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Abstract. In order to transform a Knowledge Graph (KG) into a low
dimensional vector space, it is beneficial to preserve as much semantics as
possible from the different components of the KG. Hence, some link pre-
diction approaches have been proposed so far which leverage literals in
addition to the commonly used links between entities. However, the pro-
cedures followed to create the existing datasets do not pay attention to
literals. Therefore, this study presents a set of KG completion benchmark
datasets extracted from Wikidata and Wikipedia, named LiterallyWiki-
data. It has been prepared with the main focus on providing benchmark
datasets for multimodal KG Embedding (KGE) models, specifically for
models using numeric and/or text literals. Hence, the benchmark is novel
as compared to the existing datasets in terms of properly handling liter-
als for those multimodal KGE models. LiterallyWikidata contains three
datasets which vary both in size and structure. Benchmarking exper-
iments on the task of link prediction have been conducted on Liter-
allyWikidata with extensively tuned unimodal/multimodal KGE mod-
els. The datasets are available at https://doi.org/10.5281/zenodo.
4701190

Keywords: Knowledge Graph Completion · Knowledge Graph Embedding ·
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1 Introduction

Knowledge Graphs (KGs) are composed of structured information describing
facts about a particular domain through entities and interrelations between
them. Recently, KGs have become crucial to improve diverse real-world applica-
tions mainly in the areas of Natural Language Processing (NLP) such as question
answering, named entity disambiguation, information extraction, and etc. [38,9].
Due to the Open World Assumption, KGs are never complete, i.e., there are al-
ways some facts missing. In order to solve this problem, different KG embedding
models have been proposed for automated KG Completion (KGC). Most of these
models are based on the tasks such as link prediction, triple classification, and
entity classification/typing. Some of these embedding models make use of only
relational triples (triples with object properties), such as TransE [6], DistMult

https://doi.org/10.5281/zenodo.4701190
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[43], ConVE [10], RotatE [34], and etc. On the other hand, some models such as
LiteralE [21], KBLRN [13], MTKGNN [35], and MKBE [27] use relational triples
together with attributive triples (i.e., triples with datatype properties which take
literals as values) and images of entities (refer to [15] for more details).

The performance of various KGE approaches, mainly link prediction models,
has been evaluated using some commonly known KGC datasets. Most of these
datasets except CoDEx [29], are outdated and easy for link prediction tasks such
as FB15K [6] and FB15K-237 [36] which are subsets of the no longer maintained
KG Freebase [5]. Moreover, attributive triples have not been handled properly in
any of the current datasets. For instance, in CoDEx-M [29], it is not possible to
find a single datatype property in Wikidata with numerical literal values for some
of the entities. Apart from numerical properties, the major existing datasets also
contain a significant number of entities for which there is no textual description
available. For instance, in CoDEx among the total number of 77,951 entities,
17,276 of them do not have textual descriptions in English, i.e., they are not
represented in English Wikipedia. Hence, in those studies which combine KG
and textual entity descriptions for representation learning (such as DKRL [41])
it is common to filter out these entities in order to train the embedding models.
This indicates that a high-quality benchmark that covers both relational and
attributive triples is required to evaluate the performance of the state-of-the-art
KGC models.

Therefore, in this work a KGC benchmark LiterallyWikidata which prop-
erly combines attributive triples with relational triples by taking into account
the aforementioned concerns is presented. LiterallyWikidata consists of a set
of KGC datasets extracted from Wikidata and Wikipedia. In addition to Github,
all of the datasets are made available also on Zenodo under Creative Commons
Attribution 4.0 International license to ensure long-term findability through a
persistent identifier3.

The contributions of this work are summarized as follows:

– Datasets: LiterallyWikidata which is a benchmark containing three sub-
sets of Wikidata varying in size and structure is introduced. Each of these
subsets contains both relational and attributive triples along with entity
types.

– Automatic dataset creation pipeline: As compared to the way the cur-
rent benchmarks are created, for instance, CoDEx, the pipeline used in this
work requires very little human intervention. In CoDEx, the first step taken
was defining a set of initial classes in some specific domains whereas in our
pipeline it is not required for the domains and initial classes to be predefined.
Moreover, it is possible to adapt the pipeline to create new datasets with
newer Wikidata dumps.

