
Mining Definitions from RDF Annotations Using Formal Concept Analysis

Mehwish Alam, Aleksey Buzmakov, Victor Codocedo, Amedeo Napoli
LORIA (CNRS – Inria Nancy Grand Est – Université de Lorraine)

BP 239, Vandoeuvre-lès-Nancy, F-54506, France
{firstname.lastname@loria.fr}

Abstract
The popularization and quick growth of Linked
Open Data (LOD) has led to challenging aspects re-
garding quality assessment and data exploration of
the RDF triples that shape the LOD cloud. Particu-
larly, we are interested in the completeness of data
and its potential to provide concept definitions in
terms of necessary and sufficient conditions. In this
work we propose a novel technique based on For-
mal Concept Analysis which organizes RDF data
into a concept lattice. This allows data exploration
as well as the discovery of implications, which are
used to automatically detect missing information
and then to complete RDF data. Moreover, this is
a way of reconciling syntax and semantics in the
LOD cloud. Finally, experiments on the DBpedia
knowledge base show that the approach is well-
founded and effective.

1 Introduction
World Wide Web has tried to overcome the barrier of data
sharing by converging data publication into Linked Open
Data (LOD) [Bizer et al., 2009]. The LOD cloud stores data
in the form of subject-predicate-object triples based on the
RDF language1, a standard formalism for information de-
scription of web resources. In this context, DBpedia is the
largest reservoir of linked data in the world currently contain-
ing more than 4 million triples. All of the information stored
in DBpedia is obtained by parsing Wikipedia, the largest open
Encyclopedia created by the collaborative effort of thousands
of people with different levels of knowledge in several and
diverse domains.

More specifically, DBpedia content is obtained from semi-
structured sources of information in Wikipedia, namely in-
foboxes and categories. Infoboxes are used to standardize
entries of a given type in Wikipedia. For example, the in-
fobox for “automobile” has entries for an image depicting
the car, the name of the car, the manufacturer, the engine,
etc. These attributes are mapped by the DBpedia parser to a
set of “properties” defined in an emerging ontology2 [Benz

1Resource Description Framework - http://www.w3.org/RDF/
2Emerging in the sense of “dynamic” or “in progress”.

et al., 2010] (infobox dataset) or mapped through a hand-
crafted lookup table to what is called the DBPedia Ontology
(mapped-based ontology). Categories are another important
tool in Wikipedia used to organize information. Users can
freely assign a category name to an article relating it to other
articles in the same category. Example of categories for cars
are “Category:2010s automobiles”, “Category:Sports cars” or
“Category:Flagship vehicles”. While we can see categories
in Wikipedia as an emerging “folksonomy”, the fact that they
are curated and “edited” make them closer to a controlled vo-
cabulary. DBpedia exploits the Wikipedia category system to
“annotate”3 objects using a taxonomy-like notation. Thus, it
is possible to query DBpedia by using annotations (e.g. all
cars annotated as “Sport cars”). While categorical informa-
tion in DBpedia is very valuable, it is not possible to use a
category as one could expect, i.e. as a definition of a class of
elements that are instances of the class or, alternatively, that
are “described” by the category. In this sense, such a category
violates the actual spirit of semantic Web.

Let us explain this with an example. The Web site of DB-
pedia in its section of “Online access” contains some query
examples using the SPARQL query language. The first query
has the description “People who were born in Berlin before
1900” which actually translates into a graph-based search of
entities of the type “Person”, which have the property “birth-
Place” pointing to the entity representing the “city of Berlin”
and another property named “birthDate” with a value less
than 1900. We can see here linked data working at “its
purest”, i.e. the form of the query provides the right-hand
side of a definition for “People who were born in Berlin be-
fore 1900”. Nevertheless, the fourth query named “French
films” does not work in the same way. While we could ex-
pect also a graph-based search of objects of the type “Film”
with maybe a property called “hasCountry” pointing to the
entity representing “France”, we have a much rougher ap-
proach. The actual SPARQL query asks for objects (of any
type) annotated as “French films”.

In general, categorization systems express “information
needs” allowing human entities to quickly access data.
French films are annotated as such because there is a need

3Notice that in DBPedia the property used to link entities and
categories is called “subject”. We use “annotation” instead of “sub-
ject” to avoid confusions with the “subject” in an RDF triple.

