relationships. Both approaches are integrated into a
domain model recommender system that provides context-aware sugges-
tions of model elements for virtually every possible domain. We report
on the experience of using the recommendations in various industrial and
research environments.

Keywords: Domain Modeling, Recommender System, Semantic Net-
work, Information Extraction, Knowledge-Based Modeling

1 Introduction

1.1 Motivation

Model-driven engineering (MDE) suggests the systematic use of models as pri-
mary development artifacts for software system building [50]. These models de-
scribe various aspects of a system at a higher level of abstraction using particular
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modeling languages (e. g., UML, entity relationship diagrams, or domain-specific
languages). MDE aims to continuously refine models and generate source code.
As a result, the effort of manually creating code with programming languages is
reduced and recurring tasks are automated.

An important activity in early phases of model-driven software development
is domain modeling [14, 16]. Its goal is to create models that reflect the con-
ceptual structures of a business domain. These models include domain-specific
terms and their relationships to improve the understanding of the problem area
among stakeholders [6].

Domain modeling requires knowledge in model-driven software development,
e.g., finding the right abstractions, creating meta-models, and the correct use of
generalizations, specializations and aggregations. Assuming that software engi-
neers have these skills, these techniques are typically applied to different areas
of application and industries. Engineers must have detailed knowledge of the
domain to build domain-specific models and derive corresponding refined im-
plementation models. Building domain knowledge is a time-consuming manual
process (such as talking to domain experts and reading specific documentation).
Recent modeling environments (e.g., Eclipse Modeling Project, MagicDraw) pro-
vide sophisticated assistance for the correct use of modeling languages and veri-
fication of models, but support for the actual content and meaning of the model
elements is very limited [43, 27].

1.2 Problem Statement

Domain modeling was and still is a challenging task [36, 46]. It involves gathering
a lot of information that comes from different types of people, documents, and
other sources of knowledge. Domain modeling is a knowledge-intensive process
and requires intensive collaboration between engineers and domain experts. Au-
tomation of domain modeling was addressed by research [41], but support for
this activity is still an open problem [19]. The key challenges of domain modeling
and knowledge acquisition are as follows.

Solutions based on reusable domain information libraries such as Domain
Engineering [42] suffer from a cold start problem. Reusable domain knowledge
will only be available if enough solutions have already been developed using this
methodology, while new projects already want to benefit from this domain knowl-
edge. In the end, domain models often have to be developed from scratch [18].

Collaborations between technical stakeholders (modeling experts) and non-
technical stakeholders (domain experts) require a time-consuming learning phase
during a project[26]. Domain experts are often unfamiliar with modeling nota-
tions, and modeling experts usually need to develop a deeper understanding
of domain concepts and terms in order to properly organize them into domain
models. The greatest effort is at the modeler’s desk, as it is usually more time-
consuming to find, understand, and process all available domain information
than to learn a few visual modeling concepts.

Domain information is contained in arbitrary sources. Structured informa-
tion sources (e.g., databases, XML documents, knowledge bases, models) may
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be available, but unified access to all sources is in most cases not available and
can only be facilitated by building additional search engines. Unfortunately, the
amount of structured information sources is negligible compared to unstructured
information. It is estimated that 80% of existing data is unstructured 4. Domain
information is often contained in natural language documents (e.g., textbooks,
manuals, requirement specifications). Relevant facts must first be manually lo-
cated and then interpreted.

Finally, the availability of large conceptual knowledge bases containing do-
main information is very limited. There are few handcrafted semantic databases
(e.g., WordNet, ConceptNet, Wikidata) that are far from covering the diversity
of possible domains. Most approaches of information extraction [9] and automat-
ically created knowledge bases (e.g., DBpedia, YAGO) focus on factual knowl-
edge at the instance level, which can not be used for domain modeling at the
conceptual level. In addition, the core of many works (e.g., YAGO, BabelNet,
DBpedia) is based on only one source of information: extraction from structured
parts of Wikipedia (e.g., info boxes, categories).

1.3 Contributions and Outline

In this article, we present a domain modeling recommender (DoMoRe) system
that contains a ready-to-use, extensive knowledge base of domain-specific terms
and their relationships. DoMoRe also uses a set of existing knowledge bases to
retrieve domain information, and is easily extensible with additional knowledge
databases. Connected knowledge sources are automatically used during modeling
to provide context-sensitive suggestions for model elements. The recommender
system is integrated with a widely used modeling tool, the Ecore Diagram Editor
of the Eclipse Modeling Project.

The rest of the paper is organized as follows. Section 2 introduces the gen-
eral approach and details the model refinement steps that our system supports.
In Section 3 we describe how existing knowledge sources are used and how the
knowledge base of related terms was created. Section 4 describes in detail the
implementation of the recommender system and how the delivery of contextual
information and search-based suggestions works. In Section 5 we report on ex-
periences with DoMoRe in different domains and scenarios. Related work can
be found in Section 6, and Section 7 concludes the article and describes future
work directions.

