
Discrete Applied Mathematics 249 (2018) 2–17

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Exploratory knowledge discovery over Web of Data
Mehwish Alam a,*, Aleksey Buzmakov b, Amedeo Napoli c
a Institute of Cognitive Sciences and Technologies, Via San Martino della Battaglia 44, 00185 Rome, Italy
b National Research University, Higher School of Economics, 37 Gagarina Bulvar, Perm, Russia
c LORIA (CNRS –Inria Nancy Grand Est - Université de Lorraine), BP 239, 54506 Vandoeuvre les Nancy, France

a r t i c l e i n f o

Article history:
Received 13 February 2016
Received in revised form 13 March 2018
Accepted 15 March 2018
Available online 8 April 2018

Keywords:
Formal concept analysis
Pattern structures
Exploratory data analysis and knowledge
discovery

Web of Data
Resource description framework (RDF)

a b s t r a c t

With an increased interest in machine processable data and with the progress of semantic
technologies, many datasets are now published in the form of RDF triples for constituting
the so-called Web of Data. Data can be queried using SPARQL but there are still needs for
integrating, classifying and exploring the data for data analysis and knowledge discovery
purposes. This research work proposes a new approach based on Formal Concept Analysis
and Pattern Structures for building a pattern concept lattice from a set of RDF triples.
This lattice can be used for data exploration and visualized thanks to an adapted tool.
The specific pattern structure introduced for RDF data allows to make a bridge with other
studies on the use of structured attribute setswhen building concept lattices. Our approach
is experimentally validated on the classification of RDF data showing the efficiency of the
underlying algorithms.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

WorldWideWeb (WWW) started as a web of documents where HTML and textual documents (resources) are connected
through hyperlinks and can be identified. This web of documents is much more easily processable by humans than by
machines. A way of making the web of documents machine processable is to represent the content of the web in the form of
triples where one resource is connected with another resource. Resources and links between resources hold a ‘‘name’’ (URI).
Moreover, there are two formalisms for representing triples and organization of triples, namely RDF – for representing triples
and RDF Schema – for organizing resources and links. The resulting (huge) dataset in the form of entity-relationship triples
is known as the ‘‘Linked Open Data’’ (LOD) cloud or ‘‘Web of Data’’ (WOD) [5].

WOD follows a decentralized publication model meaning that several distributed graphs of resources are published by
different contributors. Most of the time, these graphs have nothing in common except some shared resources. Moreover,
external data schemas in the form of ontologies or concept hierarchies are also published independently and are linked to
WOD to facilitate the data analysis. Some resources only contain a schemawithout instances such as the SWRC ontology [33].
Some other resources may only contain triples without any schema information such as DBLP.1

Then, a main challenge is to provide a framework for guided navigation and exploration along with knowledge discovery
over these graphs of resources. In other words, these decentralized graphs should be ‘‘centralized enough’’ for enabling
domain specific applications. For example, when building domain specific applications, it is important to give an analyst,
i.e. a domain expert or a user, an insight into what these distributed resources contain. Based on analyst-requirements and

* Corresponding author.
E-mail addresses:mehwish.alam@istc.cnr.it (M. Alam), AVBuzmakov@hse.ru (A. Buzmakov), amedeo.napoli@loria.fr (A. Napoli).

1 http://dblp.l3s.de/d2r/.

https://doi.org/10.1016/j.dam.2018.03.041
0166-218X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.dam.2018.03.041
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2018.03.041&domain=pdf
mailto:mehwish.alam@istc.cnr.it
mailto:AVBuzmakov@hse.ru
mailto:amedeo.napoli@loria.fr
http://dblp.l3s.de/d2r/
https://doi.org/10.1016/j.dam.2018.03.041

M. Alam et al. / Discrete Applied Mathematics 249 (2018) 2–17 3

task-specific information, data analysis can then be carried out through exploration, following the tracks of ‘‘exploratory
data analysis’’ [34].

To allow data analysis and not only information retrieval, an important task is to classify triples w.r.t. their associated
schema. This classification can be performed over relevant datasets based on analyst and task specifications. In addition,
it is valuable to combine the classification operation with visualization tools for providing human–computer interaction.
Interaction and exploration are intertwined, allowing the analyst to focus on elements of interest and to select those classes
of triples in which she/he is interested by providing feedback to the system.

This paper introduces a framework, namely ‘‘RDF-Pattern Structures’’, based on interactive data exploration [27] and
Pattern Structures [21] which are an extension of Formal Concept Analysis (FCA) [22]. The proposed framework takes into
account samples from datasets published as a part of Web of Data and distributed over independent resources by directly
involving the analyst and user/task specifications. For classifying these selected sets of triples, we define an RDF-Pattern
Structure which is based on a specific similarity measure for comparing triples in taking into account a reference schema.
Thisway, similarity between triples amounts to an intersection of antichains. Accordingly,we also present away of efficiently
workingwith intersection of antichains, especially in large sets of data. An RDF-Pattern Structure generates a pattern concept
lattice, i.e. a partially ordered organization of classes of triples based on a reference schema called an RDF-Index. This RDF-
Index provides a ‘‘centralized view’’ over distributed resources and serves as a navigation and exploration space for the
analyst. For allowing interactive operations w.r.t. the RDF-Index, we introduce a visualization tool, namely RV-Xplorer (Rdf-
View Explorer), which enables visualization and interactions.

The main contributions of the paper can be summarized as follows:

• An original definition of the so-called RDF-Pattern Structure based on the pattern structure formalism, where RDF
data are described in terms of objects and descriptions.

• An original way of defining and computing similarity among RDF-pattern descriptions based on the intersection of
antichains and the RMQ procedure, revisiting and extending the seminal work of Ganter and Kuznetsov in [21].

• An interactive exploration of RDF data supported by the RV-Xplorer visualization tool.

This paper, which extends and completes several previous publications [1–3], is structured as follows. Section 2
introduces the background and the context of the present research work. Section 3 details the construction of the navigation
space for RDF data. Section 4 explains the process of interactive data exploration over the navigation space and introduces the
interactive visualization tool RV-Xplorer. Section 5 describes some experimental results. Finally, Section 6 discusses related
work while Section 7 concludes the paper.

2. Preliminaries

2.1. Web of Data

Web of Data follows the entity-relationship model and contains two types of information i.e., schema information and
factual information. Schema information is referred to as the already defined classes and their properties and relations
between the classes built from top to bottom based on human conceptualization of a domain. One such example is
Schema.org,2 which is a joint effort introduced by major search engines i.e., Google, Yahoo and Bing. It defines a set
of generic classes for several domains along with the properties of each class. If an HTML document is tagged with these
classes then it is detected by the search engines and is shown in the form of ‘‘Google Knowledge Graphs’’3 to provide direct
answers to the user queries. Resource Description Framework (RDF)4 and SKOS5 provide specific vocabularies for defining
the schema. Facts keep information about specific domain such as ‘‘car hasColor blue’’. One such effort is LinkedData [5]which
has become a standard for publishing data on-line in the form of entities and relationships which can further be linked to
other data sources published in the same format. It uses RDF which is used for representing and storing statements, where
each statement is represented as a triple ⟨subject, predicate, object⟩. A set of linked statements constitutes an ‘‘RDF graph’’
or an ‘‘RDF triple store’’.

For instance, Table 2 shows an example of RDF triples for papers with their keywords and authors from DBLP i.e., t1,
t2, t3, t4, t5, and t6. The prefixes and full forms of all the abbreviations used in this paper are shown in Table 1. In triple
t1 i.e., ⟨s1, p1, o11⟩, s1 is the subject, p1 is the predicate and o11 is the object. Here, s represents the titles of the paper, p
represents the predicates p1, p2, p3, p4 and o represents the authors or keywords. The subject denotes the resource and the
predicate denotes properties of the resource and defines relationship between the subject and the object. Each resource is
defined by a URI (‘‘Uniform Resource Identifier’’). In the rest of the paper we use ‘‘dereferenced’’ resources i.e., s1 instead of
a complete URI.

The background knowledge about topics in the papers is related to the keywords of the papers. It is represented in the
ACM Computing Classification System (ACCS6) and is shown in triples t7, t8 and t9. For the sake of simplicity we use only
the two resources DBLP and ACCS in the examples.