– Benchmarking: Extensive KGC experiments have been conducted on Lit-
erallyWikidata for selected embedding models with and without attribu-
tive triples on the task of link prediction.

3 The details including the DOI are given under the reference [14]
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– Review of existing link prediction datasets: A review of the existing
KGC datasets in terms of their sources, domain, and support for literals has
been conducted and presented in Table 1.

The rest of the paper is organized as follows: Section 2 discusses the existing
KGC frameworks/datasets followed by Section 3, where a detailed description of
the procedure followed to generate the LiterallyWikidata datasets is presented.
Section 4 demonstrates the comparison between existing datasets and Literal-
lyWikidata whereas Section 5 presents benchmarking experiments on the gen-
erated datasets with uni/multimodal KGE models. Finally, concluding remarks
along with directions for future work are stated in Section 6.

2 Related Work

A summary of the recent and the most common existing KGC benchmarks,
specifically link prediction datasets, is given in Table 1. The sources of the ma-
jority of these datasets are Freebase [5], WordNet [25], YAGO [33], Wikidata [37],
and NELL [8].
Freebase Extracts. FB15K and FB15K-237 are among the most popular
datasets to evaluate KGC models. Even though the original releases of both
datasets do not include any attributive triples, they have been extended with
textual and numerical attributes [21,40,41]. However, different studies [10,29,15]
have claimed that FB15K does not possess the required qualities to be actually
used as a benchmark, i.e., it contains multiple inverse relations. On the other
hand, in FB15K-237 which is a subset of FB15K without inverse relations, all
validation and test triples containing entity pairs directly linked in the training
set have been removed. Moreover, FB15K-237 contains a significant amount of
triples with skewed relations towards either some head or tail entities [29] (see
Section 4 for more details).
WordNet Extracts. Among theWordNet datasets, WN18 [6] andWN18RR [10]
are the most popular ones. Both datasets are smaller in size and domain-specific
as compared to the other datasets such as FB15K-237. Besides, the original
releases do not contain any numerical attributive triples.
YAGO Extracts. YAGO3-10 [10] is the widely used dataset among those ex-
tracted from YAGO. It is a dataset that contains only relational triples from
YAGO3 [23] mostly about locations and people. The dataset has been extended
with numerical attributes, textual entity descriptions, and entity images in [27]
and only with numerical attributes in [21]. Most of all, as discussed in [1],
YAGO3-10 has a significant number of triples with two duplicate relations isAf-
filiatedTo and playsFor which makes the dataset easy for a link prediction task.
Wikidata (and Wikipedia) Extracts. Wikidata-authors [30] is a domain-
specific dataset containing relational triples from Wikidata where the head en-
tities are persons who are authors or writers. Apart from having a narrow scope
and a small set of triples (i.e., 86,376), this dataset doesn’t have any attribu-
tive triples. CoDEx [29] is a recent KGC benchmark extracted from Wikidata
and Wikipedia. The relational triples in this dataset are from Wikidata and
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the attributive triples have been provided as auxiliary information taken from
both Wikidata and Wikipedia. The auxiliary information contains Wikidata la-
bels, descriptions of entities and relations along with Wikipedia page extracts
for entities. This dataset does not include any numeric attribute and if we try
to extract them from Wikidata, there are only limited number of entities in the
dataset which have numeric attributes. Moreover, in CoDEx the set of triples
already contain classes and this may decrease the level of difficulty of the dataset
for tasks other than link prediction and triple classification that involve classes,
i.e., entity typing/classification.
Others: There are other datasets such as NELL-995 [42] and MovieLens [27]
(see Table 1 for more details). NELL-995 is a dataset extracted from the 995th
iteration of NELL [8]. Due to the fact that the triples in NELL-995 are non-
sensical or overly generic, the dataset is not suitable to be used as a KGC
benchmark [29]. Moreover, the dataset does not have any attributive triples.
MovieLens [27] is a dataset about movies where relational triples, numerical at-
tributes, and textual attributes are from ML100K [17] and images are movie
posters from TMDB4. This dataset contains few entities, relations, and triples
as compared to the widely used KGC datasets, such as FB15K-237. Moreover,
not all of the entities have textual attributes. Another very recently released
benchmark is Kgbench [4] which could be used for both node classification and
link prediction. However, baseline results are only provided for node classifica-
tion task because the datasets are generated primarily for that particular task.
Kgbench provides a set of different domain-specific datasets and in each dataset
the source for the multimodality are mainly images and hence, numeric literals
are available only for a limited number of entities whereas LiterallyWikidata is
a collection of domain-generic datasets with every entity having some numeric
literals.

