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Abstract

In mathematical literature, terms can have mul-
tiple meanings based on context. Manual term
disambiguation across scholarly articles de-
mands massive efforts from mathematicians.
This paper addresses the challenge of automat-
ically determining whether two or more def-
initions of a mathematical term are semanti-
cally different. Specifically, the difficulties of
understanding how contextualized textual rep-
resentation can help solve the problem are in-
vestigated. A new dataset MathD2 for math-
ematical term disambiguation is constructed
with ProofWiki’s disambiguation pages. Then
three approaches based on contextualized tex-
tual representation are studied: (1) supervised
classification based on the embeddings of con-
catenated definitions and titles; (2) zero-shot
prediction based on semantic textual similarity
(STS) between definition and title and (3) zero-
shot LLM prompting. The first two approaches
achieve accuracy greater than 0.9 on the ground
truth dataset, demonstrating the effectiveness
of our methods for automatic disambiguation
of mathematical definitions. Our dataset and
source code are available here: https://github.
com/sufianj/MathTermDisambiguation.

1 Introduction

Mathematical scholarly articles contain highly
structured statements, such as definitions, axioms,
theorems, and proofs. Despite adhering to strict
conventions and consistent usage of terminologies,
these articles cannot be easily searched or explored
through traditional keyword searches.

Mathematical definitions are rich sources of in-
formation. The terms defined therein known as
definienda (singular: definiendum) can be automat-
ically extracted. Extracted terms can be used to
populate a knowledge base (KB), thereby facilitat-
ing knowledge discovery. In addition, these terms

*These authors contributed equally to this work.

are utilized to index relevant mathematical state-
ments and articles for efficient lookup.

To this end, several initiatives have emerged: Ar-
got (Berlioz, 2021) is a collection of term-definition
pairs automatically extracted from mathematical
papers, allowing users to retrieve all definitions of
a given term, while MathMex (Durgin et al., 2024)
is a recent search engine for mathematical defi-
nitions based on the semantic similarity between
a user’s query and the definition. Both projects
show promising usage of different word embed-
dings.

Existing research in this area focuses on auto-
matically extracting mathematical definitions from
scholarly articles (Berlioz, 2023; Nakagawa et al.,
2004; Sun and Zhuge, 2023; Vanetik et al., 2020)
and disambiguating definienda (Berlioz, 2021;
Jiang and Senellart, 2023). Definienda disambigua-
tion involves identifying and connecting terms to
their corresponding mathematical definitions in a
reference KB. It is particularly challenging when
identical terms for the same concept are defined in
various ways (e.g., “path”) or when polysemous
terms (e.g., “block”) refer to distinct concepts in
various subtopics (see Table 1). Argot cannot dis-
ambiguate polysemous terms, while MathMex can-
not guarantee that the retrieved definitions accu-
rately define the queried term.

For this study, ProofWiki1 serves as the reference
list. It is a crowd-sourced online collection of cate-
gorized mathematical proofs, including 500 disam-
biguation pages 2. Similar to Wikipedia, these dis-
ambiguation pages list identical terms, each linking
to a dedicated article. The heading of each article
is composed of a unique title, appended by the cat-
egory where the term can be found (e.g. algebra or

1https://ProofWiki.org/wiki/Main_Page
2ProofWiki Disambiguation Pages, https://proofwiki.org/

wiki/Category:Definition_Disambiguation_Pages
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Definiendum Definition in Source Article
block A block in H is a maximal set of tightly-connected hyperedges. (Ergemlidze et al.,

2019)
block A block of indices is a set of numbers S where every term SGa,b(s) depends on the

same value via division, for all s ∈ S. (Kupin, 2011)
path If the vertices v0, v1, . . . , vk of a walk W are distinct then W is called a Path. A path

with n vertices will be denoted by Pn. Pn has length n − 1. (Kalayathankal et al.,
2015)

path Let G = (V,E) be a graph. A path in a graph is a sequence of vertices such that from
each of its vertices there is an edge to the next vertex in the sequence. This is denoted
by P = (u = v0, v1 . . . , vk = v), where (vi, vi+1) ∈ E for 0 ≤ i ≤ k − 1. (Perera
and Mizoguchi, 2012)

Table 1: Definitions extracted from different scholarly articles (Jiang and Senellart, 2023). The definition of “path” has different
formulations. The notion of “block” has different meanings.

geometry).

This work addresses the following research ques-
tions:

RQ1. How well can contextualized word embed-
dings help the disambiguation of mathemati-
cal terms?