2 http://schema.org/.
3 A knowledge base used by Google to enhance the search engine with semantic search.
4 http://www.w3.org/RDF/.
5 http://www.w3.org/TR/swbp-skos-core-spec.
6 https://www.acm.org/about/class/2012.

http://schema.org/
http://www.w3.org/RDF/
http://www.w3.org/TR/swbp-skos-core-spec
https://www.acm.org/about/class/2012

4 M. Alam et al. / Discrete Applied Mathematics 249 (2018) 2–17

Table 1
Prefixes and Abbreviations of the terms used in the paper.

Abbreviation Term

p1 (dc:subject) http://purl.org/dc/elements/1.1/subject
p2 (dc:creator) http://purl.org/dc/elements/1.1/creator
p3 (dc:title) http://purl.org/dc/elements/1.1/title
p4 skos:broader
C1 Web Crawling
C2 Web Indexing
C3 Page and Site Ranking
C4 RDF
C5 OWL
C6 Similarity Measure
C7 Question Answering
C8 Recommender Systems
C9 Clustering and Classification
C10 Web Search Engines
C11 Semantic Web
C12 World Wide Web
C13 Retrieval Models and Ranking
C14 Retrieval Tasks and Goals

Table 2
RDF triples about papers with authors and keywords from DBLP.

tid Subject Predicate Object Dataset

t1 s1 p1 o11 DBLP
t2 s1 p2 o12 DBLP
t3 s2 p1 o16 DBLP
t4 s2 p2 o22 DBLP
t5 s1 rdf:type Publication DBLP
t6 o12 rdf:type Author DBLP
t7 o11 p4 C1 ACCS
t8 o16 p4 C6 ACCS
t9 C1 p4 C10 ACCS
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

2.2. SPARQL

A standard query language for RDF graphs is SPARQL7 which mainly focuses on graph matching. A SPARQL query is
composed of two parts, the head and the body. The body of the query contains Basic Graph Patterns present in the WHERE
clause of the query. It is composed of complex graph patterns defined by means of RDF triples with variables, conjunctions,
disjunctions and constraints over the values of the variables. These graph patterns are matched against the RDF graph and
the matched graph is retrieved and manipulated according to the conditions given in the query. The head of the query is an
expression which indicates how the answers of the query should be constructed. A subset of these triples is selected based
on analyst specifications. For example, a SPARQL query for papers from the field of classification is given in Listing 1.

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX dc:<http://purl.org/dc/terms/>

SELECT distinct ?title ?keywords ?author
where {
?paper dc:creator ?a .
?a rdfs:label ?author .
?paper dc:subject ?keywords .
?paper dc:title ?title .
FILTER(

regex(STR(?keywords), " supervised classification " , " i ")
|| regex(STR(?keywords), " unsupervised classification " , " i "))

Listing 1: SPARQL Query for extracting triples.

7 http://www.w3.org/TR/rdf-sparql-query/.

http://purl.org/dc/elements/1.1/subject
http://purl.org/dc/elements/1.1/creator
http://purl.org/dc/elements/1.1/title
http://www.w3.org/TR/rdf-sparql-query/

M. Alam et al. / Discrete Applied Mathematics 249 (2018) 2–17 5

Table 3
A formal context K.

Fig. 1. The concept lattice for Table 3.

2.3. Formal concept analysis

Formal Concept Analysis (FCA) [22] is a mathematical framework used for a number of purposes, among which are
classification, data analysis, information retrieval and knowledge discovery [8]. A formal context K = (G,M, I), consists
of G, a set of ‘‘entities’’, M , a set of attributes, and I , a binary relation between entities in G and attributes in M . It should
be noticed that we rename ‘‘objects’’ in FCA as ‘‘entities’’ to avoid any confusion with the ‘‘objects’’ in RDF triples. Table 3
presents a formal context related to papers and their authors. The titles of the papers are considered as entities while their
authors are considered as attributes. The fact that a paper has an author is represented as a cross in the binary context.
According to the first row in Table 3, paper s1 has author o21.

From this context formal concepts are computed by applying derivation operators. Given A ⊆ G and B ⊆ M , two
derivation operators, both denoted by (·)′, formalize the sharing of attributes by objects, and dually, the sharing of objects
by attributes:

A′
= {m ∈ M | gIm for all g ∈ A} (1)

B′
= {g ∈ G | gIm for all m ∈ B}. (2)

The two derivation operators form a Galois connection between the powersets ℘(G) and ℘(M). A formal concept of the
contextK is a pair (A, B) where A ⊆ G, B ⊆ M , A′

= B and B′
= A. Moreover, A is called the ‘‘extent’’ and B the ‘‘intent’’ of the

(A, B) concept. Considering the context in Table 3, the pair ({s2, s5}, {o22, o23}) is a formal concept because {s2}′ = {o22, o23}
and {o22, o23}′ = {s2, s5}, meaning that the set of authors common to s2 and s5 are {o22, o23}. It is represented as a maximal
rectangle, highlighted in gray in Table 3.

Let B(G,M, I) be the set of all formal concepts for K = (G,M, I). Given two concepts (A1, B1) and (A2, B2), then (A1, B1)
is a subconcept of (A2, B2) – dually (A2, B2) is a superconcept of (A1, B1)— denoted by (A1, B1) ⩽ (A2, B2), iff A1 ⊆ A2 – dually
B2 ⊆ B1. For example, in Fig. 1, we have that ({s5}, {o22, o23, o25}) ⩽ ({s2, s5}, {o22, o23}) Fig. 1 shows a complete lattice for
Table 3. In this figure we use ‘‘reduced labeling’’, which means that every subconcept of a concept say X also contains the
attributes present in the intent of X . Dually, every superconcept of a concept X contains the objects present in the extent of X .

2.4. Pattern structures

FCA [22] can process only binary contexts and more complex data such as graphs cannot be directly processed. Pattern
structures [21] provide an extension of FCAwhich allows direct processing ofmore complex data such as numbers, intervals,
trees and graphs. Intuitively, pattern structures generalize the classical FCA setting in the following way. Let us consider two

6 M. Alam et al. / Discrete Applied Mathematics 249 (2018) 2–17

Table 4
Context with about the temperatures of the cities in different weather.

Summer Winter Spring Autumn

Paris 30 −5 18 12
Prague 25 −10 7 9
Rome 35 2 12 15

Fig. 2. Pattern Concept lattice for Table 4.

entities with their attributes in the formal context in Table 3, say ({s2}, {o22, o23}) and ({s5}, {o22, o23, o25}). Attribute sharing
and then concept building in FCA is based on ‘‘intersection of sets of attributes’’, e.g. ({s2, s5}, {o22, o23}) forms a concept.
Moreover, intersection is related to inclusion as follows: if X and Y are two sets, we have X ∩ Y = X ⇐⇒ X ⊆ Y .

Generalizing these ideas, let us suppose that we have two entities gi and gj with their descriptions di and dj. The common
description of di and dj will be captured by a so-called ‘‘similarity operator’’, denoted by di ⊓ dj, which can be understood as
a generalization of intersection. In addition, descriptions can be organized thanks to a partial ordering denoted by ⊑ which
verifies, for any two descriptions d1 and d2, d1 ⊓ d2 = d1 ⇐⇒ d1 ⊑ d2. For example, going back to the binary case, if we
assume that d2 = {o22, o23} and d5 = {o22, o23, o25}, then d2 ⊑ d5 = {o22, o23}∩{o22, o23, o25} = {o22, o23} = d2, i.e. d2 ⊑ d5.
The description d2 = {o22, o23} is smaller than the description d5 = {o22, o23, o25} w.r.t. the partial ordering ⊑.

More formally, a pattern structure is a triple (G, (D, ⊓), δ), where G is the set of entities, (D, ⊓) is a ‘‘meet-semilattice’’ of
descriptions D and δ : G → Dmaps an entity to its description. Ameet-semilattice is a partially ordered set having ameet or
a greatest lower bound, in which all pairs have a meet.8 The fact that (D, ⊓) is a meet-semilattice guarantees that the meet
of any two descriptions always exist. In a pattern structure (G, (D, ⊓), δ), the derivation operators are defined as follows:

A□
:=

l

g∈A

δ(g) for A ⊆ G

d□
:= {g ∈ G|d ⊑ δ(g)} for d ∈ D.