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

823



to find them by these keywords. However, for a machine
agent this information need is better expressed through a def-
inition, like that provided for the first query (i.e. “People who
were born in Berlin before 1900”). Currently, DBPedia mixes
these two paradigms of data access in an effort to profit from
the structured nature of categories, nevertheless further steps
have to be developed to ensure coherence and completeness
in data.

Accordingly, in this work we describe an approach to
bridge the gap between the current syntactic nature of cate-
gorical annotations with their semantic correspondent in the
form of a concept definition. We achieve this by mining pat-
terns derived from entities annotated by a given category, e.g.
All entities annotated as “Lamborghini cars” are of “type au-
tomobile” and “manufactured by Lamborghini”, or all entities
annotated as “French films” are of “type film” and of “French
nationality”. We describe how these category-pattern equiv-
alences can be described as “definitions” according to impli-
cation rules among attributes which can be mined using For-
mal Concept Analysis (FCA [Ganter and Wille, 1999]). The
method considers the analysis of heterogeneous complex data
(not necessarily binary data) through the use of “pattern struc-
tures” [Ganter and Kuznetsov, 2001], which is an extension
of FCA able to process complex data descriptions. A concept
lattice can be built from the data and then used for discovering
implication rules (i.e. association rules whose confidence is
100%) which provide a basis for “subject definition” in terms
of necessary and sufficient conditions.

The remainder of this article is structured as follows: Sec-
tion 2 gives a brief introduction to the theoretical background
necessary to sustain the rest of the paper. Section 3 describes
the approach used for data completion in the DBpedia knowl-
edge base. Section 4 provides experimental results on four
datasets created from DBpedia and a brief discussion over
our findings. Finally, Section 5 concludes the paper offering
some perspectives over our approach.

2 Preliminaries
Linked Open Data (LOD) [Bizer et al., 2009] is a formal-
ism for publishing structured data on-line using the resource
description framework (RDF). RDF stores data in the form
of RDF triples represented as xsubject, predicate, objecty.
The profile of an RDF triple xs, p, oy is given by pU Y Bq ˆ
pU Y Bq ˆ pU Y B Y Lq where a set of RDF triples is an
RDF graph, denoted by G. Here, U denotes a set of URI
references, B refers to the blank node and L to literals. For
the sake of simplicity, in the current study we do no take into
account blank nodes pBq. An RDF triple is represented as
U ˆ U ˆ pU Y Lq. For convenience, in the following we
denote the set of predicate names as P and the set of object
names as O. LOD can then be queried and accessed through
SPARQL4, which is a standard query language for RDF data.
SPARQL is based on matching graph patterns (present in
the WHERE clause of a query) against RDF graphs. For
example, let us consider the SPARQL query given in List-
ing 1, for all the entities of type Automobile manufactured by

4http://www.w3.org/TR/rdf-sparql-query/

Lamborghini, annotated as “Sport_cars” and as “Lamborgh-
ini_vehicles”,

SELECT ?s WHERE {
?s dc:subject dbpc:Sports_cars .
?s dc:subject dbpc:Lamborghini_vehicles .
?s rdf:type dbo:Automobile .
?s dbo:manufacturer dbp:Lamborghini }

Listing 1: SPARQL for the formal context in Figure 1. Pre-
fixes are defined in Table 1.

Formal Concept Analysis (FCA) is a mathematical
framework used for classification, data analysis, infor-
mation retrieval and knowledge discovery among other
tasks [Carpineto and Romano, 2005]. The basics of FCA can
be found in [Ganter and Wille, 1999], but in the following
we recall some important definitions. Let G be a set of en-
tities, M a set of attributes, and I Ď G ˆ M an incidence
relation. Actually, in FCA, elements of G are called “ob-
jects”. In this article we call them “entities” to avoid con-
fusions with “objects” as defined for RDF triples. Then, the
relation gIm means that entity g P G has attribute m P M .
The triple K “ pG,M, Iq is called a “formal context”. Two
derivation operators, both denoted by 1, formalize the attribute
sharing among entities, and (dually) the entity sharing among
attributes:

A
1
“ tm PM | gIm @ g P Au B

1
“ tg P G | gIm @m P Bu

A1 denotes the set of attributes shared by all the entities in
A and B1 denotes the set of entities having all the attributes
in B. The pair pA,Bq is a formal concept of K iff A1 “ B
and B1 “ A, where A is called the “extent” and B is called
the “intent” of pA,Bq. Given two formal concepts pA1, B1q

and pA2, B2q, a partial-ordering is defined between them as
pA1, B1q ďK pA2, B2q ðñ A1 Ď A2porB2 Ď B1q. Then,
pA1, B1q is called a subconcept of pA2, B2q (pA2, B2q a su-
perconcept pA1, B1q). The set of all formal concepts in K
(denoted by CK) together with the order ďK forms the con-
cept lattice denoted by LK.