RQ2. Which architectures and pre-training strate-
gies are best suited for this task?

RQ3. How well do models trained in the pre-
ceding learning paradigm of pre-train + fine-
tune compare with state-of-the-art (SOTA)
Instruction-Tuned Large Language Models
(LLMs)?

The main contributions of this work are:

• MathD2 - a new dataset for Mathematical
Definiendum Disambiguation.

• Exploration of three different approaches
demonstrating how the disambiguation task
can benefit from contextualized semantic rep-
resentations.

• Experiment-supported evidence highlight-
ing the efficiency of sentence embeddings for
the addressed disambiguation task.

2 Related Work

The challenges posed by this task are:

(a) the lack of labeled datasets for equivalent
mathematical definitions – there is only one
example for each definiendum and definition;

(b) the limited number of disambiguation pages;

(c) the unstructured nature of definitions that com-
bine mathematical notations, formulas, and
general discourse.

To address (a), entity linking and sentence simi-
larity approaches for mathematical terms are re-
viewed. To tackle (b) and (c), transformer mod-
els (Vaswani et al., 2023) are employed for their
capabilities to produce rich, contextualized repre-
sentations.

Contextualized representations produced by BERT
(Bidirectional Encoder Representations from Trans-
formers) (Devlin et al., 2019) encode the meaning
of a word according to its context. This means
that polysemous words have several, more accu-
rate representations depending on their location
in the sentence. BERT is pre-trained on two key
tasks: Masked Language Modeling (MLM), where
random tokens in a sentence are masked and pre-
dicted based on context, and Next Sentence Pre-
diction (NSP), which trains BERT to determine
whether a sentence follows another in a discourse.
Pre-training with MLM is widely applied for do-
main adaptation, especially when there is a dearth
of data for fine-tuning (Mishra et al., 2021; Jiang
et al., 2022). In addition, fine-tuning BERT for spe-
cific downstream tasks and domains is straightfor-
ward. For instance, by combining BERT’s output
with a classification layer, it has been adapted for
mathematical notation prediction (Jo et al., 2021),
definiendum extraction (Jiang and Senellart, 2023)
and mathematical statement extraction (Mishra
et al., 2024). The Natural Language Inferernce
(NLI) datasets (Bowman et al., 2015; Williams
et al., 2018) used by BERT’s NSP pre-training are
related to the task at hand. A piece of supporting
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evidence is AcroBERT (Chen et al., 2023), an en-
tity linker that reuses BERT for NSP’s pre-trained
weights and is fine-tuned to link acronyms to their
long forms. AcroBERT outperforms BERT and
other domain-adapted BERT-based models.

However, the nature of the BERT’s pre-training
tasks makes it unsuitable for measuring semantic
similarity. Sentence BERT (SBERT) 3 (Reimers
and Gurevych, 2019) modifies the architecture of
BERT to produce meaningful sentence embeddings
that can be compared using cosine similarity. Out-
of-the-box SBERT achieves superior performance
across varied classification tasks involving math-
ematical texts (Steinfeldt and Mihaljević, 2024).
In one such task, the proponents measure the sim-
ilarity of SBERT embeddings between an input
text and the combination of titles and abstracts
of mathematical publications in arXiv 4 and zb-
MATH 5 to predict the classification code of the
respective repositories. In the same vein, this study
aims to evaluate the effectiveness of semantic tex-
tual similarity in linking definitions to titles. Since
BERT for NSP and SBERT require different do-
main adaptation strategies (Reimers and Gurevych,
2019; Steinfeldt and Mihaljević, 2024), this work
first identifies the architecture that performs better
for the task.

Since the release of powerful LLMs, these models
have been applied to various Information Extrac-
tion (IE) tasks, including entity linking. Particu-
larly for long-tail entities, LLMAEL (Xin et al.,
2024) instructed LLMs to augment the context by
expanding entity mentions. The augmented con-
text then serves as additional input to the entity
disambiguation component of an IE pipeline (Xin
et al., 2024). Meanwhile, (Vollmers et al., 2025)
attempted to use LLMs in several IE pipeline com-
ponents: first by prompting the LLM to identify
entity mentions (NER), followed by context ex-
pansion using prompts reminiscent of LLMAEL’s.
Additional experiments conducted in this paper aim
to find out the comparability of the proposed tex-
tual similarity models and LLMs in identifying
another example of long-tail entities embodied by
mathematical terms.