This paper extends [3], originally published in the proceedings of the MOD-
ELSWARD 2018 conference. In this extended version, we provide more detailed
descriptions and examples of the semantic network, additional details on the rec-
ommendation generation and on the implementation of the recommender system,
as well as additional related work.

4 https://www.forbes.com/sites/forbestechcouncil/2017/06/05/the-big-unstructured-
data-problem/ (Last accessed April, 2018)
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2 Semantic Modeling Support

In this section we introduce the concept of semantic modeling support and de-
tail our approach. Modeling: The activity of creating and refining models. In
our case these models are domain models that focus on concepts and relation-
ships of various application areas. Support : Modeling activities are assisted with
context-sensitive pieces of information. Tool support is completely automated in
contrast to guidelines or methodologies. Semantic: Modeling support focuses on
the domain-specific terms and their relationships in domain models in contrast
to syntactic modeling language assistance.

2.1 General Support Procedure

The semantic modeling support works as follows: (1) At some point of time dur-
ing domain modeling a manual change in the model is made. This is usually
referred to as model refinement, the activity in which a developer creates, modi-
fies or deletes a model element (e.g., a new class). We concentrate on supporting
the modifications that add new content to the model. All detailed scenarios are
described in the next paragraph. (2) Based on the current state of the model,
domain knowledge is acquired automatically. Knowledge acquisition is based on
the terms that are used to name the elements (e.g., class names or associa-
tion names). We pursue two strategies: First, we exploit existing structured
knowledge sources to acquire the required domain terms and their relations.
We employ mediator-based querying for a uniform access to this knowledge.
Secondly, it is a well known problem [12] that existing knowledge bases (often
created manually) do not contain enough information or do not exist at all for
respective target domains. We address this issue by the automated creation of
own semantic terminology networks from natural language datasets that cover a
variety of domains. Section 3 details both approaches. (3) Acquired knowledge
is transformed automatically into appropriate suggestions (e.g., related classes,
possible sub- or super-classes) and presented to the user. It is the goal to present
semantically related model elements that support the developer’s decisions on
what to include in the model and how to connect the elements. After that the
procedure starts all over again.

2.2 Modeling Support Scenarios

Many opportunities exist to create and manage domain models. Domain model-
ing is not necessarily bound to using one specific modeling language. For exam-
ple, UML class diagrams, ER models, and ontologies can be used. All approaches
have in common that the respective modeling language is used to express con-
ceptual structures of a domain using specific terms to improve understanding
of the problem field. Since our semantic modeling support concentrates on the
terms in domain models, the methods presented in this paper are applicable
to several modeling languages. Nevertheless, we had to exemplarily choose one
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approach to illustrate our work, namely UML-like class diagrams, because they
are the most widely used modeling paradigm in industry [40, 25].

During domain model development the user has several options to change
the model. In the following we itemize for which modeling activities what kind
of support will be accomplished. We distinguish between two different kinds of
support. First, contextual information will be provided if an element of a do-
main model is selected by the developer (Scenarios 1 and 2). Context information
includes possible related model elements with all kinds of relationships the mod-
eling language offers. Second, if a new element is created, automated suggestions
will be provided on how to name the element (Scenarios 3 to 9). The support de-
pends on the type of connection between the new element and existing elements
of the model.

Scenario 1 – Selection of a class. The goal of providing contextual informa-
tion is the recommendation of possible connected model elements together with
their types of relations for a selected domain model element. In case a class
is selected (c.f., Figure 1) possible generalizations/specializations, aggregations
(containers and parts), and associations are shown. Related classes are either
unconnected classes or classes that are connected with an association that has
no name.

Fig. 1. Contextual information for a selected class [3].

Scenario 2 – Selection of an association. If an association is selected, alterna-
tive association names, and possible other connected classes for each association
end will be shown (c.f., Figure 2). Note that if nothing is selected, contextual
information for every element of the model will be shown in a summarized form.

Fig. 2. Contextual information for a selected association [3].

Scenario 3 – Creation of a class (no connection). Modeling tools usually offer
the creation of new classes in a model without any connection. Typically, this
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happens, when classes are added to the diagram and the respective connections
are drawn afterwards (c.f., Figure 3). In this case, class name suggestions are
dependent on all existing class names in the model. Particularly, in the list of
suggestions class names should appear that are related to all of the existing
classes ordered by relevance.

Fig. 3. Suggestions of related class names when adding a class without a connection [3].

Scenario 4 – Creation of a sub class. A sub class will be created, when the
developer uses the specialization link starting from an existing class to empty
space in the diagram (c.f., Figure 4). In this case, class name suggestions are
dependent on the linked super class. In the example, different types of doctors
are shown (different kinds of medical specialists).

Fig. 4. Suggestions of sub class names when adding a specialization [3].

Scenario 5 – Creation of a super class. Analogous to the sub class creation,
a super class will be created when using the generalization link. The example
shows the recommendation of more general terms for doctor (c.f., Figure 5).

Fig. 5. Suggestions of super class names when adding a generalization [3].
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Scenario 6 – Creation of an aggregated class. In case the developer uses a
composition or aggregation link starting from an existing class, an aggregated
class will be created in the diagram. The example in Figure 6 shows possible
parts of a hospital.

