
p � �

URL� http���www�elsevier�nl�locate�entcs�volume���html �� pages

Probabilistic Symbolic Simulation and
Veri�cation with ��OBDDs

Christoph Meinel� Harald Sack

FB IV � Informatik� Universit�at Trier

D������ Trier� Germany

email	 fmeinel�sackg
uni�trier�de

Abstract

Ordered Binary Decision Diagrams �OBDDs� have already proved useful in the

veri�cation of combinational and sequential circuits� Due to limitations of the de�

scriptive power of OBDDs several more general models of Binary Decision Diagrams

have been studied� In this paper� ��OBDDs � also known as Mod�OBDDs � in re�

spect to their ability to serve as a tool for combinational veri�cation are considered�

Besides the application of ��OBDDs� the more general problem of how to exploit

the inherent potential of ��OBDDs more e�ciently is addressed�

� Introduction

A major problem in the computer aided design of digital circuits �VLSI�

CAD�is to choose a suitable representation of the circuit functionality for

the computer�s internal use� A concise representation which simultaneously

provides fast manipulation is very important for problems in form of Boolean

functions� During the last years� Ordered Binary Decision Diagrams �OB�
DDs� have proved to be well quali�ed for this purpose� Although OBDDs

were introduced in the context of CAD applications� they are now used in

many di�erent �elds like e�g� the solution of combinatorial problems or design
and veri�cation of communication protocols� For an overview see 	

��

Applications based on OBDDs are limited� since the descriptive power of

OBDDs is limited� Therefore� not every Boolean function of practical impor�
tance can be represented e�ciently� For example� the OBDD�representations

of the multiplication or the hidden weighted bit function �HWB� are of expo�

nential size 	�� Hence� more general BDD models have been studied� In this

paper we address ��OBDDs �also known as Mod��OBDDs�� introduced as an
extension of OBDDs 	��� ��OBDDs are more� sometimes even exponentially

more� space�e�cient than OBDDs� ��OBDDs preserve the OBDD property
of being an e�cient data structure for Boolean function manipulation� Im�

portant operations as apply� quanti�cation� and composition have the same

c����� Published by Elsevier Science B� V� Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Meinel and Sack

complexity as in the case of OBDDs� Even better� the Boolean functions ex�

clusive or �EXOR�� logical equivalence �EQU�� and negation can be performed

in constant time�

However� ��OBDDs do not provide a canonical representation of Boolean

functions� For canonical representations like OBDDs� testing the equivalence

of two OBDDs reduces to a simple pointer comparison in the computer� For

non canonical representations� the equivalence test is much more di�cult�

Doing symbolic simulation of digital circuits with OBDD�like data structures�

the e�ciency crucially depends on a fast equivalence test� More precisely�

synthesis of OBDDs becomes an operation of exponential time complexity

if there is no cache available to look up � rather than to recompute � the

result of single synthesis operations that already occurred at a previous step

of the computation� Looking up this cache requires that the equivalence of

the OBDDs of the current and the cached operation is easy to check�

The fastest known deterministic equivalence test for ��OBDDs based on a

minimisation algorithm introduced in 	
�� requires time cubic in the number

of nodes� Hence� it is not suitable for practical purposes� In 	��� a fast proba�

bilistic equivalence test for ��OBDDs has been proposed that requires only a

number of arithmetic operations that is linear in the number of variables�

In this paper we show how to work with ��OBDDs in symbolic simulation

of digital circuits based on a probabilistic equivalence test� Another problem

that we address is that the potential of the ��OBDDs in symbolic simulation

often can not be exploited� because no EXOR�EQU� gates appear in the

description of the circuit to be simulated� To avoid this problem� we propose

methods on how to integrate additional ��nodes into the data structure�

The paper is structured as follows� In Section �� we remind some basic

de�nitions concerning ��OBDDs� In Section �� we present the probabilistic

equivalence test based on Boolean signatures� Section deals with reduction

rules and ��OBDD synthesis� Section � deals with integration of additional

��nodes into the BDD data structure and Section � concludes the paper with

experimental results and an outlook on future work�

� ��OBDDs and Some Basic Facts

A ��OBDD P over a set Xn�fx�� � � � � xng of Boolean variables is a directed

acyclic connected graph P � �V�E�� V is the set of nodes� consisting of

nonterminal nodes with out�degree � and of terminal nodes with out�degree

�� There is a distinguished nonterminal node� the root� which� as only node�

has the in�degree ��

�To deal with Boolean functions f � B
n � B

m
� we consider

multi rooted shared ��OBDDs by introducing multiple roots into a sin�

gle ��OBDD� each root representing a subfunction of f � �f�� � � � � fm��

fi � B
n � B �� The two terminal nodes with no outgoing arcs are labelled

with the Boolean constants � and
� The remaining nodes are either labelled

�

Meinel and Sack

with Boolean variables xi �Xn� denoted as branching nodes� or with the bi�

nary Boolean function � �EXOR�� denoted as ��nodes� On each path� every

variable must occur at most once� In the following� let l�v� denote the label

of the node v�V and size�P � the number of nonterminal nodes of P �

E�V �V denotes the set of edges� The two edges starting in a branching

node v are labelled with � and
� The �����successor of node v is denoted

by v��v
�� There is a permutation � on the variable indices which de�nes an

order x�����x������ � ��x��n� on the set of input variables� If w is a successor

of v in P with l�v�� l�w��Xn� then l�v��l�w� according to ��

The function fP associated with the ��OBDD P is determined in the

following way� For a given input assignment a � �a�� � � � � an� � f��
g
n
� the

Boolean values assigned to the leaves extend to Boolean values associated

with all nodes of P as follows�

� Let v� and v
 be the successors of v� carrying the Boolean values ��� �� �

f��
g�

� If v is a branching node labelled with xi�Xn� then v is associated with �ai �

� If v is a ��node� then v is associated with ����� ����������� mod ��

fP �a� takes the value associated with the source of P � Thus� the value of

a Boolean function fP represented by the ��OBDD P can be computed in

time O�size�P ��� Furthermore� we can also consider the use of complemented

edges as introduced in 	�� to achieve an even more compact representation�

1

1x

x x32

P:

1

1

x2

x

2

x3

x

O:

x� x� x� fP

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

Figure �� ��OBDD P and OBDD O with complemented edges� both computing fP

For an illustration of the concept of ��OBDDs see Figure
� Let fP �f��
g
��

f��
g be de�ned by the given truth table� Moreover� let � be the natural

order on the set of variables� i�e�� ��i� � i� For branching nodes� the dashed

line always represents the edge labelled with �� A dot on an edge denotes that

the function represented by the successing ��OBDD is complemented� Note

that if we are working with complemented edges one of the two leaf nodes can

be omitted�

Since OBDDs are special cases of ��OBDDs �namely ��OBDDs without

��nodes�� for each variable order every Boolean function can be represented

by means of a ��OBDD� Therefore� we may conclude that the size of an

�

Meinel and Sack

optimal ��OBDD for a given Boolean function f is not greater than the

size of an optimal OBDD for f � Moreover� we can show that there exist

Boolean functions with small �low polynomial degree���OBDD representation

whose OBDDs are of exponential size� One example is the hidden weighted bit

function HWB� which is de�ned as follows� If wt�x� is the number of ones in

the input assignment of x��x�� � � � � xn� �the weight� and if� for simplicity� x�
denotes �� then HWB is de�ned by HWB�x��x