3https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

4https://arxiv.org/
5https://zbmath.org/

3 Methodology

Mathermatical term disambiguation is formalized
as an entity linking task, where the entities refer to
the unique article titles in ProofWiki. That is, given
(1) a definition and an ambiguous definiendum and
(2) a dictionary that maps the ambiguous definien-
dum to entities, the goal is to find the title that
best matches the definition. The proposed method
is described in two steps. First, the ground truth
dataset is constructed. Second, three applicable
approaches are considered.

3.1 Construction of the MathD2 Dataset
A dump of the whole ProofWiki was ex-
tracted on the 5th of February, 2025, using
WikiTeam (WikiTeam). This dump is then parsed
with the disambiguation pages serving as a jump-
off point for constructing the dictionary and the cor-
pus used for training the proposed models.

The dictionary is composed of a list of terms and
their corresponding candidate titles. Each term has
a disambiguation page. This page contains links to
associated articles, where each article is assigned a
unique title.

The list of candidate titles for the dictionary is ex-
tracted from the hierarchical list of articles on each
disambiguation page. It is important to note that
not all articles appearing on a term’s disambigua-
tion page are automatically added as candidates for
that term.

In addition, the hierarchy of topics is also taken
into account when building the dictionary. More
specific topics, or those belonging to the lower
levels in the hierarchy, take precedence over higher
level topics, when the former are also included in
the latter’s definition. The disambiguation page of
“Equivalence” 6 illustrates this example: “Logical
Equivalence” is not included in the candidate list of
the term “Equivalence”, since it is included already
in the definitions of both “Semantic Equivalence”
and “Provable Equivalence.”

Aside from the hierarchy, the surface forms of the
topics listed on the disambiguation page are also
taken into account. Topics that do not include the
term in question are not added as candidates (See
“Set Theory” from the disambiguation page of the
term, “Loop” 7.

6https://proofwiki.org/wiki/Definition:Equivalence
7https://proofwiki.org/wiki/Definition:Loop
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Finally, terms mapped to less than two titles are
removed. Table 2 shows (definition, title) pairs ex-
tracted from the disambiguation page of “Bilinear
Form 8.”

The training corpus is extracted from the articles
of the candidate titles. Only the Definition sections
are utilized. They undergo post-processing which
involves parsing of redirects and converting LaTeX
content into plain text.

The MathD2 dataset contains 365 ambiguous terms,
mapping to 1984 definition-title pairs. For the fine-
tuning in Section 3.2, the dataset is split for 5-fold
cross validation as follows:

• 20% ambiguous terms and the corresponding
definition-title pairs make a test set testterm.
These terms are not seen in the training set,
thereby testing model’s ability to generalize
on unseen ambiguous terms.

• of the 80% remaining ambiguous terms, the
split between the training set and the second
test set (testtitle) is dependent on the number
of (definition, title) pairs for each term. If a
term has less than 8 (definition, title) pairs, all
the pairs are are assigned to the training set.
When the term has more than 8 definitions,
the first 8 of those (definition, title) pairs are
assigned to the training set, while the rest are
assigned to testtitle. Terms having not more
than 8 definitions are automatically assigned
to the training set. The purpose of testtitle is to
evaluate the model’s generalizability on new
candidate titles to seen ambiguous terms.

The key difference between the two tests is that
testterm only contains unseen terms and the cor-
responding unseen candidate titles, while testtitle
includes only seen terms and candidate titles not
seen in the training set. Since there are more candi-
date titles per term on average in textittesttitle, these
terms are more ambiguous, making the test more
difficult than testterm. This is reflected in the re-
sults shown on Table 4. In addition, inference on
testtitle takes more time due to additional pairwise
comparisons.

In the fine-tuning of Section 3.2, for each ambigu-
ous term, two definitions and their titles are ran-
domly selected to make positive pairs, and the titles
of two other random definitions to make negative

8https://proofwiki.org/wiki/Definition:Bilinear_Form

pairs. Table 3 shows the MathD2 dataset statistics.
All approaches are evaluated on the 5 folds of 2
test sets.