Fig. 6. Suggestions of aggregated class names when adding an aggregated class [3].

Scenario 7 – Creation of a container class. If the opposite direction of a
composition or aggregation relation is used, a container class will be created. In
the example used in Figure 7, suggestions are provided what a hospital can be
part of.

Fig. 7. Suggestions of container class names when adding a container class [3].

Scenario 8 – Creation of an associated class. An associated class will be
created, if the developer draws an association link from a class to empty space
in the diagram (a new class and an association without a name will be created).
Names for the new related class will be recommended (c.f., Figure 8). This
scenario is very similar to Scenario 3, but the suggestions are dependent on the
linked class only.

Scenario 9 – Creation of association. If the developer creates an association
link between two classes, association names (verbs) will be provided. The sug-
gestions are dependent on both class names. In case the association does not
have a direction, verbs are suggested that apply to both directions.
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Fig. 8. Suggestions of associated class names when adding an associated class [3].

Fig. 9. Suggestions of association names when adding an association [3].

3 Domain Knowledge Sources

Our intended modeling support requires a large body of background knowledge
in order to provide model element suggestions for nearly every possible domain.
Since the support focuses on the terms used in the models, we concentrate on
knowledge sources that provide lexical information.

We pursue two strategies: First, we exploit existing structured knowledge
sources to acquire the required domain knowledge. Knowledge bases and ontolo-
gies are automatically queried for terms of a model to retrieve related terms.
Secondly, we target the lack of conceptual knowledge bases by the automated
creation of a semantic network of terms from natural language datasets.

3.1 Mediator-Based Knowledge Base Querying.

As described in the introduction, only a few knowledge bases exist that contain
conceptual knowledge. WordNet [15] is the most widely used lexical database for
the English language. Other important resources are BabelNet [37], a multilin-
gual encyclopedic dictionary, and Cyc [29] and ConceptNet [44], both common
sense knowledge bases. Most of the other large publicly available knowledge bases
(e.g., DBpedia, YAGO, Wikidata) consist of a relatively small ontology schema
describing the model of the data and a large body of factual knowledge. These
facts describe entities on instance level, hence, most of the content cannot be
used for domain modeling. Nevertheless, the schemata of these knowledge bases
can be used for modeling suggestions.

The greatest challenge in using these knowledge sources is the unavailabil-
ity of uniform access to lexical information. Heterogenous data models prevent
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querying the knowledge bases in a consistent way. Lexical information of terms
and their relationships exist on schema level, intermediate proprietary data mod-
els and on instance level.
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Fig. 10. Three layer mediator-wrapper architecture to retrieve terminological informa-
tion from heterogenous knowledge bases [3].

Our approach proposes a mediator-wrapper solution. A mediator allows the
interaction of a user or system with heterogeneous data sources in a uniform
way [51]. Knowledge bases remain as they are, a wrapper is responsible for
content translation, and the mediator provides a single point of access to the
information for the modeling recommendations. Figure 10 shows the architecture
of our approach. We differentiate between three different layers.

In the modeling-language-specific level, the developer uses the modeling tool
and interacts with the recommender. This layer treats elements such as classes
and associations, and the recommender proposes these types of elements based
on the content of a model.

The mediator and the mapper are in the terminology-specific level. Domain-
specific terms used in a model are relevant in this layer (e.g., nouns and their
related terms). The mediator is responsible for translating terminology-specific
content into the modeling layer and vice versa. It also manages a set of knowledge
bases and their corresponding wrappers and sends queries to them as needed.
The mapper collects and integrates results of the wrappers and provides the
information to the mediator.

In the knowledge-base-specific layer, the wrappers communicate with the
knowledge bases. Each wrapper must handle different query languages and for-
mats (such as OWL, RDF, SPARQL, JSON) and different types of modeling
(e.g., graphs, concepts, synsets). The DoMoRe recommender system supports
the automated integration of these types of data models without any devel-
opment effort:
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– Ontology schemata: concepts and relationships modeled using OWL or RDFS
classes and object properties.

– SKOS-based vocabularies: terms modeled with concepts and broader, nar-
rower, and related relationships [35].

– Lemon-based knowledge bases: a specific vocabulary for modeling lexicons
of ontologies [32].

If none of these data models are present, we support semi-automatic in-

tegration of any knowledge base that offers a SPARQL endpoint. The effort to
add a new knowledge base to the system is relatively small, it is only necessary
to specify a small set of queries for taxonomic, part/whole, related and verbal
relationships.

3.2 Extraction of Semantically Related Terms

The automated proposal of related model elements requires a comprehensive
lexicon that covers almost all possible domains and their domain-specific terms.
On the one hand, existing conceptual knowledge bases are valuable sources of
structured information, but on the other hand they are not extensive enough
to do that. For this reason, we use natural language processing techniques on a
large textual dataset to identify conceptional terms and their relationships.