An element inD is referred to as a pattern, and the subsumption order over these patterns verifies, for any twodescriptions
c and d: c ⊑ d ⇔ c ⊓ d = c . The two operators (.)□ form a Galois connection as introduced in Section 2.3, and a pattern
concept is defined as follows. A ‘‘pattern concept’’ of a pattern structure (G, (D, ⊓), δ) is a pair (A, d) where A ⊆ G and d ∈ D
such that A□

= d and A = d□, where A is called the concept ‘‘extent’’ and d is called the concept ‘‘intent’’.
We illustrate pattern structures with numerical and interval data. Let us consider a data table about temperatures in

some European cities at different periods of year (see Table 4). The first record indicates that the average temperature in
Paris during Summer is 30. Actually, a description is defined as a vector of intervals rather than a vector of numbers (an
interval shows the possible variations of temperatures). Then, the mapping δ : G −→ D is given for the Paris entity by
δ(Paris) = ⟨[30, 30], [−5, −5], [18, 18], [12, 12]⟩. The similarity operation for (D, ⊓) is defined for any two intervals as the
‘‘convex hull’’ of the intervals.

Given that δ(Paris) = ⟨[30, 30], [−5, −5], [18, 18], [12, 12]⟩ and δ(Prague) = ⟨[25, 25], [−10, −10], [7, 7], [9, 9]⟩, the
similarity between both descriptions is δ(Paris) ⊓ δ(Prague) = ⟨[25, 30], [−10, −5], [7, 18], [9, 12]⟩. The resulting pattern
concept is ({Paris, Prague}, ⟨[25, 30], [−10, −5], [7, 18], [9, 12]⟩).

The partial ordering between pattern concepts is defined in (quite) the sameway as in classical FCA, i.e. (A1, d1) ⩽ (A2, d2)
as soon as A1 ⊆ A2 or dually d2 ⊑ d1. Then we can build a pattern concept lattice (see Fig. 2). A smooth and complete
introduction to the interval pattern structure for numerical data is given in [24,25].

8 The meet operation is idempotent (x⊓ x = x), commutative (x⊓ y = y⊓ x) and associative. A partially ordered set in which all pairs have a ‘‘join’’, i.e. a
lowest greater bound, is a join-semilattice. A partially ordered set that is both a join-semilattice and a meet-semilattice is a lattice.

M. Alam et al. / Discrete Applied Mathematics 249 (2018) 2–17 7

Fig. 3. A tiny part from ACM Computing Classification System.

Table 5
RDF Triples as entities S and semantic descriptions D.

Entities S di1 di2
s1 (p1 : {C1, C2, C7}) (p2 : {o21})
s2 (p1 : {C6, C8, C9}) (p2 : {o22, o23})
s3 (p1 : {C4, C5}) (p2 : {o22, o24, o25})
s4 (p1 : {C4, C7, C8}) (p2 : {o23})
s5 (p1 : {C8, C9}) (p2 : {o22, o23, o25})

3. Building an RDF-pattern structure

Below, we explain how to define a suitable pattern structure (G, (D, ⊓), δ) for dealing with sets of RDF triples. RDF data
are based on triples of the form (s, p, o) where subject s and object o related by predicate p can be organized within a class
hierarchy. This can be the case for example in RDF Schema which includes many constructs among which ‘‘subclass’’ and
‘‘subproperty’’. Here, we only consider predicates such as rdfs:subClassOf and skos:broader which organize classes
of subjects or objects into a tree structure. This tree structure is called the reference schema and is denoted as (S,⩽s), where
C1 ⩽s C2 means that class C2 is more general than class C1 in (S,⩽s). Hence, the (S,⩽s) tree structure is used for comparing
subjects and objects in the RDF triples.

Then a similarity operator can be defined for comparing RDF triples with the same subjects and the same predicates but
different objects. This allows us to build an organization of RDF triplesw.r.t a reference schema, into a pattern concept lattice,
also called an RDF-Index. The RDF-Index can be used for navigation and interactive exploration purposes.

3.1. From RDF triples to an RDF-pattern structure

Hereafter we consider Listing 1 and we show how to represent RDF triples extracted by this SPARQL query as entities
and their descriptions in a pattern structure (G, (D, ⊓), δ). A subject s in an RDF triple (s, p, o) is mapped to an entity g in the
set of entities G, and the predicate–object pair (p, o) is mapped to a description d ∈ D. More precisely, the set of RDF triples
(s, p, o) in which s is a subject is rewritten as (s, {pi : {o1, o2, . . . , o|i|}}) with i ∈ {1, . . . , n} and |i| denoting the cardinality of
the set of objects related to s through the predicate pi.

For example, in Table 2, the object related to s1 through p1 is o11 and belongs to the reference schema ACCS, while the
object related to s1 through p2 is o12 and denotes names of authors (names do not belong to any reference schema and
cannot be compared). The schema associated with ACCS is shown in Fig. 3 and is used for comparing objects related to topics
of papers. The circles represent classes of entities and the lines represent the ordering relation ⩽s. As the ordering ⩽s is
defined at the class level, each object is identified with its corresponding classes, e.g. o11 is identified with C1 meaning that
o11 is an instance of class C1. Then, the description {(p1 : {o11})} becomes {(p1 : {C1})}. This identification is only performed
for descriptions for which there is an available reference schema.

Continuingwith the example and considering the triples t1 = (s1, p1, o11) and t2 = (s1, p2, o12) in Table 2, the description
of s1 is δ(s1) = {d11, d12} where d11 = p1 : {C1, C2, C7} and d12 = p2 : {o12} (the classes of o11 are {C1, C2, C7} and o12 is
an author name). It should be noticed that a description such as d11 should form an antichain w.r.t. the reference schema
i.e. elements in d11 – as in each description – are not comparable w.r.t. class ordering. When ranges of predicates contain
ordered elements, they are always transformed to become antichains, retaining onlyminimal elements between comparable
elements. Table 5 shows a final representation of the RDF triples.

8 M. Alam et al. / Discrete Applied Mathematics 249 (2018) 2–17

3.2. Similarity as the LCS operation

The similarity operation between two different classes is based on their ‘‘Least Common Subsumer’’ or LCS in the class
hierarchy. Actually, this operation is related to ‘‘structured sets of attributes’’, i.e. attributes in a context are partially ordered,
and was already studied in [7,8] for plain FCA and in [21] for pattern structures.

In [7,8], the authors consider a formal context (G,M, I) and an extended set of attributes M∗ of M where attributes are
organized within a subsumption hierarchy according to a partial ordering denoted by ⩽M∗ . The subsumption hierarchy can
be either a tree or an acyclic graph with a unique maximal element. Then the construction of the concept lattice from such
a context can be done in two main ways. A first one is to use a scaling and to complete the description of an object with all
attributes implied by the original attributes. The problem is the space necessary to store the scaled context, especially in case
of large datasets. A second way is to use an ‘‘extended intersection operation’’ between sets of attributes which is defined as
follows. The intersection of two sets of attributes Y1 and Y2 is obtained by finding for each pair (m1,m2),m1 ∈ Y1,m2 ∈ Y2,
the most specific attributes inM∗ that are more general thanm1 andm2, and then retaining only the most specific elements
of the set of attributes generated in this way, i.e. the LCS ofm1 and m2.

In [21], the authors introduce a pattern structure (G, (D, ⊓), δ) for structured sets of attributes. It is assumed that the
attribute set (M,⩽M) is finite and partially ordered, and that all attribute combinations that can occur must be order ideals
(downsets) of this order. Any order ideal O is described by the set of its maximal elements, i.e. O = {x|∃y ∈ M, x ⩽ y}, which
is an antichain. The set D of descriptions includes these antichains and the similarity operation ⊓ is based on the intersection
of two antichains (details are given in [21] and in [1]).

In the present work, we adapt the pattern structure introduced in [21] but we keep the ordering of attribute descriptions
as in [7,8], i.e. the most general attribute descriptions are higher than the most specific attribute descriptions. Thus, the
similarity operation between two descriptions is defined as the LCS operation and it returns the most specific description
which is more general than two descriptions. The LCS gives an idea of the ‘‘closeness’’ between two descriptions. Practically,
the LCS operation is implemented using the ‘‘Range Minimum Query’’ algorithm which is discussed in Appendix.