3.2 Classification Based on One Concatenated
Embedding

Following the finetuning setup of AcroBERT (Chen
et al., 2023), BERT for NSP is adapted to build a su-
pervised sentence pair classifier to link definitions
to their page titles in ProofWiki. Every pair of (defi-
nition, candidate title with the matching ambiguous
term in ProofWiki) is concatenated as an input se-
quence. The sequence begins with a [CLS] token,
followed by a candidate title, a [SEP] token, and
then the definition, ending with [SEP]. The input
sequence passes through BERT’s transformer lay-
ers. These layers produce contextual embeddings
for each token in the sequence. Then, the embed-
ding of [CLS] is fed into a softmax classification
layer, which outputs a score to judge how coher-
ent the concatenated sequence is. The pair with
the highest score is selected as the final predicted
output. First the out-of-box BERT for NSP serves
as the baseline to see how well the pre-retained
natural language inference model can describe the
entailment between the titles and definitions. Then
the pretrained BERT for NSP is finetuned with the
training set using a triplet loss function

L = max
{
0, λ− dneg + dpos

}

which aims to assign higher scores to the titles
that match the input definition while reducing the
scores of irrelevant candidates. λ = 0.2 is the
margin value, and dpos and dneg are the distances
for positive pairs (good matches of definition and
title) and negative pairs (definition and irrelevant
candidate title), respectively. This approach is im-
plemented with PyTorch (Paszke et al., 2019) and
transfomers (Wolf et al., 2020). The batch size is
chosen among [8, 16, 32]. The learning rate is cho-
sen among [1e-5, 2e-6] for Adam optimizer. The
learning rate exponentially decays at a rate of 0.95
every 1000 steps. The model is trained with the
training dataset for 200 epochs. After each epoch,
a checkpoint (copy of the current model weights) is
saved. Each checkpoint is then evaluated with the
test dataset so that test data do not impact the model
weights. The best evaluation scores are recorded in
Appendix B.
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Definition Title
Let R be a ring. Let RR denote the R-module R. Let
MR be an R-module. A bilinear form on MR is a
bilinear mapping B : MR ×MR → RR.

Definition: Bilinear Form (Linear Algebra)

A bilinear form is a linear form of order 2. Definition: Bilinear Form (Polynomial Theory)

Table 2: Data extracted from a ProofWiki disambiguation page.

Fold 1 2 3 4 5

Train
Term 292 292 292 292 292
Pairs 1153 1181 1181 1160 1169

Testterm
Term 73 73 73 73 73
Pairs 412 362 342 445 423

Testtitle
Term 48 49 49 42 48
Pairs 419 441 461 379 392

Table 3: Cross-validation splits statistics. Terms in Testtitle
sets are also in Train sets.

3.3 Zero-shot Prediction Based on Semantic
Textual Similarity

A shortcoming of the previous solution is that the
NSP inference has to be run for every (definition,
title) pair mapped to an ambiguous term. Motivated
to make a computationally more efficient solution,
the sentence embeddings of the definitions and ti-
tles are explored. In this setup, the sentence em-
bedding of the titles and the definitions only need
to be calculated once. For the definition and each
candidate title with the matching ambiguous term,
the title with the highest cosine similarity to the
embedding of the definition is selected as the final
predicted output. To explore the potential benefits
of different pretraining corpus and related tasks,
the following models are studied:

• Out-of-box SBERT
(SBERT-all-mpnet-base-v2) (Reimers and
Gurevych, 2019).

• Mean pooled out-of-box BERT, to compare
with the pretraining of SBERT.

• Mean pooled CC-BERT (Mishra et al., 2021),
a from-scratch model pretrained with MLM
on mathematical papers. This experiment
studies the impact of domain-specific MLM
pretraining and domain-specific tokenization,
comparing to mean pooled out-of-box BERT.

• The best-performing sentence transformers
for Semantic Textual Similarity(STS) tasks
for short mathematical text as reported in (Ste-
infeldt and Mihaljević, 2024), including
Bert-MLM_arXiv-MP-class_zbMath (Ste-
infeldt and Mihaljević, 2024) (noted
as Adapted SBERT in Table 4),
SBERT-all-MiniLM-L6-v2 (Wang
et al., 2020), and
SBERT-all-MiniLM-L12-v2 (Wang et al.,
2020).

Following SBERT’s default setting (Reimers and
Gurevych, 2019), the mean pooling strategy is used
to calculate the sentence embeddings with out-of-
box BERT and CC-BERT.

3.4 LLM Prompting

Recently, Large Language Models (LLMs) have
been incorporated to improve entity disambigua-
tion tasks (Xin et al., 2024). Experiments con-
ducted with LLMs are framed as a Zero-Shot Open
Generative Question and Answer, where the LLM
is instructed to identify the correct article title given
a mathematical term and its ProofWiki definition
as context.

In order to get the best results from the LLM,
the prompt is constructed following best prac-
tices:

1. Task Description. “Your task is to find
the correct article title given a
mathematical term and definition as
context.”