For example, consider the formal context in Figure 1 where
G “ U , M “ pP ˆ Oq and pu, pp, oqq P I ðñ xu, p, oy P
G, i.e. xu, p, oy is a triple built from different triples manu-
ally extracted from DBpedia about nine different Lamborgh-
ini cars (35 RDF triples in total). Given a subject-predicate-
object triple, the formal context contains subjects in rows, the

Predicates Objects
Index URI Index URI

A dc:subject a dbpc:Sport_Cars
b dbpc:Lamborghini_vehicles

B dbp:manufacturer c dbp:Lamborghini
C rdf:type d dbo:Automobile
D dbp:assembly e dbp:Italy
E dbo:layout f dbp:Four-wheel_drive

g dbp:Front-engine
Namespaces:

dc: http://purl.org/dc/terms/
dbo: http://dbpedia.org/ontology/
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns\#
dbp: http://dbpedia.org/resource/
dbpc: http://dbpedia.org/resource/Category:

Table 1: Index of pairs predicate-object and namespaces.

824



A B C D E
a b c d e f g

Reventon ˆ ˆ ˆ ˆ ˆ ˆ

Countach ˆ ˆ ˆ ˆ ˆ

350GT ˆ ˆ ˆ ˆ ˆ

400GT ˆ ˆ ˆ ˆ

Islero ˆ ˆ ˆ ˆ

Veneno ˆ ˆ

Aventador Roadster ˆ ˆ

Estoque ˆ ˆ ˆ ˆ

Gallardo ˆ ˆ ˆ

Figure 1: The formal context shown on the left is built after scaling from DBpedia data given in Table 1. Each cross (ˆ)
corresponds to a triple subject-predicate-object. On the right the corresponding concept lattice is shown.

pairs predicate-object in columns and a cross in the cell where
the triple subject in row and predicate-object in column exists.

Figure 1 depicts the concept lattice in reduced notation cal-
culated for this formal context and contains 12 formal con-
cepts. Consider the first five cars (subjects) in the table for
which the maximal set of attributes they share is given by the
first four predicate-object pairs. Actually, they form a formal
concept depicted by the gray cells in Figure 1 and labelled
as “Islero, 400GT” in Figure 1 (actually, the extent of this
concept is “Islero, 400GT, 350GT, Reventon”).

Given a concept lattice, rules can be extracted from the
intents of concepts which are comparable. For two sets
X,Y ĎM , a rule has the formX ùñ Y whereX and Y are
subsets of attributes. A rule X ùñ Y has a support given by
the proportion of entities having the set of attributes in X and
Y (i.e. |X 1 X Y 1|5) w.r.t. the whole set of entities, and a con-
fidence which is the proportion of entities having the (same)
set of attributes in X and Y , w.r.t. X (i.e. |X 1 X Y 1|{|X 1|).
For instance, consider the association rule e ùñ a, b, c, d. Its
support is given by |ta, b, c, du1 X teu1| which is the same as
|tReventon,Countachu| “ 2. Since |teu1| “ 3, we have
that the confidence of this association rule is 2{3 « 0.67.
A rule X ùñ Y of confidence 1 (when |X 1 X Y 1| “ |X 1|
or X 1 Ď Y 1) is called an implication. Otherwise, the confi-
dence is less than 1 and the rule is called an association rule.
When X ùñ Y and Y ùñ X are implications, we say that
X ðñ Y is an equivalence or a definition. This can hap-
pen when two attributes have the same “attribute concept”,
e.g. type-Automobile and manufacturer-Lamborghini in the
concept lattice of Figure 1.