In general, the existing KGC benchmarks do not give proper emphasis to
attributive triples, i.e., attributes are treated as auxiliary information. Conse-
quently, the attributive triples are either way unbalanced, less in number, or
have few unique attributes. Therefore, in this work, a new KGC benchmark
called LiterallyWikidata is presented which properly handles literals, specifi-
cally, numerical attributes and textual descriptions.

3 Dataset Creation

In this section, the procedure followed to create the LiterallyWikidata bench-
mark is discussed in detail. First, attributive triples with numerical literals are
extracted from the Wikidata full dump from 07 September, 20205. Then, rela-
tional triples are retrieved from the dump for the entities with the attributive
triples. Once the triples are extracted, duplicate triples are filtered out and dif-
ferent datasets varying in size and structure are generated, namely, LitWD1K,
LitWD19K, and LitWD48K. Finally, each of the datasets is divided into
4 https://www.themoviedb.org/
5 https://dumps.wikimedia.org/wikidatawiki/

https://www.themoviedb.org/
https://dumps.wikimedia.org/wikidatawiki/
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Table 1: Existing KGC datasets for the task of link prediction.

Dataset Sources

Domain:
Specific (•)
Generic (?)

Attributive triples:
Text (•), Numerical

(?), Image (X)
Original Extended

CoDEx [29] Wikidata [37], Wikipedia ? •
Wikidata-authors [30] Wikidata •

FB15K [6]

Freebase ?

• [41] ?[40]
?[21]

FB15K-237 [36] ?[21] • [21]
FB15k-237-OWE [31] •

FB20K [41] •
FB13 [32]
FB5M [39]
FB24K [22]

FB15K-401 [43]
WN18 [6]

WordNet [25] •WN18RR [10]
WN11 [32]

YAGO3-10 [10]
YAGO

?

?[21] • ? X
[27]

YAGO37 [16]
YG58K [40] ?[40]

NELL-995 [42] and
other Nell varieties [26] NELL [8]

MovieLens [27] ML 100K [17], TMDBa

•

• ? X
UMLS [20] UMLS [24]
kinship [20] Alyawarra kinship [19]
Nations [20] Nations Project [28]
Countries [7] Countries datab

Family [11,12] Families [18]
a https://www.themoviedb.org/
b https://github.com/mledoze/countries

training, validation, and testing triples. Note that classes explicitly have not
been considered as entities in this framework in order to enable the adaptability
of the datasets for tasks other than link prediction such as entity type predic-
tion. Classes in Wikidata are those items which occur either as the value/object
in an instance-of (P31) statement/triple or they are subject or value/object in
a subclass-of (P279) statement. In the subsequent sections, the steps taken to
generate the datasets are discussed in detail, i.e., i) extracting attributive triples,
ii) extracting relational triples, and iii) filtering the triples.

https://www.themoviedb.org/
https://github.com/mledoze/countries


6 Genet Asefa Gesese et al.

3.1 Extracting Attributive Triples

Note that in this phase the main focus is on extracting attributive triples with
datatype properties taking numerical values. Therefore, the first step is identi-
fying those data type properties in Wikidata. The Wikidata properties which
are typed with any of the three Wikimedia datatypes Wikimedia:Time, Wikime-
dia:GlobeCoordinate, and Wikimedia:Quantity are considered, in this work, as
properties taking numeric values.