2. Hallucination Prevention. “Reply with "I
don’t know" when uncertain.”

3. Expectation Setting. “Only select one
answer from the provided list. Do
not provide justifications.”

4. Multiple Choice. “Identify the correct
title from this list:[...]”

The LLMs used for testing are open-source and are

21



categorized as Instruction-tuned models (Zhang
et al., 2024). These LLMs undergo a supervised
fine-tuning step with a dataset consisting of human
instructions paired with their desired generated out-
puts. The list of titles provided in the prompt are
extracted from the dictionary mentioned in Section
3.1. Answers are only considered correct when the
article title in the ground truth exists in full in the
LLM’s answer as in Example 1.

<s> [INST] Your task is to
find ...
Identify the correct
definition title from this
list: ...
[/INST] Indexing Set /
Term"</s>

Example 1: An Example of a Precise Response from
Mistral-7B-Instruct-v0.2.

As can be seen in Example 2, there are instances
when the LLM insists on providing lengthy justi-
fications to its answer. Even when the text in the
ground truth exists in the justification, this kind of
answer will still be considered as incorrect.

<s> [INST] Your task is to
find ...
...following mathematical
definition as context:
Let G be a group...
[/INST] I don’t know. The
term “complex” in the given
context refers to a subset
of a group...

Example 2: An Example of a response from
Mistral-7B-Instruct-v0.2 not follow-
ing instructions.

The different LLMs used for the experiments are
prompted with identical instructions. Inference call
arguments, such as max_tokens or temperature,
are adapted from the Hugging Face model card
specifications pages.

4 Results and Discussion

4.1 Overall Performance

The evaluation measure used for comparison is Ac-
curacy or micro F1-score (Equation 1) (Shen et al.,
2015). Macro F1-score is not considered due to the
characteristic of the test set, where there is only a

single sample for each definition-title pair.

F1micro = Acc =
# correctly identified title

# of titles
(1)

Table 4 shows the experimental results of all three
methods. Overall, the best-performing models are
finetuned BERT for NSP, and generic SBERT-like
models for STS. The differences between these
models are not statistically significant (see Ap-
pendix B.1). Notably, the out-of-the-box SBERT
demonstrated excellent performance with much
less inference time.

Regarding the NSP approach, finetuned BERT
on the MathD2 dataset significantly outperforms
out-of-box BERT, validating AcroBERT’s set-up,
the informativeness of MathD2 data for finetun-
ing, and the helpfulness of BERT’s pretrained
weights.

Regarding the STS approach, the performance
of SBERT models is aligned with the results of
(Reimers and Gurevych, 2019) and (Steinfeldt and
Mihaljević, 2024). The experiments with the mean
pooled out-of-box BERT and CC-BERT show that
MLM domain-adaptation over mathematical papers
slightly improves this task but is far less efficient
than adapted SBERT, which has been pre-trained
with fewer data but on a better task.

Given that both BERT for NSP and SBERT are pre-
trained on NLI tasks (Devlin et al., 2019; Reimers
and Gurevych, 2019), it may be deduced that: i)
Compared to using the [CLS] representation of
concatenated sequences, using separated sentence
embeddings captures more information for our
task. ii) SBERT’s pretraining on (title, abstract)
pairs from S2ORC dataset (Lo et al., 2020) helps
to better understand the entailment between titles
and body texts. However, Bert-MLM_arXiv-MP-
class_zbMath, the domain-adapted SBERT model 9

that the authors of (Steinfeldt and Mihaljević,
2024) fine-tuned with multiple tasks using titles
and abstracts of mathematical papers does not yield
better results. This might be due to the model being
solely trained on titles and abstracts, diminishing
the model’s representational capacity for both for-
mulas and general text.

In comparison, the results of the zero-shot experi-
ments with LLMs are worse than those of the other

9https://huggingface.co/math-similarity/Bert-MLM_
arXiv-MP-class_arXiv
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Model Approach Testterm Testtitle
BERT (Devlin et al., 2019) NSP 84.6 84.0
BERT(finetuned) NSP 92.3 91.6
BERT(mean pooled) STS 39.9 27.2
CC-BERT (Mishra et al., 2021) STS 44.0 32.7
SBERT-all-mpnet-base-v2 (Reimers and Gurevych, 2019) STS 92.8 91.9
SBERT-all-MiniLM-L6-v2 STS 91.6 91.4
SBERT-all-MiniLM-L12-v2 STS 92.6 91.4
Adapted SBERT (Steinfeldt and Mihaljević, 2024) STS 59.8 48.4
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023) LLM-Instruct 45.9 50.4
Mistral-7B-Instruct-v0.3 LLM-Instruct 60.0 52.1
Meta-Llama-3-8B-Instruct LLM-Instruct 75.0 71.9