wt�x�� In 	� it has been shown

that each OBDD representation of the HWB must be of exponential size� but

its ��OBDD representation is only of cubic size 	���

The equality HWB�x��
L

n

k���xk�Ek�X�� where Ek�x� equals one if the

input assignment of x contains exactly k ones can be veri�ed easily� Since�

for each variable order� xk � Ek�x� can be represented by an OBDD of at

most quadratic size� the above equality can be immediately transformed into

a cubic size ��OBDD for HWB�

For Boolean function manipulation we are in need of an e�cient algorithm

performing the application of a binary Boolean operator on two ��OBDDs�

As shown in 	�� the result of the application of a generic boolean operator

� on two ��OBDDs R and Q of the variable ordering � can be constructed

in time O�size�R� � size�Q��� Even better� if � � f��	g� then the resulting

��OBDD can be constructed in constant time�

But� ��OBDDs do not provide a canonical representation of Boolean func�

tions�

� Probabilistic Equivalence Test for ��OBDDs

Similarly to ��OBDDs� we can consider ��OBDDs for a basis � of binary

Boolean functions by allowing all so�called functional nodes labelled with an

element of � 	
��� By introducing functional nodes into the OBDD repre�

sentation� we lose canonicity� Hence� it becomes an essential task to decide

whether two representations denote the same function� The equivalence test

for all ��OBDDs� ��ff
g� f�g� f
��gg is co�NP�complete� The situation is

di�erent for ��f�g� where the determination of equivalence is within co�R

�see 	����

Recently� a deterministic equivalence test for a ��OBDD�like data struc�

ture was introduced 	
�� that can be adapted to our model� This equivalence

test is based on a minimisation algorithm that requires the solution of a sys�

tem of linear equations� Doing this by Gaussian elimination� the runtime is

cubic in the number of nodes and therefore to time expensive for practical

applications�

The probabilistic equivalence test for ��OBDDs proposed in 	�� needs only

linearly many arithmetic operations in the number of variables� It is based

on a probabilistic equivalence test for read�once branching programs �BP
��

originally introduced in 	
�� Equivalence of two ��OBDDs is determined by

an algebraic transformation of the ��OBDDs in terms of polynomials over a

Meinel and Sack

�nite �eld� More precisely� we assign the polynomial px � x to a variable x

and for each Boolean function F represented by a ��OBDD� we transform the

Boolean Functions �F and F� � F� into the arithmetic expressions
�pF and

pF� � pF� � where pF represents the polynomial assigned to F � By exploiting

the law of DeMorgan and idempotence we derive pF��F� � pF��pF��pF�pF�
and pF��F� � pF��pF� � �pF�pF� for the binary Boolean operations OR and

EXOR� For a more detailed description of the application of this algebraisation

technique see 	���

Let GF ��m�� m�N � m��logn��
� denote a Galois �eld with �m elements

of characteristic �� Note that using GF ��m� simpli�es the polynomial for the

EXOR operation� If we consider the elements of GF ��m� as bit vectors of

length m� addition can be performed by bitwise EXOR� Multiplication has to

be carried out according to the rules of the polynomial ring over GF ��m��

With each node v of a ��OBDD P we associate the following polynomial

pv � �GF ��
m��n � GF ��m� �

pv�x�� � � � � xn��

�
����
����

� �
� v is �����sink

x�pv��x�� � � � � xn� � �
�x��pv��x�� � � � � xn� l�v��x�Xn

pv��x�� � � � � xn� � pv��x�� � � � � xn� l�v���

The polynomial associated with the ��OBDD P is the polynomial associated

with the root v� of P � Note that the polynomial remains unchanged for

di�erent representations P of the same Boolean function�

Let P and Q be two ��OBDDs and let a�� � � � � an � GF ��m� be generated

independently and uniformly random� The equivalence of two polynomials in

symbolic representation can be tested by a random algorithm in the following

way 	���

pP �a�� � � � � an� � pQ�a�� � � � � an� if fP � fQ and

Prob�pP �a�� � � � � an� � pQ�a�� � � � � an�� �
�

�
if fP � fQ�

Thus� if P and Q compute the same function� the algorithm always answers

�yes�� otherwise it answers �yes� with a probability smaller than
��� The bit

string representing the polynomial associated with the function fP computed

by the ��OBDD P is called Boolean signature� The error probability depends

on the number of elements in GF ��m�� Therefore� we are able to reduce the

error by enlarging m or by using multiple signatures per node with di�erent

random instances of a�� � � � � an � GF ��m�� In 	
��� an estimation of the prob�

ability of degeneracy in BDD synthesis based on signatures is given� i�e�� the

probability that during the synthesis of a ��OBDD P the signatures for two

nodes representing di�erent Boolean functions are computed to be equal� By

�

Meinel and Sack

using s di�erent signatures per node the error probability computes to at most

error �

size�P �
�
� n

s

� � jGF j
s

where size�P � denotes the number of nodes of the ��OBDD P � n the number

of variables� and jGF j the number of elements in the �nite �eld� For our

experiments in section � we are working with up to � di�erent signatures of

�� bit length per node� Thus� we were su�cient to perform all computations

without error� If we have� for example� a ��OBDD with
�
�
Nodes depending

on
�� Variables and if we are working with � di�erent signatures each of ��

bit length� we have to face an error probability of less than ���
 �
�
���

�

� Reduction and Synthesis of ��OBDDs

In general� reduction rules for OBDDs are also suitable for ��OBDDs� but�

as a major di�erence� their application does only lead to a smaller ��OBDD�

representation and not to a canonical one� We distinguish two types of reduc�

tions� the deletion rule� also referred to as simple reduction� and the merging

rule� also known as algebraic reduction�

In a ��OBDD� a node v is redundant if both of its edges point to the

same successor� Then we can apply the deletion rule� In a case of a branching

node� this node can be replaced by reconnecting all its incoming edges to its

successor� a ��node with two equal successors has to be replaced by the ��sink�

The merging rule performs to identi�cation of isomorphic subgraphs and

applies for branching nodes in the same way as for ��nodes �see Figure ���

x2x2

x1

0x1

x1

x2 x2 x2 x2

x1 x1

x1 x1x2 x2

Figure �� Deletion rule and merging rule for ��OBDDs�

f 0 f f 1 f x1 1 x1 x2 x1 x2

Figure �� ��OBDD reduction rules for terminal nodes and complemented edges�

Additionally� we also have to consider the case that one successor of a ��node

is a terminal node� If the ��sink is a successor of a ��node� then the ��node is

replaced by its second successor� On the other hand� if the ��sink is a successor

of a ��node� then the ��node is replaced by complementing all its incoming

edges and connecting them to its second successor� Note that rules concerning

�

Meinel and Sack

complemented edges must also be taken into account� Hence� the deletion rule

replaces each ��node v having successors which are the complement of each

other �vl � vr� by the ��sink� The merging rule reduces ��nodes v and w

having isomorphic subgraphs of di�erent complementation parity �fvl� vrg�

fwl� wrg or fvl� vrg�fwl� wrg� to a single node v by using equivalence relations

for complemented edges �see Figure ��� Using complemented edges� we can

ensure a more e�cient usage of the caches required for synthesis operations if

we restrict edge complementation to the ��successor� respectively to the left

successor in case of a ��node� of the node under consideration� To achieve

this� we can choose one of the equivalences shown in Figure �

Figure �� Equivalences for ��nodes and complemented edges�

Furthermore� we have to take under consideration reduction possibilities con�

cerning groups of ��nodes� If� e�g� we have a complete subtree of ��nodes

within an ��OBDD� each leaf has to be compared with every other leaf of that

subtree� If two leafs are representing the same function� they can be replaced

by a ��sink which may also a�ect the node in the level above� Two leafs rep�

resenting the complement of each others function can be replaced by a
�sink�

Also we have to consider chains of ��nodes where we have to compare all of

its leaf nodes to apply all possible reductions in the way described above�

Next� we are going to describe a synthesis algorithm for ��OBDDs� We

will assume that the reader is familiar with standard OBDD synthesis al�

gorithms� The conventional apply algorithm for ��OBDDs proposed in 	��

shows that applying a binary Boolean operation to two ��OBDDs requires at

most quadratic time� But in convenient OBDD implementations� all Boolean

operations are implemented by means of the ite operator 	�� which is de�ned

as a ternary Boolean function for the inputs F�G�H by �If F then G else H	

or ite�F�G�H��F �G� F �H and can be evaluated by recursive application

of the Boole��Shannon function decomposition�

f � xf jx�� � xf jx���

We decided to adapt the ite�algorithm for ��OBDDs� In combinational syn�

thesis� the description of a digital circuit is read and each gate of the circuit

will be simulated by a ��OBDD� Thus� for all gates except for those which

perform an EXOR�EQU��operation we apply the regular ite�algorithm� Gates

implementing an EXOR�EQU��operation are simply simulated by ��nodes

connected to the ��OBDDs representing the gate�s inputs�

The second step of adaption involves the creation of��OBDDs for cofactors

f jxi�d� d�f��
g of a Boolean function f �a cofactor f jx�d of a Boolean function

�

Meinel and Sack

f is the function that results if variable x is set to a �xed binary value d��

Regular cofactors f jxi
� i�e�� cofactors of a function associated with a branching

node v labelled by the variable xi� l�v��xi� are derived by simply returning the

��successor� respectively the ��successor� of node v� Creating the cofactors of a

function associated with a ��node v according to a variable xi may necessitate

the allocation of a new ��node connected to the cofactors of the left and right

successor of v� In the worst case we have to create new ��nodes for every ��
node on a path between v and the branching node vB labelled by the variable

xi �see Figure ���

x1=1f |

x1

f1

f

f2 f3

Figure �� Cofactor creation f jx��� in ��OBDD P with l�sourceP �	��

To speed up the performance of the ite operation� we are using a computed

table� which is organised as a hash based cache� to store and reuse the results of