3.3. The practical definition of the similarity operation

In this section, we discuss the structure of the meet-semi-lattice of descriptions along with the similarity and subsump-
tion order on descriptions. We consider two descriptions of the form pi : A and pi : B. A and B are the ‘‘range’’ of the
predicate pi and, as noticed above, are antichains of the reference schema (S,⩽s). Then, it should be noticed that the similarity
pi : A ⊓ pj : B is not computed whenever i ̸= j, and that pi : A ⊓ pi : B = pi : (A ⊓ B), where (A ⊓ B) is the intersection of
antichains A and B.

Twomain cases are considered here, the antichains are singletons or not. In the first case, let us consider two descriptions
c = pi : A and d = pi : B, where A and B correspond to classes in the reference schema (S,⩽s). Then, we have the following
definition of similarity and the associated ordering relation (subsumption order) where the LCS operation is computed in
(S,⩽s):

pi : A ⊓ pi : B = pi : (A ⊓ B) = pi : LCS(A, B)

pi : A ⊓ pi : B = pi : A ⇔ pi : A ⊑ pi : B.

For example, based on the reference schema shown in Fig. 3, it comes:

p1 : C4 ⊓ p1 : C5 = p1 : (C4 ⊓ C5) = p1 : LCS(C4, C5) = p1 : C11.

p1 : C11 ⊓ p1 : C4 = p1 : C11 ⇔ p1 : C11 ⊑ p1 : C4

p1 : C11 ⊓ p1 : C5 = p1 : C11 ⇔ p1 : C11 ⊑ p1 : C5

In the second case, we consider descriptions c = pi : A and d = pi : B, where A and B correspond to set of classes, actually
antichains, in the reference schema (S,⩽s). Intuitively, we have to compute the LCS of all mutual pairs of classes and only
retain the minimal classes of the resulting set. Working on all the pairs would not be efficient and we rely on an elegant and
efficient way of computing the LCS of two antichains by means of the RMQ algorithm (see Appendix and [1]).

For continuing the intuition, let us consider two antichains based on the running reference schema (Fig. 3). If A = {C1} and
B = {C4, C7, C8} then we should compute LCS(C1, C4) = C12, LCS(C1, C7) = ⊤ and LCS(C1, C8) = ⊤. The two last operations
return ⊤, i.e. the most general class, and in this case we consider that the LCS does not exist (in any case, it can be noticed
that ⊤ would be discarded as we only retain the minimal elements in the final LCS). In the same way, if now we consider
A = {C1, C2, C7} and B = {C4, C7, C8} and compute the mutual LCS of each pair, we obtain the set {C12, C7, C14} and retain
the final set {C12, C7} as {C14} is not minimal (C7 ⩽s C14 in (S,⩽s).

Finally, let us remark that the LCS of two antichains verifies the following property:

∀ℓ ∈ LCS(A, B), ∃a ∈ A, ∃b ∈ B, a⩽s ℓ, b⩽s ℓ.

It means that all element in LCS(A, B) has a corresponding lower element in each set A and B, as it is the case for an
intersection, i.e. an element in the intersection is included in both intersected sets.

M. Alam et al. / Discrete Applied Mathematics 249 (2018) 2–17 9

Fig. 4. The pattern concept lattice or RDF-Index for descriptions in Table 5.

3.4. Building the pattern concept lattice in an RDF-pattern structure

In this section, we show how a pattern concept lattice can be constructed. Following Section 2.4, given a subset of objects
A ⊆ G, A□ returns the set of descriptions representing the similarity between all subjects in A. This similarity as detailed
above relies on intersection of antichains constituting the range of the predicates in the RDF triples. Moreover, when the
objects in the ranges of the predicates have no reference schema, then the ranges are considered as antichains themselves.
Then the similarity of such antichains amounts to a simple intersection of sets. For example, let us consider the computation
of {s1, s3}□:

{s1, s3}□ =
l

s∈{s1,s3}

δ(s)

= δ(s1) ⊓ δ(s3)
= ⟨(p1 : {C1, C2, C7})(p2 : {o12})

⊓ (p1 : {C4, C5})(p2 : {o22, o24, o25})⟩
= ⟨(p1 : {C1, C2, C7}) ⊓ (p1 : {C4, C5}),

(p2 : {o21}) ⊓ (p2 : {o22, o24, o25})⟩
= ⟨(p1 : {C12})(p2 : {})⟩

⟨(p1 : {C12})(p2 : {})⟩□ = {s ∈ G|⟨(p1 : {C12})(p2 : {})⟩ ⊑ δ(s)}
= {s1, s3, s4}.

The pair (A, d) = ({s1, s3, s4}, ⟨(p1 : {C12})(p2 : {})⟩) is a pattern concept (i.e. A□
= d and d□

= A), denoted as K#3 in the
final pattern concept lattice shown in Fig. 4. The subsumption order ⊑ between two pattern concepts (A1, d1) and (A2, d2)
is given as follows: (A1, d1) ⊑ (A2, d2) ⇐⇒ A1 ⊆ A2 or dually d2 ⊑ d1. This pattern concept lattice is called an ‘‘RDF-Index’’
and can be navigated and explored.

4. Navigation and interactive exploration over the RDF-index

In order to support exploration in Linked Data, it is necessary to provide the analyst some tools for classifying and
exploring the data, interpreting the results and providing feedback. We illustrate these tasks with the help of a scenario.
Moreover, we will also give details on the visualization tool RV-Xplorer especially designed for data exploration.

4.1. Motivating scenario

Consider the scenario where an analyst wants to search for the papers published in conferences or journals related to a
given field of research. Some of the problems faced by the analyst for retrieving and visualizing such papers are as follows:

10 M. Alam et al. / Discrete Applied Mathematics 249 (2018) 2–17

Fig. 5. Sublattices from Fig. 4.

• The analyst looks-up the DBLP page of some authors working in the reference field. For a complete view, the analyst
has to go through all the publications of each author and then browse through the DBLP pages of the co-authors.

• If the analyst is searching for the papers which are targeting more than one field, such as ‘‘Information Retrieval’’ and
‘‘World Wide Web’’, then it should be desirable to retrieve such papers directly.

• It can be interesting for the analyst to detect the communities of authors who often work together to retrieve more
relevant papers or to envision possible collaborations with authors in these communities.

• Finally, detecting the ‘‘diversity’’ of an author can give an idea of the competencies of this author.

Accordingly we try to guide this kind of exploration based on an RDF-Index which is built from an initial set of Linked
Data and then is explored according to some preferences.

4.2. Interactive data exploration over the RDF-index

Several navigation operations can be applied over the RDF-Index for obtaining precise information. In the RDF-Index,
every concept C contains a group of subjects (extent of C) connected to classes of the objects through predicates (intent
of C). The most general concepts in the higher levels of the pattern concept lattice have extents of larger size (i.e. higher
number of subjects or entities) and a smaller number of classes – in the range of predicates – in the intents, i.e. descriptions
are very general. Then, two basic navigation operations are upward and downward navigation. Moreover, the operation of
hiding a part of the concept lattice is provided to focus only on relevant classes, while a sublattice in the RDF-Index can be
interpreted as a community of authors. Below, we provide details on each aspect.

Downward/Upward navigation. Downward navigation allows the analyst to move from more general to more specific
concepts. For example, if an analyst wants to retrieve the scientific papers on some topic such as ‘‘WorldWideWeb’’, she/he
locates the concept containing only papers about this topic i.e. K#3 in Fig. 5. For narrowing down to the papers related to
‘‘WorldWideWeb’’ and ‘‘Question Answering’’, the lattice can be navigated downwards to obtain K#8 which contains more
specialized papers. By contrast, the analyst may want to go back to a more general concept, e.g. from K#8 to K#3, using an
upward navigation.

Hiding non relevant concepts/sublattices. The analyst can explore the RDF-Index from any of the dimensions, e.g. authors and
topics. Then, the analyst can mark a concept as irrelevant and then all the subconcepts in the RDF-Index will be marked as
irrelevant as well and will be hidden.

For example, during the navigation of the RDF-Index, the analyst visits K#3which contains papers on ‘‘WorldWideWeb’’.
If the analyst is not interested in papers on this topic, then K#3 is marked as irrelevant and then the subconcepts K#6, K#8,
K#11, K#13, and K#14, are marked as irrelevant as well.

Moreover, continuing the exploration w.r.t the author dimension, let us suppose that the analyst marks K#2 as irrelevant
(e.g. K#2 is related to author o22), then the concepts in the sublattice whose K#2 is the top are marked as irrelevant as well,
i.e. K#4, K#9, K#10, K#11, and K#12 (see Fig. 5).