Table 4: Averaged accuracy scores of five tests. Values are reported as ρ · 100. Best scores are in bold. Detailed results and
pairwise t-statistics can be found in Appendix B.

approaches. When running the experiments on
older GPUs, some samples caused out-of-memory
runtime errors due to the lengthy ProofWiki def-
inition sections. For example, the definition sec-
tion of Matrix Product 10 have matrices within it
which could have caused the error. One solution is
to limit the maximum token size during inference
to 255. However, this curtails contexts that may
help the model disambiguate highly ambiguous
terms.

4.2 Errors Generated by LLMs

In order to understand the types of errors encoun-
tered by LLMs, all responses from the testterm
split that are considered incorrect are manually
scrutinized. These amounted to almost a quarter of
testterm.

Appendix A provides examples of each category
of errors. Erroneous LLM responses are of the
following types:

1. No Prediction (NP). This is when the LLM
responds with “I don’t know.”

2. Not Following Instructions (NFI). These are
scenarios when the LLM chose answers not
included in the list of choices or when the
answer is in the justification.

3. Learning Bias (LB). This is when the LLM
’s answer is closest to the ground truth (e.g.
“Degrees of Arc” instead of “Degree of Arc.”).
NFIs and LBs are often hard distinguish. As a
rule of thumb, an error is considered an NFI,
when the LLMs try to change the categorical

10 https://proofwiki.org/wiki/Definition:Matrix_Product

Error
Type

Mistral
v2

Mistral
v3

Llama
v3.1

NP 20.6 0.0 2.2
NFI 169.8 126.0 73.4
LB 3.2 1.0 0.4
WP 21.0 33.4 23.2

Table 5: Average Number of Errors per Type Produced by
LLMs on 5 testterm sets. NP = No Prediction, NFI
= Not Following Instructions , LB = Learning Bias,
WP = Wrong Prediction. Detailed error distribution
is given in Appendix B.1.

structure of the titles into prose (e.g. “Right
Distributive Operation" instead of “Distribu-
tive Operation/Right”, as provided in the list
of choices).

4. Wrong Prediction (WP). These errors are
easy to distinguish. In most cases, the incor-
rect answers are included in the list of candi-
dates.

Existing literature points to the tendencies of LLMs
to hallucinate (Huang et al., 2025). Among the
aforementioned error types, NFIs and LBs errors
exhibit this behavior. Instead of admitting uncer-
tainty or the lack of knowledge, these errors show
that the model regresses to making up answers.
Our experimental results also show that when the
number of candidates increases, Mistral models are
more likely to produce NFI errors (see Figure B.1
and Figure B.2 in Appendix B.1), and the correct
rate decreases correspondingly.

Table 5 shows that older models, such as
Mistral-7B-Instruct-v0.2, are likely not to
know the answer with the highest number NPs and
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not follow explicit instructions (NFIs). Compared
to its predecessor, Mistral-7B-Instruct-v0.3
did not abstain from making predictions (0% NPs)
but produced more wrong predictions. Not surpris-
ingly, it is more likely to follow instructions than
its predecessor. While the best performing model
is Meta-Llama-3-8B-Instruct with considerable
fewer errors across the board.

4.3 Limitations

An interesting finding is that all three approaches
make some common mistakes, indicating the lim-
its of using only semantic representations. The
most common error is when the definition state-
ment includes nested definitions. Another typical
error is that the predicted result is in the correct
category but not the definiendum, mainly when the
definition contains morphemes in the predicted ti-
tle or when the definition does not contain some
morphemes in the expected title. For example, the
definition of “Consequence Function” starts with
“Let G be a game...” 11 , and the predicted title is
“Definition:Consequence(Game Theory)’ 12 . Thus,
enhancing sentence embedding’s comprehension
of semantic and syntactic knowledge of mathemat-
ical definitions is still worth investigating. Other
common mistakes reveal the noises in the dataset
due to errors in Proofwiki 13, or automatic scrap-
ping and LATEXconversion of irregular ProofWiki
pages.

Practical Considerations: One reason for
comparing traditional transformer-based model
paradigm of Pre-train+Fine-Tune and Large Lan-
guage Models is the consideration of comput-
ing resource constraints. SOTA LLMs, such
as Meta-Llama-3-8B-Instruct, require Cuda li-
braries with version 12.0 (Nvidia, 2024).