The approach relies on syntactic properties of sentences and statistical fea-
tures of text corpora to perform a domain-independent extraction. Large collec-
tions of texts contain a lot of redundancy and paraphrases [8]. That is, the same
facts are repeated in several documents and formulated differently. In addition,
natural language has the property that certain lexical elements tend to co-occur
more often than others. This implies that words with similar meanings occur in
similar contexts known as the distribution hypothesis [48].

We use these features to automatically create a large database of semantically
related terms. Our methods are applied to Google Books N-Gram Corpus [33],
a dataset derived from 5 million books with over 500 billion words. It covers a
wide range of domains because it contains scientific literature from many areas
as well as fiction and non-fiction.

The dataset provides the information on how often words and phrases oc-
curred within the original text corpus (an n-gram is a sequence of n consecutive
words). For example, ”the doctor and the patient – 8,339” is one of the 700
million 5-grams in the dataset (c.f., Figure 11a). We apply part-of-speech (POS)
tagging on all n-grams to identify technical terms [52] and sum up how often con-
cept terms co-occur in different contexts (e.g., doctor – patient – 418,711 times,
c.f., Figure 11b). We exclude proper nouns and named entities (e.g., city names,
people). With this information, we obtain related terms and their frequencies
for each term and build a semantic network (c.f., Figure 11c).

The first version of SemNet was published in [1]. In the following, we de-
scribe several improvements that have been made in comparison to the original
version. SemNet contains binary noun-noun relationships as shown in the
previous paragraph. Besides that, the semantic network now features verbal
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term rel. term freq.

doctor nurse 769,932

doctor patient 418,711

doctor degree 298,385

doctor hospital 202,729
… … …

doctor consult 173,786

doctor prescribe 120,267
… … …

hospital doctor 202,729

hospital patient 370,539
… … …

hospital admit 411,666

hospital leave 380,726

hospital discharge 134,348
… … …

(b) Term co-occurrences(a) N-grams frequencies (c) Semantic network

N-gram Freq.

was admitted to the hospital 40,066

admitted to the hospital for 18,594

discharged from the hospital . 12,158

a nurse at the hospital 1,989

the patient to the hospital 8,252

a patient in the hospital 5,243

the doctor and the nurse 4,827

the patient , the nurse 4,245

nurse assists the patient to 1,255

consult your doctor or pharmacist 4,156

the doctor and the patient 8,339

, call your doctor . 5,262
… …

doctor

nurse patient

hospital

[f:769,932,

rf:0.06547,

npmi:0.38887]

[f:418,711,

rf:0.03560,

npmi:0.17270]

consult

[f:370,539,

rf:0.03109,

npmi:0.19630]
school

[...]

prescribe

[...]

[...]

leaveadmit
[...]

[...]

...

...

Fig. 11. Information extraction procedure to construct a large-scale semantic network
from co-occurring terms in n-gram natural language datasets (f – absolute frequency,
rf – relative frequency, npmi – normalized point wise mutual information) [3].

relationships. That means, the analysis also records how often noun terms co-
occurred with verbs (e.g., doctor – consult – 173,786 times). These relationships
allow to suggest association names for domain models. SemNet now also includes
ternary relationships for nouns and verbs (e.g., obesity – hypertension – dia-
betes – 4,372 times / pregnancy – induce – hypertension – 2,365 times). Ternary
noun relationships record simultaneous occurrence of three technical terms. This
information allows improved suggestions of related class names for multiple in-
put terms. Ternary noun-verb relationships record the connection of one verb
with two technical terms. These relationships are used to recommend names for
classes connected with an association. Finally, for the current version of SemNet
several heuristics were applied to extend the limited five word context of the
Google N-gram dataset. As a result, we were able to extract terms consisting of
more words and almost five times more relationships.

Table 1 shows examples of SemNet divided into the respective types of re-
lationships. Three terms where queried: pregnancy, software, and movie. Each
category shows the two strongest relationships of the respective query term.

In essence, the semantic network is a large-scale graph in which each term
is a node and each directed edge denotes a weighted relationship between the
terms. SemNet includes 5.7 million unique one-word terms and multi-word ex-
pressions and 222 million relationships. Each relationship is quantified by the
absolute frequency of co-occurrence, a calculated relative frequency, and the
pointwise mutal information (PMI) measurement (see Section 4.4 for more de-
tails on this associativity value between terms). While the text analysis and
extraction requires sophisticated hardware and runtime, the semantic network
only needs 14 GB of storage space and can therefore be used on standard PC
hardware. We provide an online web interface to browse and query SemNet:
http://www.bizware.tu-berlin.de/semnet.



12 H. Agt-Rickauer et al.

Table 1. Examples of automatically identified binary and ternary relationships for the
terms ”pregnancy” and ”software”. Each paragraph shows the top two relationships
with the highest degrees of relatedness.