3 Improving DBpedia with FCA
3.1 Problem context
Consider the following fictional scenario. You are a book-
keeper in a library of books written in a language you do not
understand. A customer arrives and asks you for a book about
“Cars”. Since you do not know what the books are about (be-
cause you cannot read them), you ask the customer to browse

5
| ¨ | denotes set cardinality.

the collection on his own. After he finds a book he is inter-
ested to read, you will mark the symbol ‹ on that book for
future references. Then, in an empty page you will write (‹
- Cars). After several cases like this, you will probably end
up with a page full of symbols representing different topics or
categories of your books, among them (a - Sports), (˛ - Foot-
ball) and (˝ - History). Now you can even combine symbols
when customers ask you for “Sport Cars” which you trans-
late into ‹a. Actually, the demand for books about “Sport
Cars” is so high that you create a new symbol : just for it. So
doing, you have created your own categorization system of a
collection of books you do not understand.

In general, given a topic, you are able to retrieve books
without many troubles, however since you do not understand
the books, you are restricted to the set of symbols you have
for doing this. Furthermore, if you are not careful some prob-
lems start to arise, such as books marked with ˛ and without
a. Finally, people do not get books marked with : when they
look for “Cars”, since they only search for the symbol a.

It is easy to stablish an analogy on how DBpedia profits
from Wikipedia’s categorization system and the above sce-
nario. DBpedia is able to retrieve entities when queried with
an annotation (as the example of “French films”), however
any information need not initially provided as a category is
unavailable for retrieval (such as “French films about the Art
Nouveau era”). Incoherences in categorical annotations are
quite frequent in DBpedia, for example there are over 200
entities annotated as “French films” which are not typed as
“Films”. Finally, DBpedia is not able to provide inferencing.
For example, in Figure 1, the entities Veneno and Aventador,
even though they are annotated as “Lamborghini vehicles”,
cannot be retrieved when queried simply by “vehicles”. In
such a way, it is exactly as if they were marked with a symbol
such as :.

3.2 The completion of DBpedia data
Our main concern in this case lies in two aspects. Firstly,
are we able to complete data using logical inferences? For
example, can we complete the information in the dataset by
indicating that the entities “Estoque” and “Gallardo” should
be categorized as “Lamborghini vehicles” and “Sport cars”?

825



Rule Confidence Support Meaning
d ùñ c 100% 7 Every automobile is manufactured by

Lamborghini.
c ùñ d 100% 7 Everything manufactured by Lamborghini

is an automobile.
e ùñ b,c 100% 3 All the entities assembled in Italy are

Lamborghini automobiles.
c,d ùñ a,b 71% 7 71% of the Lamborghini automobiles are catego-

rized as “sport cars” and “Lamborghini vehicles”

Table 2: Association rules extracted from formal context in
Figure 1.

Secondly, are we able to complete the descriptions of a given
type? For example, DBpedia does not specify that an “Au-
tomobile” should have a “manufacturer”. In the following,
we try to answer these two questions using implications and
association rules.

Consider rules provided in Table 2. Of course, the first
three implications are only true in our dataset. This is due
to the fact that we use the “closed world” assumption, mean-
ing that our rules only apply in “our world of data” where
all cars are of “Lamborghini” brand, i.e. all other infor-
mation about cars that we do not know can be assumed as
false [Fürber and Hepp, 2011]. While these implications are
trivial, they provide a good insight of the capabilities of our
model. For instance, including a larger number of triples in
our dataset would allow discovering that, while not all auto-
mobiles are manufactured by Lamborghini, they are manu-
factured by either a Company, an Organization or an Agent.
These three classes6 are types of the entity Lamborghini in
DBpedia. Such a rule would allow providing a domain char-
acterization to the otherwise empty description of the predi-
cate “dbo:manufacturer” in the DBpedia schema.

The association rule given in the fourth row in Table 2
shows the fact that 29% of the subjects of type “Automobile”
and manufactured by “Lamborghini” should be categorized
by “Sports cars” and “Lamborghini vehicles” to complete the
data. This actually corresponds to the entities “Estoque” and
“Gallardo” in Figure 1. Based on this fact, we can use associ-
ation rules also to create new triples that allow the completion
of the information included in DBpedia.

3.3 Pattern structures for the completion process
The aforementioned models to support linked data using FCA
are adequate for small datasets as the example provided. Ac-
tually, LOD do not always consists of triples of resources
(identified by their URIs) but contains a diversity of data
types and structures including dates, numbers, collections,
strings and others making the process of data processing
much more complex. This calls for a formalism able to deal
with this diversity of complex and heterogeneous data.