Wikimedia:Time Those properties which take point in time values, such as
P569 (date of birth) are categorized as Wikimedia:Time properties.

Wikimedia:GlobeCoordinate The values ofWikimedia:GlobeCoordinate typed
properties such as P625 (coordinate location), are geographic coordinates given
as latitude-longitude pairs. We have separated these pairs by attaching the post-
fix “longtiude” and “latitude” to the ID of the properties. For instance, the triple

<Q100000 P625 "Point(5.7678 50.8283)"^^geo6:wktLiteral .>
is transformed into the following two triples:

<Q100000 P625_Longtiude "5.7678"^^xsd7:double .> and
<Q100000 P625_Latitude "50.8283"^^xsd:double .>

Note that some entities have multiple values per property. For such entities,
splitting their corresponding triples might create a logical problem, i.e., it would
be difficult to associate longitude and latitude values once the triples are split.
Therefore, only one triple per<entity, property> pair has been randomly selected
before splitting.

Wikimedia:Quantity Properties of wikimedia type Wikimedia:Quantity take
quantities representing decimal numbers, such as P2049 (width). In the case of
these properties, for every <entity, property> pair statements ranked as “pre-
ferred” are retrieved if there are any. Otherwise, all statements which are ranked
as “Normal” are extracted. In Wikidata, such statements have units associated
with their values. These units might be either SI units or non-SI units. Those
values with non-SI units are normalized to their corresponding SI unit whenever
possible. There are still properties with more than one unit after normaliza-
tion. These units are either not normalizable or are outliers. For each statement
with a non-normalizable unit, the unit is attached to the ID of the property as
a postfix. For example, the property P3362 (Operating Income) takes curren-
cies such as Q4916 (Euro), Q4917 (United States Dollar), and Q25224 (Pound
sterling), as units that could not be converted to one base unit and thus, they
will be combined with the property ID as in P3362_Q4916, P3362_Q4917, and
P3362_Q25224 respectively. For each property, units that occur less than 1% of
the time are considered outliers and are removed.
6 http://www.opengis.net/ont/geosparql#
7 http://www.w3.org/2001/XMLSchema#

http://www.opengis.net/ont/geosparql#
http://www.w3.org/2001/XMLSchema#


LiterallyWikidata 7

Note that the extracted triples with the aforementioned data type properties do
not include those entities which satisfy at least one of the following conditions:

– The entities do not have site-links at least to the English Wikipedia. This step
is required in order to support those link prediction models which leverage
textual descriptions of entities.

– The entities have types only from the set of subclasses of the class Q17379835
(Wikimedia page outside the main knowledge tree). This is imposed in order
to keep only those entities which describe real-world concepts.

3.2 Extracting Relational Triples

As mentioned in Section 1, those triples with properties of Wikibase type wik-
ibase:Item are referred to as relational triples in this paper. Once the entities
with numerical literals are obtained as discussed above in Section 3.1, the next
step is to extract relational triples for these entities. At this phase, we address
both inverse properties and symmetric properties as follows:

– Inverse properties: Given two inverse properties p1 and p2 connected with
the property P1696 (inverse property) where the frequency of p1 is greater
than or equal to that of p2, the subject and object entities of those triples
with p2 have been swapped and p2 is replaced with p1.

– Symmetric Properties: In these relational triples, every relation, except
P1889 (different from) whose head-tail pairs overlap with its tail-head pairs
at least 50% of the time is considered as symmetric and hence, for each pair
of redundant triples belonging to this relation, only one of them is kept. The
property P1889 (different from) has been removed due to the fact that it
occurs in a significantly high number of triples but the semantic information
captured in this property is not that much beneficial for KG embedding
approaches to learn better KG representation.