Noun-Noun Relationships Noun-Verb Relationships

pregnancy lactation pregnancy terminate
pregnancy childbirth pregnancy occur

software hardware software use
software piece software install

movie television movie see
movie TV movie watch

Ternary Noun Relationships Ternary Noun-Verb Relationships

pregnancy delivery labor pregnancy carry term
pregnancy nausea vomiting pregnancy feed breast

software hardware data software require hardware
software hardware system software allow user

movie television radio movie watch television
movie magazine book movie win award

4 Recommender System

In this section we describe in detail the implementation of the Domain Modeling
Recommender (DoMoRe) system. We describe how domain information from a
set of knowledge bases and our self-created semantic network of terms are used
and transformed into recommendations of model elements according to our nine
modeling support scenarios.

In essence, the task of the recommender system is as follows. For a given
model element, it is necessary to determine a set of related model elements asso-
ciated with a particular relationship type (e.g., all possible subclasses of the class
”Doctor” or all related classes of ”Doctor” and ”Hospital”). In the following, we
first provide a mapping of semantic relationships between different represen-
tations of knowledge. Then the architecture of the recommendation system is
presented. After that we explain the features of the recommendation system and
how the proposals are ranked by relevance.

4.1 Semantic Relationships

Domain models describe concepts and relationships of an application domain us-
ing a modeling language. Although the modeling community still discusses [22, 7]
how real-world concepts can be represented correctly using modeling languages,
UML class diagrams are the most commonly used modeling paradigm in the in-
dustry to do that [40, 25]. In this section, we analyze the semantic relationships
of UML class diagrams from a lexical perspective and their representations in
other knowledge sources (see Figure 10 for the three levels).
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We reviewed literature from database research [45], linguistics [31, 10], infor-
mation systems [39, 20], and semantic web research [5, 24] and relate the various
types of relationships. Table 2 provides an overview, details are given below.

Table 2. Corresponding semantic relationship types of different modeling
paradigms [3].

Modeling Language

Relationship

Lexical-Semantic

Relationship

Knowledge Source

Relationship

Specialization Hyponymy Subclass, Narrower Term
Generalization Hypernymy Subclass (inv.), Broader Term
Aggregation (Part) Meronymy HasPart (SPW), Meronym (WN)
Aggregation (Whole) Holonymy PartOf (SPW), Holonym (WN)
Association (named) Agent-Action Object Property
Association (unnamed)
or group of classes

Semantic
Relatedness

Related Term

Specialization and Generalization are hierarchical abstraction mechanisms in
UML to refine abstract classes to more specific ones and to group specific classes
to more abstract ones. In lexical semantics these conceptual relationships are
referred to as hyponymy and hypernymy between words or phrases. They are
mapped to subClassOf -relationship (and its inverse) in RDF/OWL ontologies
and to the broader term and narrower term relation in thesaurus specification
(e.g., based on ISO 25964).

Specialization and Generalization are hierarchical abstraction mechanisms in
UML to refine abstract classes to more specific ones and to group specific classes
into more abstract classes. In lexical semantics, these conceptual relationships
are referred to as hyponymy and hypernymy between words or phrases. In RDF
/ OWL ontologies and in thesaurus specifications (e.g., based on ISO 25964),
they are referred to the subClassOf -relationship (and their inverse) and to the
relationships broader term and narrower term.

Aggregation is used to specify a part-of relationship between two UML classes.
We summarize both aggregation (parts can exist independently of each other)
and composition (parts can not exist independently of each other) under the
term aggregation. In linguistics, part-whole relationships are called meronymic
relationships (meronyms are the parts and holonyms are the wholes). Part-whole
relationships are not supported directly in the thesaurus definition nor in the
RDF / OWL ontology specification. There is a W3C Best Practice specification
”Simple Part Whole” (SPW) that includes hasPart and partOf relationships.
However, there are knowledge bases that contain part-whole relationships but
use a non-standard vocabulary (such as WordNet).

Association is the third kind of conceptual relationship that we have an-
alyzed in terms of other representations. We distinguish two types: unnamed
associations, to express a simple dependency between two domain model classes
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and named associations that further specify the kind of association (usually with
a verb). In linguistics, named dependencies fall into the category of case rela-
tionships [10], more specifically in our case in agent-action relationships. To a
certain extent, RDF/OWL object properties with domain and range constraints
can be compared with named associations. In lexical semantics, the unnamed as-
sociation is referred to as semantic relatedness, an associative relationship that
describes any functional relationship between two words. The relation related
term of thesauri is assigned to this relationship. From a lexical point of view,
the unnamed association is similar to a group of classes (the diagram is the
container).

In summary, taxonomic relationships in domain models can be well mapped
to other structured knowledge sources such as thesauri and ontologies. Other do-
main model relationships are not fully represented in these resources. As a result,
they are a good source for acquiring knowledge for our modeling support, but
they are not enough. All domain model relationships and their inherent concep-
tual relationships are rooted in various linguistic theories. Thus, the combination
of knowledge base queries and natural language analysis allows retrieving related
domain model elements for all our modeling support scenarios (see Section 2.2).

4.2 Components of the Recommender System

Figure 12 shows the architecture of the DoMoRe recommender system. DoMoRe
is integrated into the Eclipse environment with a number of plug-ins. The Model
Listener monitors changes in Ecore models developed with the Ecore Diagram
Editor. When a change is made to a model, the current content of the model
is retrieved along with the newly added or changed model element and its rela-
tionships.