Accordingly, pattern structures are an extension of FCA
which enables the analysis of complex data, such as numeri-
cal values, graphs, partitions, etc. In a nutshell, pattern struc-
tures provide the necessary definitions to apply FCA to enti-
ties with complex descriptions. The basics of pattern struc-
tures are introduced in [Ganter and Kuznetsov, 2001]. Below,
we provide a brief introduction using interval pattern struc-
tures [Kaytoue et al., 2011].

6In the OWL language sense.

Entity dbo:productionStartYear
Reventon 2008
Countach 1974
350GT 1963
400GT 1965
Islero 1967
Veneno 2012
Aventador Roadster -
Estoque -
Gallardo -
Interval Pattern Concepts
Reventon, Veneno xr2008, 2012sy
Countach, xr1974, 1974sy
350GT,400GT,Islero xr1963, 1967sy

Table 3: Upper table shows values of predicate
dbp:productionStartYear for entities in Figure 1. The
symbol - indicates that there are no values present in DBpe-
dia for those subjects. Lower table shows the derived interval
pattern concepts .

Let us consider Table 3 showing the predicate
dbo:productionStartYear for the subjects in Figure 1.
In such a case we would like to extract a pattern in the
year of production of a subset of cars. Contrasting a formal
context as introduced in Section 2, instead of having a
set M of attributes, interval pattern structures use a semi-
lattice of interval descriptions ordered by a subsumption
relation and denoted by pD,Ďq7. Furthermore, instead of
having an incidence relation set I , pattern structures use
a mapping function δ : G Ñ D which assigns to any
g P G the corresponding interval description δpgq P D. For
example, the entity “350GT” in Table 3 has the description
δp350GT q “ xr1963, 1963sy.

Let us consider two descriptions δpg1q “ xrl1i , r
1
i sy and

δpg2q “ xrl2i , r
2
i sy, with i P r1..ns where n is the number

of intervals used for the description of entities. The similar-
ity operation [ and the associated subsumption relation Ď

between descriptions are defined as the convex hull of two
descriptions as follows:

δpg1q [ δpg2q “ xrminpl
1
i , l

2
i q,maxpr

1
i , r

2
i qsy

δpg1q Ď δpg2q ðñ δpg1q [ δpg2q “ δpg1q

δp350GT q [ δpIsleroq “ xr1963, 1967sy

pδp350GT q [ δpIsleroqq Ď δp400GT q

Finally, a pattern structure is denoted as pG, pD,Ďq, δq
where operators p¨ql between ℘pGq and pD,Ďq are given be-
low:

Al :“
ę

gPA

δpgq dl :“ tg P G | d Ď δpgqu

An interval pattern concept pA, dq is such as A Ď G, d P D,
A “ dl, d “ Al. Using interval pattern concepts, we can
extract and classify the actual pattern (and pattern concepts)
representing the years of production of the cars. Some of
them are presented in the lower part of Table 3. We can ap-
preciate that cars can be divided in three main periods of time
of production given by the intent of the interval pattern con-
cepts.

7It can be noticed that standard FCA uses a semi-lattice of set
descriptions ordered by inclusion, i.e. (M,Ď).

826



3.4 Heterogeneous pattern structures

Different instances of the pattern structure framework have
been proposed to deal with different kinds of data, e.g. graph,
sequences, interval, partitions, etc. For linked data we pro-
pose to use the approach called “heterogeneous pattern struc-
ture” framework introduced in [Codocedo and Napoli, 2014]
as a way to describe objects in a heterogeneous space, i.e.
where there are relational, multi-valued and binary attributes.
It is easy to observe that this is actually the case for linked
data where the set of literals L greatly varies in nature de-
pending on the predicate. For the sake of simplicity we pro-
vide only the most important details of the model used for
working with linked data.

When the range of a predicate (hereafter referred to as
“relation”) p P P is such that rangeppq Ď U , we call p
an “object relation”. Analogously, when the range is such
that rangeppq Ď L, p is a “literal relation”. For any given
relation (object or literal), we define the pattern structure
Kp “ pG, pDp,[q, δpq, where pDp,Ďq is an ordered set of
descriptions defined for the elements in rangeppq, and δp
maps entities g P G to their descriptions inDp. Based on that,
the triple pG,H,∆q is called a “heterogeneous pattern struc-
ture”, where H “

Ś

Dppp P P q is the Cartesian product of
all the descriptions sets Dp, and ∆ maps an entity g P G to a
tuple where each component corresponds to a description in
a set Dp.