3.3 Filtering the Triples

Taking as inputs the extracted attributive and relational triples, the goal in this
phase is to create three datasets that vary in structure and size to be used for
different purposes. The smallest dataset could be used for debugging and testing
KGE models with and without literals whereas the medium size dataset would
suit for evaluating KGE approaches on multiple tasks in general. On the other
hand, the largest dataset could be used for few-shot evaluations in addition to
general evaluations for KGEs. In this section, these datasets are referred to as
small, medium, and large. The following three steps are applied to create these
datasets:

Seeding entities. The top N entities with the highest number of datatype
properties are considered as seed entities. The value of N is 200, 000 for the
small and large datasets and 50, 000 for the medium datasets. Different values
have been tried out for N and those particular values are chosen because they
suit well to generate appropriate-sized datasets.
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Extending the seed entities. At this phase, fractions of the relational triples
are taken by extending the seed entities with their one-hop entities for the small
and large datasets and with their two-hop neighbors for the medium dataset.

Creating k-cores. The size of the triples extracted using the steps discussed so
far is huge as it is from the entire Wikidata dump. Hence, the relational triples
have been further filtered into k − cores, i.e., maximal-subgraphs G′ of a given
graph G where each node in the sub-graphs has at least a degree of k [3]. The
value of k is 15 for the small and medium datasets and 6 for the large datasets.
Note that the values for k are determined by taking into consideration both the
size and structure of the datasets to be generated. The value of k is less for the
largest dataset as compared to the others because this dataset is intended to
be used for few-shot evaluations. In case of few-shot evaluations, it would be
possible to see the advantages of literals in learning representations for entities
occurring in few structured triples. Once the k-cores are created, some triples
have been removed from each of the k-cores due to the following factors:

– Either the head or the tail entity doesn’t have a summary section on the
corresponding English Wikipedia page or the section contains less than 3
non-stop words.

– All entities having exactly the same Wikipedia pages for various reasons have
been excluded in order to avoid having meaningless descriptions.

– Relations (object properties) with more than 50% subject-object overlap
have been considered as duplicates and only one of them is kept.

– Relations occurring less than 3 times have been removed to ensure that every
relation has a chance to appear in the training, validation, and test sets.

– Attributes (data properties) skewed 100% of the time towards a single (head)
entity have been excluded.

In the subsequent sections, the created small, medium, and large datasets are
referred to as LitWD1K, LitWD19K, and LitWD48K respectively. The statistics
and analysis of these datasets are presented in Table 2. Each of these datasets
has been split into 90/5/5 train/valid/test sets. While splitting the datasets, we
have ensured that the entities which occur in validation and test sets also occur
in the respective training sets. Moreover, the test sets do not contain any relation
which is 100% skewed towards a single head or tail entity. LitWD48K contains
more than double the number of entities in LitWD19K. However, both datasets
have almost the same number of structured triples. This is due to the way the
datasets are created, i.e., LitWD19K is based on two-hop whereas LitWD48K
is based on one-hop as discussed above. Table 2 also presents a summary of the
analysis of the datasets in terms of graph connectivity, diameter, and density.

3.4 Textual Information

In addition to the relational and attributive (numerical) triples discussed in
Section 3.2 and Section 3.1, textual information about the entities and relations
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Table 2: Dataset Statistics and Analysis
LitWD1K LitWD19K LitWD48K

St
at
is
ti
cs

#Entities 1,533 18,986 47,998
#Relations 47 182 257
#Attributes 81 151 291
#StruTriples 29,017 288,933 336,745
#AttrTriples 10,988 63,951 324,418
#Train 26,115 260,039 303,117
#Test 1,451 14,447 16,838
#Valid 1,451 14,447 16,838

A
na

ly
si
s Connectivity

Diameter
Density

Yes
5

0.01235

Yes
7

0.0008

Noa

8b

0.00014
a LitWD48K contains 3 connected components and the
largest component contains 47,994 entities.

b The diameter of the largest component of LitWD48K is 8.

has also been extracted. The textual information includes Wikidata labels,
aliases, and descriptions of entities, relations, and attributes. Moreover,
for each entity, the summary sections of the corresponding English, German,
Russian, and Chinese Wikipedia pages have been extracted. The statistics of the
text literals for each dataset are given in Table 3.

Table 3: Short and long text literals extracted from Wikidta and Wikipedia for
entities, relations and attributes. The values are presented in percentage.