Sublattices as community of authors. Some sublattices can be interpreted as subspaces related to a topic or an author. Fig. 5
shows three examples of such subspaces. The first sublattice is related to the author o22 and represents the community of
authors working with author o22. The concept K#2 contains all the papers published by the author o22. Then this sublattice
can be navigated downwards to visit more specific concepts such as K#4 and K#9. Moreover, K#4 and K#9 provide
information about co-authors of o22, e.g. o23 and o25 and represent a community of authors that work with o22. Based on the
cardinality of the extent of K#4 and K#9, the importance of the community can be measured, i.e. the number of common
papers is high or not. Missing relations between authors can also be detected, e.g. o22 shares papers with o23 and o25, but not
with both authors. Then collaborations can be suggested.

M. Alam et al. / Discrete Applied Mathematics 249 (2018) 2–17 11

Fig. 6. The basic interface of RV-Xplorer displaying the top concept K#1.

Finally, Fig. 5 shows two subspaces, one w.r.t. the topic ‘‘World Wide Web’’, and the second w.r.t. the topic ‘‘Information
Retrieval’’. The dotted parts in both subspaces represent the subspace common to the two topics, i.e. these concepts include
the papers depending on both topics.

4.3. Visualization

An experiment was performed on the papers published by the Data Mining Team in the LORIA Lab.9 For this purpose, all
the papers of the team published from 2010 to 2014 in international journals and conferences were selected. An RDF-Index
was built using the paper titles, their keywords and authors and the reference schema is ACCS. The results were visualized
using the tool RV-Xplorer (Rdf View eXplorer10) [3].

Fig. 6 shows the interface of RV-Xplorer which consists of three parts:

• ① is called the local view and shows a detailed description of the selected concept for allowing interaction and
navigation.

• ② is called the spy and shows the global view of the pattern concept lattice.
• ③ is called the summarization index and can be used to guide the analyst when navigating level by level in the pattern

concept lattice, showing the statistics of the next level to visit.

Fig. 7 shows the selected concept displaying its contents, i.e., the extent, intent, parent concepts and children concepts.
The pink and yellow parts in the selected concept (K#52) show the parent (K#1) and child concepts (K#342, K#53, . . .)
respectively. The zone displaying the children concepts is broken into parts based on the intent type, e.g., intents containing
only authors, only topics and a mix of both authors and topics. This is further distinguished in the summarization indexwith
the help of different colors. The green and blue parts show the intent and the extent of the concept respectively i.e., the
group of papers sharing some authors and topics. For example, this selected concept includes all the papers published by
the author ‘‘Amedeo Napoli’’. Suppose that the analyst wants to check with which author Amedeo Napoli published most of
his papers during the period of 2010–2014. With the help of the summarization index, it can be seen that this author is in
concept K#321.

As the number of subconcepts can be very large in number, RV-Xplorer shows the intent of each subconcept on mouse-
over, in the present case K#321. Such information may guide the analyst and suggest some concepts to visit. This way the
analyst can navigate upwards and downwards in the RDF-Index to access specific as well as general information. Finally, if
the analyst wants to narrow down papers written by Amedeo Napoli and Sergei O. Kuznetsov together, she/he will click on
K#321 in the yellow part. Which then opens the selected concept (see Fig. 8).

The spy (② in Fig. 6) shows the complete lattice to track the position of the selected concept, highlighted in red. If the
analyst wants to check details about a particular paper, then on mouse over the concept is highlighted in red in the spy (see
Fig. 6).

9 Laboratoire Lorrain de Recherche en Informatique et ses Applications, Nancy, France.
10 A dedicated web page to visualize and interact with the index is available at http://rv-xplorer.loria.fr/#/graph/orpailleur_paper/1/.

http://rv-xplorer.loria.fr/%23/graph/orpailleur%5Fpaper/1/

12 M. Alam et al. / Discrete Applied Mathematics 249 (2018) 2–17

Fig. 7. Concept displaying all the papers of one author.

Fig. 8. Concept displaying author collaborations.

Finally, it helps in decreasing the navigation space by enabling to focus only on the interesting parts in the RDF-Index
and hide the rest of the lattice (see Section 4.2). Using the right-click on a concept allows to mark it as irrelevant and to
hide it. Once marked irrelevant the hidden part cannot be accessed unless marked relevant. Further navigation operations
implemented in RV-Xplorer are discussed in [3].

5. Experimentation

Several experiments have been conducted using publicly available data on a MacBook with a 1.3 GHz Intel Core i5, 4 GB
of RAM running OS X Yosemite 10.3. We have used the FCAPS11 software developed in C++ for dealing with different kinds
of pattern structures. FCAPS can build a concept lattice starting from a standard formal context and a pattern concept lattice
from RDF data.

The first dataset used for experimentationwas DBLPwhich records bibliographic information about journals, conferences
and authors. The triple store used is the RDF data dump for DBLP, which is made available at RDF-HDT12 [16]. RDF-HDT
(‘‘Header, Dictionary, Triples’’) is a compact data structure for RDF data which provides efficient storage by compressing

11 https://github.com/AlekseyBuzmakov/FCAPS.
12 http://www.rdfhdt.org/datasets/.

https://github.com/AlekseyBuzmakov/FCAPS
http://www.rdfhdt.org/datasets/

M. Alam et al. / Discrete Applied Mathematics 249 (2018) 2–17 13

Table 6
Results of the experiments with different kinds of data.

(a) Real data experiments.

Dataset |G| |T | Leaves(T) |L| tT tK
DBLP 5293 33207 33198 10134 45 s 21 s
Biomedical Data 63 1490 933 1725582 145 s 162 s

(b) Numerical data experiments.

Dataset |G| |T | |Leaves(T)| |L| tT tK
BK 35 626 10 840897 37 s 42 s*
LO 16 224 26 1875 0.043 s 0.088 s
NT 131 140 6 128624 3.6 s 6.8 s
PO 22 1236 58 416837 49 s 57 s*

PT 22 4084 60 452316 50 s 38 s*

PW 94 436 21 1148656 60 s 49 s*

PY 36 340 53 771569 46 s 40 s*

QU 44 8212 8 783013 28 s 30 s*

TZ 31 626 88 650041 58 s 43 s*
VY 52 202 15 202666 5.9 s 11.6 s

|G| is the number of entities. |T | is the size of the attribute tree and the number of attributes in the scaled context |M|. Leaves(T) is the number of leaves
in the attribute tree. |L| is the size of the concept lattice for the corresponding data. tT is the computational time for data represented as a set of antichains
in the attribute tree. tK is the computational time represented by a scaled context, i.e., by a set of filters in the attribute tree.
* Shows that the we are not able to build the whole lattice.

big datasets. The experimentation was based on a subset of papers whose topic was about ‘‘machine learning’’. The titles of
the papers were considered as entities and the keywords were taken as descriptions, with ACCS as a reference schema for
keywords.

The second dataset belongs to the domain of life sciences, and contains information about drugs, their side effects
(SIDER13) , and their categories (DrugBank14). The reference schemas related to this second dataset are MedDRA15 for
side effects and MeSH16 for drug categories.

We compute a concept lattice in two different ways, i.e. by computing the intersection of antichains with RMQ and by
scaling (see Appendix). Indeed, the number of leaves in a tree can be much smaller than the number of vertices in this tree.
For example, the number of vertices in Fig. 3 is 15, while the number of leaves is only 8. Thus, the direct intersection of
antichains can be more efficient than the intersection of antichains by means of a scaling procedure.

The parameters of the datasets and the computational results are shown in Table 6a. For DBLP, the context consists of
5293 entities and 33207 attributes, where we have 33198 leaves in the taxonomy of the attributes, meaning that most of
attributes are mutually incomparable. It took 45 s to produce a pattern concept lattice having 10134 concepts directly from
the descriptions given by antichains of the reference schema. To produce the same lattice starting from a scaled context the
program only takes 21 s.

By contrast, the approach based on pattern structures is better for the biomedical data. Indeed, it takes 145 s, while
the computation starting from the scaled contexts takes 162 s. In this case, the dataset contains 1490 attributes with 933
leaves. Thus, the approach based on pattern structures works faster if the number of leaves is significantly smaller than
the number of vertices. It is worth noticing that the size of antichains is much smaller than the size of the filters used for
scaling, explaining the efficiency in this case. However, when the number of leaves is comparable to the number of vertices,
the approach based on pattern structures is slower, because the antichain intersection requires more efforts with pattern
structures than with set intersections.