D
N

S

A

Onto

Connector

Model

Listener

Semantic

Auto-

completion

Model

Advisor
Recommender

Eclipse Modeling 

Environment SemNet

Fig. 12. Architecture of the DoMoRe recommender system [3].

The Recommender is notified and coordinates all subsequent steps of the
modeling suggestions. First, the domain model is transformed into a lexical-
semantic representation using the domain-specific terms and semantic relation-
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ship mappings (c.f., Table 2). Based on this representation, the Semantic Net-
work is queried for related terms and directly provides ranked lists with related
terms. The Ontology Connector manages the set of linked knowledge bases and
is also queried. It contains the mediator and the mapper (see Figure 10) and runs
the translation of the terminological queries into knowledge-base-specific queries
and the integration of results. The recommender controls two components that
the user interacts with. The Model Advisor is a view in the Eclipse environment
that displays contextual information about the model elements. It shows possible
generalizations, specializations, aggregations, associations and related elements.
The developer can use this view to easily add new content to a domain model by
dragging suggested elements into the diagram. The corresponding relationships
are created automatically. Semantic Autocompletion is triggered when a new el-
ement is named in the model or the name of an existing element is changed. This
function behaves like a search engine. A context-sensitive pop-up list of names
for the item will be displayed and suggestions will be filtered as you type.

4.3 Recommendation Generation

This section provides an insight into the features of the recommender system
using examples. In the following, we demonstrate the retrieval of knowledge
and the generation of recommendations for Scenario 3: A few classes already
exist in a diagram, and in this diagram, a new unconnected class is created.
Figure 13a shows the domain model that contains two classes connected with a
named association. After creating the new class, the model listener triggers the
recommender, and the lexical representation of the domain model is created (see
Figure 13b). The information need depends on the model refinement step. In
this case, the unconnected class requires the system to retrieve nouns that are
semantically related to both Hospital and Doctor (c.f., Figure 13c).

Fig. 13. Lexical preparation during the recommendation generation process [3].

In the following, the information need is broken down into separate lexical
queries for each term and relationship type (c.f., Figure 14d). The main reason
for separately retrieving the information is that there is virtually no conceptual
knowledge base that contains n-ary relationships. In contrast, our semantic net-
work directly supports ternary relationships that allow more accurate results for
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pairs of terms. First, ternary relationships are retrieved from SemNet. Second,
separate binary relationship queries are executed for each term (c.f., Figure 14e).
Each connected knowledge base is also queried for each term (see Figure 14f).

Fig. 14. Retrieval during the recommendation generation process [3].

Up to now, separate lists of related terms were determined for each term of
the original domain model and for each relationship type and for each knowledge
source5. Results from the knowledge bases are integrated based on the following
principle. First, for each query term, it is recorded in how many knowledge bases
(e.g., WordNet, BabelNet, ConceptNet) each related term occurred. Second,
the distinct union of all intermediate results is generated for each query term
(c.f., Figure 15g). The resulting lists have a tentative order indicating that more
important terms appear first.

Fig. 15. Integration and ranking during the recommendation generation process [3].

5 For instance, for two terms, one relationship type and five connected knowledge
bases, 10 intermediate result lists are generated.
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In the final step, the presorted knowledge base results are integrated into the
semantic network results. First, the knowledge base result and the respective
semantic network result are joined for each term. The occurrence frequencies
ensure that terms found in many knowledge bases occupy a more prominent po-
sition in the final ranking. In our example, this results in one list of related terms
for Doctor and one for Hospital. Second, a final list of recommended terms is
created. Separate results are intersected and the relative frequencies of common
terms are multiplied. The final list is divided into n segments: Terms related to
n query terms appear first. Next are the terms related to n − 1 query terms,
and so on. Finally, sorting by relevance is achieved by applying the pointwide
mutal information score (c.f., Figure 15h). This measurement is explained in
Section 4.4. For the other scenarios, preparation, retrieval, integration and rank-
ing are similar. They differ only in the requested relationship type (for example,
subclasses / narrower terms instead of related terms).

The recommendation generation process also ensures that correct suggestions
are provided even for ambiguous terms. Imagine a single query for the term
table. Without additional contextual information, the proposals contain related
terms for both the furniture and tabular array meaning. If there is a second
term database in the domain model, the result integration ensures that all terms
related to furniture are ranked low.

4.4 Ranking

It is likely that queries to our semantic network and connected knowledge bases
will yield many related terms (up to a few thousand for each request). The rank-
ing implemented in the recommendation component is responsible for presenting
the most relevant model elements first. Thus, when retrieving a list of related
terms, it is ordered and the most important terms are displayed at the top. This
is achieved by combining different relatedness measures.

From the construction of the semantic network, we know absolute frequencies
of co-occurring terms (see Figure 11b). For each term in the network we compute
relative frequencies with respect to the set of related terms. This normalization
makes it possible to compare the relationship between different terms. Both
measures allow for a basic ranking of terms, but they have a deficiency: very
common terms (e.g., time, man, year) that occur in almost all contexts are
likely to be ranked in prominent positions.