For an “object relation”, the order in pDp,Ďq is given by
standard set inclusion and thus, the pattern structure Kp is
just a formal context. Regarding “literal relations”, such
as numerical properties, the pattern structure may vary ac-
cording to what is more appropriate to deal with that spe-
cific kind of data. For example, considering the predi-
cate dbo:productionStartYear discussed in the previous sec-
tion, Kdbo:productionStartYear should be modelled as an interval
pattern structure. For the running example, the heteroge-
neous pattern structure is presented in Table 4. Cells in
grey mark a heterogeneous pattern concept the extent of
which contains cars “350GT, 400GT, Islero”. The intent
of this heterogeneous pattern concept is given by the tuple
pta, bu, tcu, tdu, xr1963, 1967syq, i.e. “Automobiles manu-
factured by Lamborghini between 1963 and 1967”. The
model of heterogeneous pattern structures is the basis of the
experiments which are presented in the next section.

KA KB KC KD KE Kdbo:productionStartYear

a b c d e f g
Reventon ˆ ˆ ˆ ˆ ˆ ˆ xr2008, 2008sy
Countach ˆ ˆ ˆ ˆ ˆ xr1974, 1974sy
350GT ˆ ˆ ˆ ˆ ˆ xr1963, 1963sy
400GT ˆ ˆ ˆ ˆ xr1965, 1965sy
Islero ˆ ˆ ˆ ˆ xr1967, 1967sy
Veneno ˆ ˆ xr2012, 2012sy
Aventador Roadster ˆ ˆ -
Estoque ˆ ˆ ˆ ˆ -
Gallardo ˆ ˆ ˆ -

Table 4: Heterogeneous pattern structure for the running ex-
ample. Indexes for properties are shown in Table 1.

Dataset Cars Videogames Smartphones Countries
Dataset building conditions

Restriction dc:subject dc:subject dc:subject rdf:type
dbpc:Sports_cars dbpc:FPS: dbpc:Smartphones Country

Predicates rdf:type rdf:type rdf:type rdf:type
dc:subject dc:subject dc:subject dc:subject
bodyStyle cp; manufacturer language
transmission developer operativeSystem govenmentType
assembly requirement developer leaderType
designer genre cpu foundingDate
layout releaseDate gdpPppRank

Dataset Characteristics
# Subjects 529 655 363 3,153
# Objects 1,291 3,265 495 8,315
# Triples 12,519 20,146 4,710 50,000
# Concepts 14,657 31,031 1,232 13,754
Exec. time [s] 17.32 17.14 0.7 59.82

Results
Rules Eval. 19 46 47 50
P@20 0.85 0.7 0.79 0.9

: Front_Person_Shooters
; computerPlatform

Table 5: Summary table of experimental procedures. Upper
table shows the predicates used to construct each datasets.
Properties without a prefix have the default namespace
“dbo:”. Underlined properties have numerical ranges. Middle
table show each dataset characteristics. Lower table shows
experimental results. P@20 stands for “Precision at the first
20 implication”.

4 Experimentation
To evaluate our model, four datasets were created from DB-
pedia, namely “Cars”, “Videogames”, “Smartphones” and
“Countries” (see characteristics of the datasets in Table 5).
Each dataset was created using a single SPARQL query with
a unique restriction (either a fixed subject or a fixed type). A
dataset consists of a set of triples whose predicate is given by
the properties in Table 5. The heterogeneous aspect of data is
illustrated by the fact that in two of the four datasets there are
properties with numerical ranges.

For each dataset we calculated the set of all implications
derived from the heterogeneous pattern concept lattice. Each
rule of the form X ùñ Y was ranked according to the con-
fidence of the rule Y ùñ X (the latter is referred as the
“inverted rule” of the former). Thus, given that implications
have always a confidence of 100%, the confidence of the in-
verted rule tells us how close we are from a definition, i.e.
X ðñ Y or both rules are implications. Having an implica-
tion or not leads to the decision whether a set of RDF triples
should be completed or not. For example, the following im-
plication from the Cars dataset has an inverted rule of 92% of
confidence:

rdf:type-dbo:MaseratiVehicles ùñ
dbo:manufacturer-dbp:Maserati

Accordingly, we can make of this implication a definition
stating that the remainder 8% of the entities manufactured by
Maserati should also be “typed” as MaseratiVehicles (recall
in here that we have constructed our “world of data” by taking
all “Sport Cars” from DBpedia, thus things built by Maserati
which are not vehicles do not belong in our data). Of course,
there are cases in which this will not be true. For example
with a 90% of confidence in the opposite direction we have
the implication:

827



Figure 2: Precision at 11-points for each dataset (P@11p)

dbo:layout-dbp:Quattro ùñ dbo:manufacturer-dbp:Audi

The creation of a definition from this rule (i.e. making the
remainder 10% of the cars manufactured by Audi have a lay-
out 4x4) would be wrong. While we expect that the high con-
fidence of the opposite association rule distinguish the case
when a definition should be made, a human ruling to include
background information will always be needed.

Considering that there is no ground truth for any of the
datasets, the reported results are given for assessing the fea-
sibility of our approach. For each of the ranked basis of
implications in the experimentation we performed a human
evaluation. With the help of DBpedia, it was evaluated if an
implication was likely to become a definition. The answer
provided for each of the rule was binary (yes or no). For in-
stance, in the previous examples the first implication would
render a “yes” answer, while the second, a “no”. Afterwards,
we measured the precision for the first 20 ranked implications
(P@20) as the proportion of the rules that were likely to be-
come a definition (those evaluated as yes) over 20 (the total
number of rules taken). Actually, the precision value works
as an indicator of how likely implications are useful for RDF
data completion (see Table 5).

By contrast, since we do not have a ground truth of all the
triples that should be added to each dataset, we are not able to
report on recall. Nevertheless, to complement this evaluation,
we provide the values of the precision at 11 points (P@11p)
[Manning et al., 2008]. We consider each human evaluation

as the ground truth for its respective dataset and thus, each list
of implications has a 100% recall. Precision at 11 points pro-
vides a notion on how well distributed are the answers in the
ranking. Figure 2 contains the curves for each of the datasets.
Values for precision at 20 points are high for all datasets and
particularly for the dataset “Countries”. This may be due to
the fact that Countries was the only dataset built for resources
with a fixed type.

A precision of 0.9 indicates that 9 out of 10 implications
can be transformed into definitions by creating RDF triples
that would complete the entities descriptions. Precision at
11-points shows that confidence is a good indicator on the
usefulness of implications for data completion. For example,
regarding the worst result i.e. the Videogames dataset, when
the evaluator provides the last “yes” answer for an implica-
tion, he/she has also given a “yes” to 6 out 10 (from a total of
46). For our best result (Countries dataset) it is over 8 out of
10. Results show that confidence is a good indicator for the
selection of implications in terms of data completion.

Further experimentation should be performed to assess if
the triples being created are “correct” or not. As already men-
tioned, we assume that resources being completed are cor-
rectly linked to the implication. While this may not always
be true, our approach is still useful under those circumstances
given that it would allow discovering such “incorrectly” an-
notated entities. Finally, regarding execution times, Table 5
shows that even for the larger dataset, the execution time is
less than a minute, and this time is perfectly acceptable for

828



the analysis of implications.

5 Related work, discussion and conclusion

In [Paulheim and Bizer, 2013] authors use an inference mech-
anism which considers the links between instances to ob-
tain their class types, assuming that some relations occur
only with certain classes. Moreover, there are some stud-
ies which focus on the correction of numerical data present
in DBpedia [Wienand and Paulheim, 2014] using outlier
detection method, which identify those facts which devi-
ate from other members of the sample. By contrast, our
approach focuses on completing RDF data with the help
of association rule mining. In [Zaveri et al., 2013], au-
thors propose a manual and semi-automatic methodology
for evaluating the quality of LOD resources w.r.t. a taxon-
omy of “quality problems”. Quality assessment is based on
user inputs (crowd-sourcing) and measures the correctness
of schema axioms in DBpedia. In [Yu and Heflin, 2011a;
2011b], authors try to detect triples which are regarded as
erroneous w.r.t. similar triples. The detection is based on
probabilistic rule learning and on the discovery of general-
ized functional dependencies that are used to characterize the
abnormality of the considered triples.