Since the efficiency of the pattern structure approach is higher for the trees with a low number of leaves, we can use
this method to increase efficiency of standard FCA for special kinds of contexts. In a context (G,M, I), an attribute m1 can
be considered as an ancestor of another attribute m2 if any entity containing the attribute m2 also contains the attribute
m1. Accordingly we can construct an attribute tree T based on this principle and rely on it for computing intersection of
antichains. In this case the set of attributesM and the set of vertices of T are the same and |M| = |T |. The second part of the
experiment was based on this observation.

We used numerical data from Bilkent University in the second part of the experiments.17 The datasets were converted to
formal contexts by standard interordinal scaling [22]. The scaled attributes are closely connected, i.e., there is a lot of pairs
of attributes (m1,m2) such that the set of entities described bym1 is a subset of entities described bym2, i.e., (m1)′ ⊆ (m2)′,
allowing to state that m1 ⩽ m2. Using this property, we built attribute trees from the scaled contexts. These trees have

13 http://sideeffects.embl.de/.
14 http://www.drugbank.ca/.
15 http://meddra.org/.
16 http://www.ncbi.nlm.nih.gov/mesh/.
17 http://funapp.cs.bilkent.edu.tr/DataSets/.

http://sideeffects.embl.de/
http://www.drugbank.ca/
http://meddra.org/
http://www.ncbi.nlm.nih.gov/mesh/
http://funapp.cs.bilkent.edu.tr/DataSets/

14 M. Alam et al. / Discrete Applied Mathematics 249 (2018) 2–17

many more vertices than leaves, thus, the approach based on pattern structures should be efficient. The results of the
experiments comparing both approaches are shown in Table 6b. It should be noticed that in some cases, when building
the lattice with standard FCA, the lattice was so large that thememorywas swapping and the computationwas stopped. The
fact of swapping is shown by a star ‘‘*’’ next to computational time in column tK. This did not happenwith pattern structures
because computing the similarity of antichains requires less memory to store than the corresponding filters.

Finally this experiment shows that the approach based on pattern structures takes not only less time to compute a pattern
concept lattice, but also requires less memory, since there is no memory swapping.

6. Related work

There are several studies about exploratory data analysis and information retrieval based on FCA. The associated tools
facilitate the interactive exploration of the data at hand. One of the earliest tools is CREDO [9], which displays the concept
lattice as a tree-folder and bounds the search space through user constraints. Several other tools were proposed afterward
which were based on similar functionalities as CREDO, such as CreChainDo [29] which enables the user to reduce the search
space by providing user feedback to the system. Another evolution over CREDO is FooCA [26]which allows the user to interact
with formal contexts and with concept lattices. SearchSleuth [12,14] employs the paradigm of ‘‘conceptual neighborhood’’
for displaying clusteredweb results. In addition to providing the basic functionalities ofweb clustering engines, SearchSleuth
allows the reduction of attribute sets based on support threshold (in a way similar to iceberg lattices [32]). All these tools are
built on the basis of web clustering engines [6], which cluster the answers returned by search engines based on the snippets
obtained during the search. These tools provide information retrieval and basic exploration capabilities but they lack the
support for data analysis as provided by RV-Xplorer.

A series of tools for visualization with concept lattices were built under the supervision of Peter Eklund. In particular,
CEM [10] provides visualization of the personal emails using FCA where the objects are emails and attributes are keywords
extracted from emails. Insertion and deletion operation over keywords is allowed to the user. In [36], authors present an
iPad application ‘‘A Place for Art’’ which allows the user to explore an art collection with the help of links generated using
FCA. Image Sleuth [15] is a tool for browsing and searching annotated collections of images. The set of objects are the images
and their annotated features are the set of attributes. The thumbnails of the images are the extent of the concept. This
allows the user to restrict the set of attributes, move to upper and lower neighbors, search for similar objects and similar
concepts. The concept lattice is displayedwith the help of a tree display just for ensuring user readability. The Hasse diagram
is only displayed for the neighborhood of the selected concept. An extension of Image Sleuth is DVD Sleuth [13] which was
applied to the information space built from the dynamicDVD collection in amazon.com. All these tools provide a user friendly
interface using FCA on the back-end and are built for specific retrieval purposes. By contrast, RV-Xplorer can be used for data
exploration, interactionwith the analyst, plus data analysis and interactive exploration of a pattern concept lattice generated
from complex data such as RDF Data. However, RV-Xplorer is experimented users having knowledge about FCA and pattern
structures.

Another FCA-based tool, OntoComP [31], has been developed for knowledge base completion with the help of attribute
exploration. The system asks questions to the ontology engineer whose answers are used to complete a knowledge base
under study. This is not the objective of RV-Xplorer which allows the exploration of a pattern concept lattice generated
from RDF data. Moreover, in the pattern recognition side, NAVIGALA [35] is a system for navigating concept lattices applied
to noisy symbol recognition. A common ground to these systems is that they are based on plain FCA which is much less
adapted than pattern structures to deal with complex data such as RDF triples.

Sébastien Ferré has also conducted a lot of research work based on FCA on information retrieval, and on the classification
of RDF and graph data. Logical Concept Analysis (LCA) was introduced in [20] for dealing with complex data and in particular
logical formulas. In [17], the lattice is considered as an exploration space over RDF data. A query language with similar
expressivity as SPARQLwhich is consistentmeaning that it is complete and have no dead-ends i.e., every concept is reachable
by navigation is also proposed. Following the same line, Sparklis [19] is another system for dealing with RDF data with the
help of concept lattice. Sparklis helps a user in exploring a SPARQL endpoint without any prior knowledge to the query
language. The user is guided at each step to build questions and answers by interaction. At each step suggestions are given
to the user to perform refinement hence allowing exploratory search and feedback. Finally, to complete the overview, [18]
introduces another approach for dealing with complex RDF graphs termed as Graph-FCA. By contrast, RV-Xplorer provides
means to perform exploratory data analysis and guides the user navigation in a very simple and rough way compared the
capabilities of the above systems. The objectives are not exactly the same either, as in the current work, the emphasis is
more on knowledge discovery and on the definition of a pattern structure adapted to RDF data.

Another variation of pattern structures able to work on web data is discussed in [11] and called ‘‘ontological pattern
structures’’ (OPS). The authors use OPS for analyzing web data and building or completing annotations w.r.t. EL ontologies.
The similarity measure in this pattern structure is based on the convex hull of pairs of classes lying in an ontology (classes
are partially ordered). There are some commonalities between the current work and [11], but the definition of RDF-Pattern
Structures is quite different and the similarity relies on the intersection of antichains. The purpose is also different andmore
oriented towards navigation and exploration of RDF data rather than annotation.

Finally, we would like to mention ‘‘triadic analysis’’ (see [23,28]) that is defined for classifying objects involved in
ternary relations and thus is able to take into account the three dimensions of RDF triples. Currently, we only consider

M. Alam et al. / Discrete Applied Mathematics 249 (2018) 2–17 15

Fig. A.9. The three-dimensional array D including the depths, the list of the corresponding vertices, and the ranks of the vertices for the tree in Fig. 3.

two dimensions as we split a triple (s, p, o) into the subject s and the predicate–object pair (p, o). Thanks to the definition
of RDF-Pattern Structures, we gain in efficiency and computational power what we probably loose in precision w.r.t. RDF
triples. However, this is precisely the objective of another current research work to define a suitable pattern structure able
to deal with the three dimensions of RDF triples and to benefit from the computational power of pattern structures [30].

7. Conclusion

This paper proposes a new approach based on RDF-Pattern Structures for building a pattern concept lattice from a set
of RDF triples. This pattern concept lattice provides an index over RDF data by organizing RDF triples with respect to a
reference schema and allows the navigation in the lattice and the exploration of RDF data. We show how to define a
similarity operation, based on an intersection of antichains, which is applied to RDF triples and which supports an RDF-
Pattern Structure.

Experiments have been performed where RDF-Pattern Structure is compared to an approach based on scaling. The
comparison shows that the RDF-Pattern Structure is more efficient when the reference schema is deep and has a small
number of leaves.

The proposed framework is general and can be applied to any RDF dataset. One of the future directions is to use the
complete RDF Schema, i.e. to take into account the subclass relation between classes and the subproperty relation between
predicates. This would be a way of effectively dealing with every component of the triples and to take advantage of the
semantics related to predicates.