To overcome this disadvantage, we implement an information theory mea-
surement: Pointwise mutal information (PMI) and its normalized form (c.f.,
Equations 1). It measures the dependency between the probability of coincident
events and the probability of individual events (first introduced in lexicography
by [11]).

pmi(x, y) = log

[

p(x, y)

p(x)p(y)

]

npmi(x, y) =
pmi(x, y)

− log [p(x, y)]
(1)

The application of PMI to the semantic network means that x and y are terms
and PMI relates the probability of their coincidence p(x, y) with the probabilities
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of observing both terms independently p(x)p(y). PMI is an associativity score
of two terms that takes into account their individual corpus frequencies, so very
common and general terms get lower values. Unfortunately, this measurement
also has a drawback: although very general terms are ranked lower, very rare
terms that co-occur with other terms only a few times tend to get high values.

Finally, to achieve a balanced ranking, our recommendation system uses the
lexicographers mutual information (LMI), which is the NPMI score multiplied
by the absolute co-occurrence frequency [34].

4.5 Eclipse Plug-ins

Two extensions for the Eclipse Ecore Diagram Editor have been implemented to
allow the user to interact with the recommender system. The Semantic Autocom-
pletion function of the recommender system relies directly on the ranked lists of
terms that are generated based on the current content of a domain model. When
the name of a class or association is edited, the user can trigger the display of
a context-sensitive pop-up list of related terms that contains the most relevant
terms at the top. It behaves like a search engine and provides filtering as you
type (c.f., Figure 16).

Fig. 16. Semantic Autocompletion of the recommender system: context-sensitive name
prediction and infix search [3].

The second extension, the Model Advisor, is a view plug-in that displays
contextual information about the currently selected model element. It queries
the semantic network and knowledge bases for just one term, but with multiple



Automated Recommendation of Related Model Elements for Domain Models 19

relationship types. The information is aggregated and grouped into related el-
ements, possible generalizations, specializations, aggregations, and associations
(c.f., Figure 17).

Fig. 17.Model Advisor of the recommender system: Suggesting possible related classes,
superclasses, subclasses, and aggregations [3].

5 DoMoRe in Practice

In this section, we summarize the experience of using our recommender system
in various settings and domains. A first prototype of the system was used in
the context of the BIZWARE project [2, 1]. BIZWARE explored the potential of
domain-specific languages (DSLs) and model-driven engineering for small and
medium-sized enterprises in a variety of sectors including healthcare, manufac-
turing / production, finance / insurance, publishing and facility management.
The actors in the setting were software developers from the respective companies
who were working towards the introduction of DSL-based workflows to improve
their development tasks. Modeling experts from research worked closely with the
software engineers and provided the recommendation system. The companies
planned to use DSL in customer projects, but the project found that using DSL
to modernize their own software products and development infrastructures was
more effective. Because the software engineers had little experience with DSLs,
DoMoRe mainly supported the domain analysis phase to identify and agree on
domain-specific terms that were later used in DSL’s meta-models. In particular,
the suggestions in the abstraction process helped to correctly distinguish between
class and instance levels. The analysis of the modeling sessions showed that the
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ranking had to be improved (too general terms in the top positions) and that the
software engineers missed suggestions for relationships between domain-specific
terms (extraction of verbal relationships was not available at the time).

DoMoRe has also been used in the dwerft project [4], a collaborative research
effort to apply Linked Data principles for metadata exchange across all stages of
the media value chain. The project successfully integrated a number of film pro-
duction tools based on the Linked Production Data Cloud, a technology platform
for the film and television industry, to enable the interoperability of software in
the production, distribution and archiving of audiovisual content. One of the key
tasks of the project was to develop a common data model that would convey all
the metadata from the different production steps (e.g., screenplay, production
planning, on-set information, post-production, distribution). The actors in the
environment were domain experts of the respective tasks (most of them with no
technical background) and modeling experts who created the domain models and
metadata schemas. Many interviews with domain experts had to be conducted
to gather domain-specific knowledge and to discuss drafts of domain models.
DoMoRe mainly supported post-meeting modeling and interview preparation
with more extensive models that allowed for more efficient agreement on the
necessary metadata. For these tasks, the recommender system was adapted to
ontology schema development to use it in a Linked Data context.

Currently, DoMoRe is being used as part of the AdA project6, an inter-
disciplinary research group in which film scholars collaborate with computer
scientists to support empirical film studies using tool-based semantic video an-
notation and automated video analysis. The goal of the project is to reduce the
burden of elaborate, manual annotation routines in order to accelerate the film-
scientific analysis of audiovisual motion patterns at the level of larger data sets.
All annotation data and analysis results are published as Linked Open Data
using the project’s semantic vocabularies. Collaboration on domain modeling is
similar to the project mentioned above. We expect similar support by using the
recommender system for the domain expert interviews. One of the main findings
so far has been that the recommender system requires more complex support
for concept-value relationships (e.g., Recording Playback Speed – slow motion,
timelapse, freeze).