Wikipedia Summary Wikidata (entity/relation/attrb) (en)

en de ru zh labels aliases descriptions

LitWD1K 100 78 72 66 100/100/100 38/83/81 95/98/100

LitWD19K 100 80 65 39 100/100/100 44/87/81 99/99/100

LitWD48K 100 88 75 29 100/100/100 47/87/79 99/99/100

3.5 Domain of the Datasets

Since the pipeline developed in this study to create LiterallyWikidata framework
does not require pre-defining the domains or classes of entities or relations, the
created datasets are generic and their domains could be identified only after
they are created. Based on the types/classes of entities, People, Geography,
Entertainment, Transportation, Sport, Travel, Business, and Research are among
the domains covered in LiterallyWikidata. The classes/types of the entities are
also released along with the datasets.
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4 Comparison with Existing Datasets

Link prediction benchmark datasets are usually characterized based on the na-
ture of the relations such as symmetricity, inversion, skeweness, and cartesian
product (fixed-set). Link prediction with symmetric/inverse/cartesian product
relations is easy and does not require a complex embedding model [1,29]. It could
also be done with simple rule based approaches. Here, the comparison will be
with two existing datasets, FB15K-237 as the most popular extension of FB15K
and CoDEx-M as the most recent dataset extracted from Wikidata. In order
to make a fair comparison, the LitWD19K dataset is chosen to be compared
against these datasets as it is comparable to both in terms of size.

Skeweness. As reported in CoDEx [29], 15.98% and 1.26% of test triples in
FB15K-237 and CoDEx-M contain relations which are skewed 50% or more to-
ward a single head or tail entity. In our case, as it has already been mentioned
above, while splitting the LiterallyWikidata datasets we have made sure to ex-
clude any relation which is 100% skewed towards a single head or tail entity in
each of the datasets. However, for a fair comparison with the numbers reported
in CoDEx [29], we also consider skewed relations as relations which are skewed
50% or more (instead of 100%) towards a single head or tail entity and find
6.48% of the test sets of LitWD19K to contain such skewed relations. This num-
ber does not have much of an impact as its coverage of the test set is low and
also as already mentioned, none of the relations are 100% skewed.

Symmetricity. 4.01% of the triples in CoDEx-M contain symmetric relations
[29]. In case of FB15K-237, every validation and test triple containing entity
pairs that are directly linked in the training set were removed, which leads to
deleting any symmetric relations from its test/validation sets. LitWD19K does
not contain any symmetric relation in the entire dataset not only test/valid sets.

Inversion. Similar to the existing datasets FB15K-237 and CoDEx-M, LitWD19K
also do not contain any inverse relations (see section 3.2 for more details).

Cartesian product or fixed-set relations. As reported in [29], about 12.7%
of test triples in FB15K-237 contain fixed-set relations, i.e., relations which con-
nect entities to fixed sets of values. On the other hand, both CoDEx-M and our
dataset (LitWD19K) do not contain any such kind of relation.

5 Benchmarking Experiments on Link Prediction

In this section, the benchmarking experiments conducted on the link prediction
task are discussed. The chosen KGE approaches, the model selection strategy,
and the obtained results are presented. Note that there are properties in the
LiterallyWikidata datasets which take date values. In order to treat those date
values as numeric literals, for the experiments, the values are converted to deci-
mals. This allows leveraging the semantics present in all parts of the date values,
i.e., the year, the month, the days, and so on.
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5.1 KGE Models

In this study, the models DistMult-LiteralE, DistMult, and ComplEx have been
chosen to conduct the benchmarking experiments. The model DistMult-LiteralE
was selected because the main focus of this study lies in providing benchmark
datasets for KGE with literals whereas the other models DistMult and ComplEx
are included to show the comparisons with and without literals. For more de-
tails on KGEs with literals please refer to [15]. DistMult scores a given triple
using a diagonal bilinear interaction function between the head and tail entity
embeddings and the relation embeddings - f(h, t, r) = hT diag(r)t. This model
can only deal with symmetric relations due to the fact that f(h, t, r) = f(r, t, h).
ComplEx is an extension of DistMult, which uses complex-valued embeddings
in order to better handle asymmetric relations. Its scoring function is defined as
- f(h, t, r) = Re(hT diag(r)t̄) where Re(.) is the real part and t̄ is the conjugate
of t. DistMultLiteral extends DistMult by modifying the scoring function f
such that the entity embeddings of h and t are replaced with their respective
literal enriched representations hlit and tlit.