Appendix A. Using range minimum query for computing LCS

Range Minimum Query (RMQ) [4] is an efficient procedure for finding a minimal element in an array of comparable
objects. Considering a set of partially ordered vertices – for simplifying, we will consider that this partial order is a tree – the
RMQ procedure operates on a three-dimensional data structure denoted by D including the depth of every vertex vi from
the top vertex in the tree, the label of vi and the rank of vi in the array. The set of partially ordered vertices, i.e. the tree,
is traversed using depth-first search and this produces the first dimension of D recording the list of depths of the vertices.
Every time the procedure considers a vertex, say vi, i.e. the first visit time or a return to the vertex, the depth of vi is added
at the end of the first dimension of D. The second dimension of D corresponds to the list of the labels of the vertices. The
third dimension of D includes an index starting from 1 until the whole set of partially ordered vertices has been explored.
An example of such an array D is given in Fig. A.9 showing the three dimensions, the depth array, the list of corresponding
vertices, and the ranks of the vertices, for the tree given in Fig. 3.

For example, let us compute the intersection of two antichains of the tree in Fig. 3, say A = {C1, C5, C8} and B =

{C1, C7, C9}. Based on the three-dimensional arrayD in Fig. A.9, A and B are transformed into the list of indices corresponding
to the first occurrence of the considered vertex in the second dimension of D, i.e. A = {4, 12, 24} and B = {4, 22, 26}.
Then, a ‘‘union’’ of the two sets is based on a special ‘‘ordered merging’’ alternating an element in each set, i.e. Z =

{4A, 4B, 12A, 22B, 24A, 26B}. Then, RMQ – which given two vertices returns the vertex of minimal depth is computed only
for consecutive elements of Z , thus RMQ(4, 4) = 4, RMQ(4, 12) = 8 (the minimal depth from position 4 to 12 exists on
position 8), RMQ(12, 22) = 15, RMQ(22, 24) = 23, and RMQ(24, 26) = 25. In the resulting set {4, 8, 15, 23, 25}, we should
remove non minimal classes. The classes on position 8, i.e. C12, and 15, i.e. ⊤, are not minimal as they are the super-classes
of C1 at position 4. The class at positions 23 and 25 is the same, namely C14, and we only retain the first occurrence. Finally,
RMQ returns the set {4, 23}which corresponds to the {C1, C14}, i.e. the antichain which is the intersection of A = {C1, C5, C8}

and B = {C1, C7, C9}.
The same answer is obtained if RMQ is computed pairwise for each element in the sets A and B, but the approach is less

efficient. Actually, the number of calls to RMQ in the ‘‘consecutive approach’’ is O(|A| + |B|). By contrast, the number of calls
to RMQ in the ‘‘pairwise approach’’ is O(|A|.|B|), where |A|.|B| ⩾ |A| + |B| (see details in [1].

For completing the above example, we give the main lines of the computation for the example detailed in Section 3.3,
i.e. A = {C1, C2, C7} and B = {C4, C7, C8}. The two lists of indices are A = {4, 6, 22} and B = {10, 22, 24} and the
ordered union set is Z = {4A, 10B, 6A, 22B, 22A, 24B}. Computing RMQ is done as follows: RMQ(4, 10) = 8, RMQ(10, 6) = 8,
RMQ(6, 22) = 15, RMQ(22, 22) = 22, and RMQ(22, 24) = 23. Finally, the resulting set is {8, 22} which corresponds to the
{C12, C7}.

16 M. Alam et al. / Discrete Applied Mathematics 249 (2018) 2–17

Appendix B. Intersection of antichains by scaling

Another approach for computing intersection of antichains is to scale the antichains to the corresponding ‘‘filters’’. A filter
corresponding to an antichain in a poset is the set of all elements of the poset that are greater than at least one element from
the antichain. For example, let us consider the tree in Fig. 3. A filter corresponding to the antichainA = {C1, C5, C8} is the set of
all subsumers of all elements from the antichain, i.e. Fil(A) = {C1, C10, C12, ⊤, C5, C11, C8, C14, C15}. The filter corresponding
to the antichain B = {C1, C7, C9} is the set Fil(B) = {C1, C10, C12, ⊤, C7, C14, C15, C9}. The intersection Fil(A) ∩ Fil(B) and the
resulting set of minimal elements are Fil(A) ∩ Fil(B) = {C1, C10, C12, ⊤, C14, C15} = {C1, C14}.

Considering again the example with A = {C1, C2, C7} and B = {C4, C7, C8}. The filter related to antichain A is Fil(A) =

{C1, C10, C12, ⊤, C2, C7, C14, C15} and the one relatedwith B is Fil(B) = {C4, C11, C12, ⊤, C7, C14, C15, C8}. Then the intersection
of the two filters and the resulting set of minimal elements are Fil(A) ∩ Fil(B) = {C12, ⊤, C7, C14, C15} = {C12, C7}.

It should be noticed that the approach based on scaling has a higher complexity. Indeed, the size of a filter is O(|T |) and,
thus, the computational complexity of intersecting two antichains bymeans of a scaling is O(|T |). Other details can be found
in [1], while the scaling approach is introduced and detailed in [7,8].

References

[1] M. Alam, A. Buzmakov, A. Napoli, A. Sailanbayev, Revisiting pattern structures for structured attribute sets, in: S.B. Yahia, J. Konecny (Eds.), The Twelth
International Conference on Concept Lattices and their Applications, CLA, in: CEUR Workshop Proceedings, vol. 1466, 2015, pp. 241–252.

[2] M. Alam, A. Napoli, Interactive exploration over RDF data using formal concept analysis, in: International Conference on Data Science and Advanced
Analytics, DSAA, IEEE, 2015, pp. 1–10.

[3] M. Alam, M. Osmuk, A. Napoli, RV-Xplorer: A way to navigate lattice-based views over RDF graphs, in: S.B. Yahia, J. Konecny (Eds.), The Twelth
International Conference on Concept Lattices and their Applications, CLA, in: CEUR Workshop Proceedings, vol. 1466, 2015, pp. 23–34.

[4] M.A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, P. Sumazin, Lowest common ancestors in trees and directed acyclic graphs, J. Algorithms
57 (2) (2005) 75–94.

[5] C. Bizer, T. Heath, T. Berners-Lee, Linked data – The story so far, Int. J. Semantic Web Inf. Syst. 5 (3) (2009) 1–22.
[6] C. Carpineto, S. Osinski, G. Romano, D. Weiss, A survey of web clustering engines, ACM Comput. Surv. 41 (3) (2009) 17:1–17:38.
[7] C. Carpineto, G. Romano, A lattice conceptual clustering system and its application to browsing retrieval, Mach. Learn. 24 (2) (1996) 95–122.
[8] C. Carpineto, G. Romano, Concept Data Analysis: Theory and Applications, John Wiley & Sons, Chichester (UK), 2004.
[9] C. Carpineto, G. Romano, Exploiting the potential of concept lattices for information retrieval with CREDO, J. UCS 10 (8) (2004) 985–1013.

[10] R.J. Cole, P.W. Eklund, G. Stumme, CEM-Visualisation and discovery in email, in: D.A. Zighed, H.J. Komorowski, J.M. Zytkow (Eds.), Proceedings of the
4th European Conference on Principles of Data Mining and Knowledge Discovery, PKDD, in: Lecture Notes in Computer Science, vol. 1910, Springer,
2000, pp. 367–374.

[11] A. Coulet, F. Domenach, M. Kaytoue, A. Napoli, Using pattern structures for analyzing ontology-based annotations of biomedical data, in: P. Cellier, F.
Distel, B. Ganter (Eds.), Proceedings of the 11th International Conference on Formal Concept Analysis, ICFCA, in: Lecture Notes in Computer Science,
vol. 7880, Springer, 2013, pp. 76–91.

[12] F. Dau, J. Ducrou, P.W. Eklund, Concept similarity and related categories in searchsleuth, in: P.W. Eklund, O. Haemmerlé (Eds.), Proceedings of the 16th
International Conference on Conceptual Structures, ICCS, in: Lecture Notes in Computer Science, vol. 5113, Springer, 2008, pp. 255–268.