6 Related Work

Modeling Assistance. Modeling support systems provide additional informa-
tion and functionality during the modeling process to help model development.
They typically focus on two areas: (1) creating model libraries or similar content;
and (2) developing assistance frameworks and functions using these libraries. The
largest known model repository of UML models and meta models is the Lindhol-
men UML dataset [21]. It contains links to over 93,000 UML diagrams collected
from GitHub repositories. A similar effort, the Gothenburg UML Repository con-
tains over 20,000 models crawled from the Internet, images and GitHub (only a

6 http://www.ada.cinepoetics.fu-berlin.de/



Automated Recommendation of Related Model Elements for Domain Models 21

collection of nearly 1,000 models is publicly searchable). Not surprisingly, most
of the models are implementation models rather than domain models (for exam-
ple, the search for ”hospital” or ”doctor” yielded 7 models, while a search for
”interface” returned 90 models ). Other important resources are ReMoDD [17],
MOOGLE [30], the AtlanMod Metamodel Zoos7 (containing a total of several
hundred models). EMFStore8 and the Eclipse Model Repository9 are tools for
maintaining model repositories. There are works that propose certain recommen-
dation features : SmartEMF [23] uses reasoning in Prolog for consistency checking
in DSL development. Kuhn proposes a concept for recommending method names
in source code and UML models [27].

The HERMES project a framework for creating model recommendation sys-
tems to support the reuse of software models [13]. The main objective is to
provide tool support for building model libraries and providing the deployment
infrastructure to create recommenders that use the contents of these libraries.
The EXTREMO assistant [43] is a similar tool to facilitate meta-model devel-
opment with unified model element search in a model repository. We share the
same goals, but both systems are facing a cold start problem: Reusable content
will only be available if enough solutions have already been developed or con-
verted to the repository, but new projects already want to benefit from domain
knowledge. To some extent, this challenge is solved by using WordWeb / Word-
Net, which we also use, but these databases contain about 150,000 concepts, in
contrast to our semantic network of 5.7 million terms.

Knowledge-Based Modeling. There is a variety of work on how model-
driven engineering can benefit from formalized knowledge. At the conceptual level
there are approaches to unify ontological and software modeling paradigms [28],
approaches to adopt modeling concepts from each other [22], and to extend MDE
languages with ontological foundations [20].

The OntoDSL framework [49] uses ontology technologies at the meta-model
level (such as reasoning) to help DSL users identify model-level inconsistencies.
The CoCoViLa tool [38] generates metamodels of domain-specific languages from
OWL descriptions and [47] use ontologies in the analysis phase of DSL develop-
ment, but both works require manual development of the respective ontologies.

There are several knowledge sources from other research areas that can be
used for domain modeling. The most popular resource is WordNet [15], a lexical
database for the English language that most other knowledge-based approaches
also use (as we do). It contains about 82,000 noun synsets and 100,000 noun
relationships. OpenCyc [29] is a common sense ontology with around 230,000
classes and 300,000 relationships. ConceptNet [44] is a multilingual semantic
graph containing approximately 415,000 English concepts and 900,000 relation-
ships. Linked Open Vocabularies10 is a data set that stores vocabulary speci-
fications. To the best of our knowledge, BabelNet [37] is the largest semantic

7 http://web.emn.fr/x-info/atlanmod/index.php?title=Zoos
8 http://www.eclipse.org/emfstore/
9 http://modelrepository.sourceforge.net

10 http://lov.okfn.org/dataset/lov/
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dictionary available with 3 million concepts. It is based on WordNet, integrates
several other dictionaries and uses machine translation to achieve multilingual-
ism. Our DoMoRe recommender system uses all of them to retrieve terms and
domain information.

7 Conclusion and Future Work

We presented DoMoRe, a recommender system that automatically suggests
model elements for domain models. The system is based on a large semantic net-
work of related terms that has 5.7 million distinct nodes and 222 million binary
and ternary weighted relationships. DoMoRe also integrates multiple existing
knowledge bases using mediator-based information retrieval of lexical informa-
tion. This allows context-sensitive information to be provided during domain
modeling (Model Advisor) and to propose semantically related names for model
elements ordered by relevance (Semantic Autocompletion).

In our future work, we’ll cover more modeling support scenarios (such as
suggesting attributes, operation names, relationship types) that require other
types of information extraction. We will also examine how lexical information
can be used to detect semantic inconsistencies in domain models.

Currently we are working on a controlled experiment to quantitatively mea-
sure the efficiency of our recommender system as opposed to the qualitative
feedback we received during the practical application of DoMoRe. Participants
are introduced to a modeling tool and asked to perform multiple domain mod-
eling tasks. Subjects are randomly subdivided into a treatment group using the
tool with recommendation of related model elements and a control group mod-
eling without the system. It is planned to measure the outcome variables time
on task and model completeness.

Acknowledgment: This work is partially supported by the Federal Ministry
of Education and Research under grant number 01UG1632B.
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