Different interesting perspectives are opened follow-
ing this work. As we have discussed, categories rep-
resent some pre-loaded information needs in Wikipedia,
i.e. a pre-answered questions whose answer is rele-
vant for a group of people. Thus, an interesting ap-
plication would be to translate these information needs
into description logics definitions, instead of attributes.
It is possible to think that, instead of annotating each
French film with a “FrenchFilm” tag, we could define the
category as FrenchFilm ” Film[ hasCountry.tFRANCEu,
or LamborghiniCars ” Automobile[ manufacturedBy
.tLAMBORGHINIu. Given that these definitions are more re-
strictive than typing (rdf:type), our work should be adapted to
deal with “near-definitions” in which both directions (X ùñ

Y and Y ùñ X) are association rules with high confidence.
While we have presented our approach applied to DBpedia,
its applicability is more general than this specific knowledge
resource. Actually, using category taxonomies to annotate
resources in LOD is a common practice for several knowl-
edge bases, to the extent that a meta-model for vocabularies
(Simple Knowledge Organization System - SKOS) has been
proposed by the World Wide Web Consortium 8. SKOS orga-
nizes “Concepts” in a hierarchical taxonomy, while resources
are said to be “subjects” of these concepts.

To conclude, in the current study we introduce a mecha-
nism based on association rule mining for the completion of
the RDF dataset. Moreover, we use heterogeneous pattern
structures to deal with heterogeneity in LOD. Several exper-
iments have been conducted over four datasets and an evalu-
ation was conducted for each of the experiments. This study
shows the capabilities of FCA for completing complex RDF
structures.

8http://www.w3.org/2004/02/skos/

References
[Benz et al., 2010] Dominik Benz, Andreas Hotho, and Gerd

Stumme. Semantics made by you and me: Self-emerging
ontologies can capture the diversity of shared knowledge.
In Proceedings of the 2nd Web Science Conference, 2010.

[Bizer et al., 2009] Christian Bizer, Tom Heath, and Tim
Berners-Lee. Linked data - the story so far. Int. J. Se-
mantic Web Inf. Syst., 5(3):1–22, 2009.

[Carpineto and Romano, 2005] Claudio Carpineto and Gio-
vanni Romano. Concept data analysis - theory and appli-
cations. Wiley, 2005.

[Codocedo and Napoli, 2014] Víctor Codocedo and
Amedeo Napoli. A Proposition for Combining Pat-
tern Structures and Relational Concept Analysis. In 12th
International Conference on Formal Concept Analysis.
2014.

[Fürber and Hepp, 2011] Christian Fürber and Martin Hepp.
Swiqa - a semantic web information quality assessment
framework. In 19th European Conference on Information
Systems, 2011.

[Ganter and Kuznetsov, 2001] Bernhard Ganter and
Sergei O. Kuznetsov. Pattern structures and their
projections. In ICCS, volume 2120 of Lecture Notes in
Computer Science, pages 129–142. Springer, 2001.

[Ganter and Wille, 1999] Bernhard Ganter and Rudolf Wille.
Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin/Heidelberg, 1999.

[Kaytoue et al., 2011] Mehdi Kaytoue, Sergei O. Kuznetsov,
Amedeo Napoli, and Sébastien Duplessis. Mining gene
expression data with pattern structures in formal concept
analysis. Information Sciences, 181(10):1989–2001, 2011.

[Manning et al., 2008] Christopher D. Manning, Prabhakar
Raghavan, and Hinrich Schtze. Introduction to Informa-
tion Retrieval. July 2008.

[Paulheim and Bizer, 2013] Heiko Paulheim and Christian
Bizer. Type inference on noisy rdf data. In 12th Inter-
national Semantic Web Conference, 2013.

[Wienand and Paulheim, 2014] Dominik Wienand and
Heiko Paulheim. Detecting incorrect numerical data in
dbpedia. In 11th Extended Semantic Web Conference,
2014.

[Yu and Heflin, 2011a] Yang Yu and Jeff Heflin. Detecting
abnormal data for ontology based information integration.
In 2011 International Conference on Collaboration Tech-
nologies and Systems, 2011.

[Yu and Heflin, 2011b] Yang Yu and Jeff Heflin. Extending
functional dependency to detect abnormal data in RDF
graphs. In 10th International Semantic Web Conference,
2011.

[Zaveri et al., 2013] Amrapali Zaveri, Dimitris Kontokostas,
Mohamed Ahmed Sherif, Lorenz Bühmann, Mohamed
Morsey, Sören Auer, and Jens Lehmann. User-driven qual-
ity evaluation of dbpedia. In I-SEMANTICS 2013 - 9th
International Conference on Semantic Systems, 2013.

829