[13] J. Ducrou, DVDSleuth: A case study in applied formal concept analysis for navigating web catalogs, in: U. Priss, S. Polovina, R. Hill (Eds.), Proceedings
of the 15th International Conference on Conceptual Structures, ICCS, in: Lecture Notes in Computer Science, vol. 4604, Springer, 2007, pp. 496–500.

[14] J. Ducrou, P.W. Eklund, SearchSleuth: The conceptual neighbourhood of an web query, in: P.W. Eklund, J. Diatta, M. Liquière (Eds.), Proceedings of the
Fifth International Conference on Concept Lattices and Their Applications, CLA, in: CEUR Workshop Proceedings, vol. 331, 2007.

[15] J. Ducrou, B. Vormbrock, P.W. Eklund, FCA-based browsing and searching of a collection of images, in: H. Schärfe, P. Hitzler, P. Øhrstrøm (Eds.),
Proceedings of the 14th International Conference on Conceptual Structures, ICCS, in: Lecture Notes in Computer Science, vol. 4068, Springer, 2006,
pp. 203–214.

[16] J.D. Fernández,M.A.Martínez-Prieto, C. Gutiérrez, A. Polleres,M. Arias, Binary RDF representation for publication and exchange (HDT), J.Web Semantics
19 (2013) 22–41.

[17] S. Ferré, Conceptual navigation in RDF graphs with SPARQL-like queries, in: L. Kwuida, B. Sertkaya (Eds.), Proceedings of 8th International Conference
on Formal Concept Analysis, ICFCA, in: Lecture Notes in Computer Science, vol. 5986, Springer, 2010, pp. 193–208.

[18] S. Ferré, A proposal for extending formal concept analysis to knowledge graphs, in: J. Baixeries, C. Sacarea, M. Ojeda-Aciego (Eds.), Proceedings of the
13th International Conference on Formal Concept Analysis, ICFCA, in: Lecture Notes in Computer Science, vol. 9113, Springer, 2015, pp. 271–286.

[19] S. Ferré, Sparklis: An expressive query builder for SPARQL endpoints with guidance in natural language, Semantic Web 8 (3) (2017) 405–418.
[20] S. Ferré, O. Ridoux, A logical generalization of formal concept analysis, in: B. Ganter, G.W.Mineau (Eds.), Proceedings of the 8th International Conference

on Conceptual Structures, ICCS, in: Lecture Notes in Computer Science, vol. 1867, Springer, 2000, pp. 371–384.
[21] B. Ganter, S.O. Kuznetsov, Pattern structures and their projections, in: H.S. Delugach, G. Stumme (Eds.), Proceedings of the 9th International Conference

on Conceptual Structures, ICCS, in: Lecture Notes in Computer Science, vol. 2120, Springer, 2001, pp. 129–142.
[22] B. Ganter, R. Wille, Formal Concept Analysis, Springer, Berlin, 1999.
[23] R. Jäschke, A. Hotho, C. Schmitz, B. Ganter, G. Stumme, Discovering shared conceptualizations in folksonomies, J. Web Semantics 6 (1) (2008) 38–53.
[24] M. Kaytoue, S.O. Kuznetsov, A. Napoli, Revisiting numerical pattern mining with formal concept analysis, in: T Walsh (Ed.), Proceedings of the 22nd

International Joint Conference on Artificial Intelligence, IJCAI, IJCAI/AAAI, 2011, pp. 1342–1347.
[25] M. Kaytoue, S.O. Kuznetsov, A. Napoli, S. Duplessis, Mining gene expression data with pattern structures in formal concept analysis, Inf. Sci. 181 (10)

(2011) 1989–2001.
[26] B. Koester, Conceptual knowledge retrieval with FooCA: Improving web search engine results with contexts and concept hierarchies, in: P. Perner

(Ed.), Proceedings of the 6th Industrial Conference on Data Mining, in: Lecture Notes in Computer Science, vol. 4065, Springer, 2006, pp. 176–190.
[27] M. van Leeuwen, Interactive data exploration using patternmining, in: A. Holzinger, I. Jurisica (Eds.), Interactive KnowledgeDiscovery andDataMining

in Biomedical Informatics - State-of-the-Art and Future Challenges, in: Lecture Notes in Computer Science, vol. 8401, Springer, 2014, pp. 169–182.
[28] F. Lehmann, R.Wille, A triadic approach to formal concept analysis, in: G. Ellis, R. Levinson,W. Rich, J.F. Sowa (Eds.), Proceedings of the 3rd International

Conference on Conceptual Structures, ICCS, in: Lecture Notes in Computer Science, vol. 954, Springer, 1995, pp. 32–43.
[29] E. Nauer, Y. Toussaint, Crechaindo: an iterative and interactive web information retrieval system based on lattices, Int. J. General Syst. 38 (4) (2009)

363–378.

http://refhub.elsevier.com/S0166-218X(18)30134-3/sb1
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb1
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb1
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb2
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb2
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb2
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb3
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb3
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb3
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb4
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb4
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb4
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb5
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb6
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb7
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb8
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb9
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb10
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb10
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb10
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb10
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb10
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb11
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb11
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb11
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb11
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb11
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb12
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb12
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb12
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb13
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb13
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb13
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb14
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb14
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb14
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb15
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb15
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb15
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb15
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb15
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb16
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb16
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb16
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb17
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb17
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb17
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb18
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb18
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb18
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb19
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb20
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb20
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb20
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb21
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb21
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb21
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb22
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb23
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb25
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb25
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb25
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb26
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb26
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb26
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb27
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb27
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb27
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb28
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb28
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb28
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb29
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb29
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb29

M. Alam et al. / Discrete Applied Mathematics 249 (2018) 2–17 17

[30] J. Reynaud, M. Alam, Y. Toussaint, A. Napoli, A proposal for classifying the content of the web of data based on FCA and pattern structures,
in: M. Kryszkiewicz, A. Appice, D. Slezak, H. Rybinski, A. Skowron, Z.W. Ras (Eds.), Proceedings of the 23rd International Symposium on Foundations
of Intelligent Systems, ISMIS, in: Lecture Notes in Computer Science, vol. 10352, Springer, 2017, pp. 684–694.

[31] B. Sertkaya, OntoComP: A Protégé plugin for completing OWL ontologies, in: Proceedings of the 6th European Semantic Web Conference, ESWC,
in: Lecture Notes in Computer Science, vol. 5554, Springer, 2009, pp. 898–902.

[32] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, L. Lakhal, Computing iceberg concept lattices with Titanic, Data Knowl. Eng. 42 (2) (2002) 189–222.
[33] Y. Sure, S. Bloehdorn, P. Haase, J. Hartmann, D. Oberle, The SWRC ontology – Semantic web for research communities, in: C. Bento, A. Cardoso, G. Dias

(Eds.), Proceedings of the 12th Portuguese Conference on Artificial Intelligence, EPIA, in: Lecture Notes in Computer Science, vol. 3808, Springer, 2005,
pp. 218–231.

[34] J.W. Tukey, Exploratory Data Analysis, Addison-Wesley, 1977.
[35] M. Visani, K. Bertet, J. Ogier, Navigala: an original symbol classifier based on navigation through a galois lattice, Int. J. Pattern Recogn. Artif. Intel. 25 (4)

(2011) 449–473.
[36] T. Wray, P.W. Eklund, K. Kautz, Pathways through information landscapes: Alternative design criteria for digital art collections, in: R. Baskerville, M.

Chau (Eds.), Proceedings of the International Conference on Information Systems, ICIS, Association for Information Systems, 2013.

http://refhub.elsevier.com/S0166-218X(18)30134-3/sb30
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb30
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb30
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb30
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb30
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb31
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb31
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb31
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb32
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb33
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb33
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb33
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb33
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb33
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb34
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb35
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb35
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb35
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb36
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb36
http://refhub.elsevier.com/S0166-218X(18)30134-3/sb36

	Exploratory knowledge discovery over Web of Data
	Introduction
	Preliminaries
	Web of Data
	SPARQL
	Formal concept analysis
	Pattern structures

	Building an RDF-pattern structure
	From RDF triples to an RDF-pattern structure
	Similarity as the LCS operation
	The practical definition of the similarity operation
	Building the pattern concept lattice in an RDF-pattern structure

	Navigation and interactive exploration over the RDF-index
	Motivating scenario
	Interactive data exploration over the RDF-index
	Visualization

	Experimentation
	Related work
	Conclusion
	Using range minimum query for computing LCS
	Intersection of antichains by scaling
	References