Experiments involving BERT/SBERT-based mod-
els are conducted on NVIDIA Tesla V100S-PCIE
32GB having compute capability of 5.0 with 14.5
TFLOPS 14. On the other hand, experiments with
LLMs used NVIDIA A100 80GB PCIe with with
19 TFLOPS, belonging to a line of Graphics Pro-

11https://proofwiki.org/wiki/Definition:Consequence_
Function

12https://proofwiki.org/wiki/Definition:Consequence_
(Game_Theory)

13For example, the definiendum in https://proofwiki.org/
wiki/Definition:Ideal_of_Algebra/Right_Ideal should be right
ideal, but is wrongly written as left ideal.

14TeraFLOPS specifies the number of floating point opera-
tions per second that the hardware can accomplish.

cessing Units (GPUs) with compute capability of
7.0.

Compute capability dictates how much computing
resources are required to run experiments. Newer
LLMs require higher versions of Cuda. Cuda
libraries require a specific version of NVIDIA
drivers, and consequently, the array of GPUs capa-
ble of running the driver version.

5 Conclusion and Future Works

This work introduces MathD2, a new dataset for
mathematical term disambiguation extracted from
ProofWiki. Two entity-linking approaches have
been implemented and shown to yield advantages
in the usage of contextualized embeddings to differ-
entiate mathematical definitions. The experimental
results proved the efficiency and effectiveness of
using out-of-the-box SBERT.

Additional experiments with SOTA LLMs also
show that the proposed models performed better
and have fewer computing resource constraints.
Moreover, error analysis shows the inherent ten-
dency of LLMs to hallucinate.

Further work is planned on applying the proposed
approaches to scholarly papers. Regarding the
closed scores of the best models, evaluation with
more data and significance tests are planned. In
addition, the current approach is to be extended
to include document-level representation and ci-
tation information to differentiate definitions in
scholarly papers. This work also indicates the need
for further study on building sentence transform-
ers that benefit from domain-specific MLM and
task-related pre-training.
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Appendices

A Error Analysis of LLMs’
Response

Below are examples of actual LLM answers ac-
cording to the type of error specified in Section
4.

1. No Prediction (NP).
Testterm-idx: 269
Ground Truth: Composition
of Ratio
Answer: I don’t know

2. Not Following Instructions (NFI).
Testterm-idx: 51
Context: Identify the
correct definition
title from this list:
[’Image (Relation
Theory)/Mapping/Mapping’,
’Image (Relation
Theory)/Relation/Relation’,
’Direct Image
Mapping/Mapping’,
’Direct Image
Mapping/Relation’,
’Direct Image of Sheaf’]
Ground Truth: Direct Image
of Sheaf
Answer: Direct Image
Mapping/Sheaf

3. Learning Bias (LB).

Testterm-idx: 338
Ground Truth: Cut-Vertex
Answer: Vertex Cut

4. Wrong Prediction (WP).

Testterm-idx: 2
Context: Complex analysis
is a branch of mathematics
that studies complex
functions.
Ground Truth:
Analysis/Complex
Answer: Complex Function
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B Detailed Results

Table 6 and Table 7 show the 5-fold cross-
validation accuracy scores.

B.1 Comparing Performance of Models
Table 8 and Table 9 compare models with close
scores in Table 6 and Table 7. Paired Student’s
t-test is used to determine if one model is signif-
icantly better than another. Given n = 5 folds,
let di represent the difference in accuracy between
Model A and Model B for the i-th fold:

di = Accuracy(i)A −Accuracy(i)B , i = 1, 2, . . . , 5

Mean difference

d̄ =
1

n

n∑

i=1

di

Sample standard deviation

sd =

√√√√ 1

n

n∑

i=1

(di − d̄)2

Standard Error
SE =

sd√
n

t-statistic

t =
d̄

SE
=

d̄

sd/
√
n

Degrees of Freedom DF = n− 1 = 4

Two-Tailed p-value

p-value = 2 · P (T ≥ |t|) where T ∼ tDF=4

We consider the difference between the perfor-
mance of two ML models to be statistically sig-
nificant if p-value is smaller than 0.05.
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Model Approach Testterm 1 Testterm 2 Testterm 3 Testterm 4 Testterm 5
BERT NSP 0.799 0.873 0.868 0.845 0.844
BERT (finetuned) NSP 0.903 0.972 0.927 0.910 0.903
BERT (mean pooled) STS 0.381 0.434 0.453 0.369 0.359
CC-BERT (mean
pooled)