5.2 Model Selection

As it has been demonstrated in [2], in addition to a model’s architecture, the
combination of the training approach and the loss function used also plays an
important role to determine a model’s performance. Hence, we used a pytorch-
based configurable KGE framework Pykeen8 to search from a large range of
hyperparameters listed in Table 4. First, around 70 different combinations of
datasets, models, training approaches, losses, regularizers and optimizers (for
example, LitWD1K + DistMult + LCWA + CEL + LP + Adam)
were defined as configurations. Then, for each of these configurations, random
search has been used to perform the hyper-parameter optimizations over all
other hyper-parameters in order to select the best models. The details on the
training approaches, losses, and search strategies are given as follows:

Training approaches and loss functions: The models have been trained
based on the sLCWA (Stochastic Local Closed World Assumption) and LCWA
(Local Closed World Assumption) approaches. The sLCWA training approach
has been used with UNS (Uniform Negative Sampler) to generate negative sam-
ples. The loss functions Cross Entropy Loss (CEL) and Binary Cross Entropy
Loss (BCEL) are used together with LCWA whereas BCEL and Margin Ranking
Loss (MRL) are used with sLCWA. In order to learn more about these training
approaches and losses refer to [2].

Search strategies: For each configuration with LitWD1K, a maximum of 100
trials are generated within a bound of 24 hours for DistMult and DistMultLit-
eral, and 36 hours for ComplEx. During each trial, the model is trained for 1000

8 https://pykeen.readthedocs.io/en/latest/

https://pykeen.readthedocs.io/en/latest/
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epochs. On the other hand, for LitWD19K and LitWD48K a maximum of 100
trials are generated within 48 hours for DistMult and DistMultLiteral, and 60
hours for ComplEx. Every trial is run for a maximum of 500 epochs where early
stopping is performed by evaluating the model every 25 epochs with a patience
of 50 epochs on the validation set using MRR. Finally, for each dataset and em-
bedding model pair (e.g., LitWD1K+DistMult), the best configuration is chosen
based on the evaluation result on the validation set. Then, evaluation is carried
out using the test set by retraining the selected models on each dataset for 1000
epochs. In order to make sure that the results reported are consistent, the re-
training is done three times for all models on LitWD1K and for DistMult on
LitWD19K and since we find the results to be very close, we run the retraining
only once for the rest of the experiments.

The experiments with LitWD1K and LitWD19K are run on TITAN X (Pascal)
12 GB whereas those on LitWD48K are run on NVIDIA Tesla V100S-PCIE-
32GB. The optimal hyperparameter values for each of the models on all the
datasets are provided along with the datasets on Github9.

5.3 Results

The results of the experiments on link prediction are presented in Table 5. Three
different comparisons can be made from the results, i.e., i) unimodal vs. multi-
modal, ii) between uni-modals, and ii) proposed datasets vs. existing datasets.

– Unimodal vs. Multi-modal: Here, we compare DistMult with DistMut-
Literal because DistMutLiteral is a multimodal KGE that extends DistMult.
As it is seen in the results, for all of the three datasets DistMultLiteral out-
performs DistMult w.r.t. almost all metrics. This indicates that making use
of literals (numeric literals) improves entity representations.

– Unimodal vs. Unimodal:When comparing the unimodals, ComplEx, and
DistMult, we see that ComplEx performs better than DistMult on the largest
dataset LitWD48K. On the other two datasets, the results of the two models
are comparable.

– Proposed datasets vs. Existing datasets: In order to show the level
of difficulty of the proposed datasets, here we compare the results of the
two unimodals on LitWD19K and the existing datasets FB15K-237 and
CoDEx-M. For both ComplEx and DistMult, w.r.t. all metrics, the results
on LitWD19K are worse than those on FB15K-237 and CoDEx-M.