STS 0.427 0.448 0.462 0.434 0.430

SBERT-all-mpnet-
base-v2

STS 0.923 0.936 0.918 0.928 0.934

SBERT-all-MiniLM-
L6-v2

STS 0.871 0.923 0.927 0.935 0.922

SBERT-all-MiniLM-
L12-v2

STS 0.893 0.939 0.921 0.942 0.934

Adapted SBERT STS 0.568 0.655 0.611 0.580 0.577
Mistral-7B-Instruct-
v0.2

LLM 0.483 0.506 0.421 0.456 0.430

Mistral-7B-Instruct-
v0.3

LLM 0.619 0.635 0.667 0.526 0.556

Meta-Llama-3-8B-
Instruct

LLM 0.731 0.815 0.719 0.780 0.707

Table 6: Accuracy scores on new terms. The best scores are in bold.

Model Approach Testtitle 1 Testtitle 2 Testtitle 3 Testtitle 4 Testtitle 5
BERT NSP 0.847 0.823 0.833 0.850 0.847
BERT (finetuned) NSP 0.926 0.927 0.911 0.900 0.918
BERT (mean pooled) STS 0.258 0.274 0.260 0.290 0.278
CC-BERT (mean
pooled)

STS 0.329 0.336 0.315 0.319 0.337

SBERT-all-mpnet-
base-v2

STS 0.896 0.923 0.928 0.934 0.916

SBERT-all-MiniLM-
L6-v2

STS 0.924 0.909 0.911 0.910 0.916

SBERT-all-MiniLM-
L12-v2

STS 0.928 0.902 0.915 0.913 0.911

Adapted SBERT STS 0.494 0.485 0.479 0.472 0.487
Mistral-7B-Instruct-
v0.2

LLM 0.492 0.499 0.495 0.533 0.503

Mistral-7B-Instruct-
v0.3

LLM 0.506 0.522 0.505 0.549 0.523

Meta-Llama-3-8B-
Instruct

LLM 0.747 0.703 0.709 0.683 0.753

Table 7: Accuracy scores on new titles. The best scores are in bold.

Model 1 Model 2 t-statistic t p-value p Significant
SBERT-all-mpnet-base-v2 BERT (finetuned) 0.405 0.706 no
BERT (finetuned) SBERT-all-MiniLM-L12-v2 -0.222 0.835 no
SBERT-all-MiniLM-L12-v2 SBERT-all-MiniLM-L6-v2 2.160 0.097 no
BERT (finetuned) BERT 7.637 0.002 yes
BERT (mean pooled) CC-BERT (mean pooled) -3.197 0.033 yes
Mistral-7B-Instruct-v0.3 Mistral-7B-Instruct-v0.2 -4.928 0.008 yes

Table 8: Comparing models on new terms. Statistical significance: p < 0.05

.
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Model 1 Model 2 t-statistic t p-value p Significant
SBERT-all-mpnet-base-v2 BERT (finetuned) 0.272 0.819 no
BERT (finetuned) SBERT-all-MiniLM-L12-v2 0.377 0.753 no
SBERT-all-MiniLM-L12-v2 SBERT-all-MiniLM-L6-v2 -0.013 0.992 no
BERT (finetuned) BERT 8.921 0.001 yes
BERT (mean pooled) CC-BERT (mean pooled) -7.759 0.002 yes
Mistral-7B-Instruct-v0.3 Mistral-7B-Instruct-v0.2 -7.948 0.002 yes

Table 9: Comparing models on new titles. Statistical significance: p < 0.05

.
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Figure B.1: Error Type Distribution by Candidate Number - mistralv2. NP = No Prediction, NFI = Not Following Instructions ,
LB = Learning Bias, WP = Wrong Prediction. The proportion of grey in a bar grows when the number of candidates
increases, suggesting that NFI is more likely to happen when given more options.
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Figure B.2: Error Type Distribution by Candidate Number - mistralv3. NP = No Prediction, NFI = Not Following Instructions ,
LB = Learning Bias, WP = Wrong Prediction. The proportion of grey in a bar grows when the number of candiadtes
increases, suggesting that NFI is more likely to happen when given more options.
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Figure B.3: Error Type Distribution by Candidate Number - llama3. NP = No Prediction, NFI = Not Following Instructions ,
LB = Learning Bias, WP = Wrong Prediction.
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