6 Conclusion and Future Work

This study presents LiterallyWikidata which is a set of KGC datasets extracted
from Wikidata and Wikipedia with a special focus on literals. The existing
9 https://github.com/GenetAsefa/LiterallyWikidata

https://github.com/GenetAsefa/LiterallyWikidata
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Table 4: Hyper-parameter search space
Hyper-parameter Range
Embedding dimension {64,128,256}
Initialization {Xavier}
Optimizersa {Adam, Adadgrad}
Regulaizer {None, L1, L2}

Weight for L1 and L2 [0.01, 1.0)
Learning Rate (log scale) [0.001, 0.1)
Batch size {128, 256, 512, 1024}
Input dropoutb {0,0.1,0.2,0.3,0.4,0.5}
Training Approachc

sLCWA
Loss {BCEL, MRL}
Number of Negatives {1, 2, ... , 100}
Margin for MRL {0.5, 1.5, ... , 9.5}

LCWA
Loss {BCEL, CEL}
Label Smoothing (log scale) [0.001, 1.0)

a We evaluated both Adam & Adagrad using DistMult & DistMultLiteral on
LitWD1K and using DistMult on LitWD19K & LitWD48K(sLCWA). The result in-
dicates that Adagrad performs better than Adam on the smallest dataset whereas
Adam is better on the larger ones. Hence, for that reason and also due to the fact
that Adam is known for addressing the problem of decreasing learning rate in Ada-
grad, for the two larger datasets, we sticked to Adam for the rest of the experiments
in order to reduce computational cost.
b The input dropout range is applied to DistMultLiteral
c We have evaluated both sLCWA & LCWA using DistMult & DistMultLiteral on all
the three datasets and learned that LCWA performs better at all times. Hence, we
used only LCWA for the rest of the experiments.

datasets FB15K-237 (popular) and CoDEx (recent) are both valuable datasets
for link prediction with unimodal KGC models. However,we have shown that
LiterallyWikidata is appropriate for both unimodal and multimodal link predic-
tion tasks. Besides, directions for future work on LiterallyWikidata are indicated
as follows:

– More tasks: Using the datasets with other tasks such as triple classification.
– More Experiments: Conducting experiments with text literals and also

by fusing relational triples, numeric literals, short text literals (aliases and
labels), and long text literals all together. Moreover, experiments with more
varieties of KGE models will be performed.

– Detailed analysis: Conducting further analysis on the datasets in terms
of compositionality will be undertaken, so as to explore its use for models
which leverage paths.

– Studying data bias: Bias in training data is one of the crucial aspects of
Machine Learning that needs to be carefully addressed. Since Wikidata is
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Table 5: Results of Link Prediction
Dataset Model MRR Hits@1 Hits@10

Ours

LitWD1K
DistMult 0.419 0.283 0.697
ComplEx 0.413 0.28 0.673
DistMultLiteral 0.431 0.297 0.703

LitWD19K
DistMult 0.195 0.138 0.308
ComplEx 0.181 0.122 0.296
DistMultLiteral 0.245 0.168 0.399

LitWD48K
DistMult 0.261 0.195 0.4
ComplEx 0.277 0.207 0.428
DistMultLiteral 0.279 0.204 0.434

Existing∗
FB15K-237 DistMult 0.343 0.250 0.531

ComplEx 0.348 0.253 0.536
CoDEx-M ComplEx 0.337 0.262 0.476

∗ The results are copied from LibKGE (https://github.com/uma-pi1/kge)

one of the crowd-sourced KGs, it is susceptible to biases. These biases in
Wikidata reflect the real-world and hence, LiterallyWikidata may as well
be biased. However, the current version of the dataset is not yet de-biased.
We are currently investigating whether de-biasing should be done and what
methods exist for such purpose.

We hope that the release of LiterallyWikidata fosters research on more sophisti-
cated KGE models that exploit the additional semantics provided with literals.
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