ite� Before a new node is created� we always look up a unique table organised

as a hash table to prevent the creation of already allocated nodes� In both�

computed table and unique table� every reference is made by application of the

probabilistic equivalence test to identify the underlying ��OBDDs� To avoid

redundant entries in the computed table� we transform the triple �F�G�H� to a

standard form by reordering it and checking the constraints for complemented

edges�

However� with the modi�ed ite algorithm the ��OBDD that we create for

a circuit description which contains neither EXOR gates nor EQU gates is

isomorphic to an OBDD created by conventional ite�algorithm�

�

Meinel and Sack

� Introduction of ��nodes into the BDD data structure

In the case that the circuit under consideration contains no EXOR�EQU�

gate� we have to introduce ��nodes to take advantage of the potential of the

��OBDDs� We have investigated two di�erent approaches�

�i� Using alternative function decompositions that include ��node genera�

tion or�

�ii� substituting linearly dependent functions by linear combinations of ��

nodes�

The conventional ite�algorithm is based on the Boole�Shannon function de�

composition� As an alternative� we may use the positive �pDE� or negative

Davio �nDE� expansion�

pDE� f � f jx�� � x�f jx�� � f jx���

nDE� f � f jx�� � x�f jx�� � f jx����

By applying a binary Boolean operator � to two Boolean functions f� g ac�

cording to the positive Davio expansion� we introduce two new ��nodes for

each recursive apply step�

f � g � �f jx�� � gjx���� x��f jx�� � gjx���� �f jx�� � gjx�����

But� the ongoing creation of ��nodes may increase the total number of nodes

beyond the size of conventional OBDDs for the same function� This is the case�

if none of the reduction rules can be applied� We can try to avoid this e�ect

by using the alternative function decompositions pDE and nDE not always

but only sometimes� But the problem remains that the created ��nodes may

not be positioned at an appropriate place in the ��OBDD and therefore� will

be of no bene�t�

Maybe ��nodes can be introduced in a more sophisticated way� It is conve�

nient to regard the space B n of Boolean functions of n variables as an algebra

over the two�element �eld Z
�
� i�e� a �n�dimensional vector space with an addi�

tional multiplication operation� The product of f� g�B � which corresponds to

coordinate wise conjunction is denoted by fg and the sum� which corresponds

to coordinate wise EXOR� by f�g� In this context� the variable xi is taken

to represent the projection from f��
gn to the ith coordinate and xi as the

according complement�

Now let P be a ��OBDD representing fP � The Boolean function fP can be

regarded as the Boolean function assigned to the top node 	 of the ��OBDD

P and is de�ned by induction on i�n�
� n� � � � � �� where i denotes the level

to which 	 belongs�

�i� i�n�
� 	 is leaf� f��
�

�

Meinel and Sack

�ii� 	 is node at level i�
� i�n� let f �

�
be the function computed its
�successor

and f
�
�
the function computed its ��successor� then f� � x

��i�f
�
�
� x

��i�f
�
�
�

If the function under consideration may be expressed as a linear combina�
tion of already computed functions� f �

P
i
fi� we are able to represent this

function as a tree of ��nodes connected to the ��OBDDs representing the
functions fi�

Unfortunately it is very expensive to include a test into the implementa�
tion that proves� whether an already computed ��OBDD is part of a linear
combination of the already computed functions�

� Experimental Results

For our experiments we used an Intel PPro��� Linux workstation� limiting
memory�size to at most ���MB� A symbolic simulation procedure based on our
��OBDD�package was used together with a subset of the smaller LGSynth�

Benchmark circuits�

Because ��OBDD�based symbolic simulation of circuits is probabilistic�
we had to check our results for correctness� This was done by translating the
constructed ��OBDD into a multiplexer circuit containing EXOR gates coded
in BLIF �Berkeley Logic Interchange Format�� Then the translated ��OBDD
was veri�ed against the BLIF version of the circuit�s speci�cation �le from the
LGSynth�
 Benchmarks� This veri�cation procedure was performed by the
standard synthesis and veri�cation tool VIS 	���

The size of OBDDs and��OBDDs depends crucially on the chosen variable
order� Because our ��OBDD�package is already under construction and dy�
namic reordering is not yet implemented� we were working with a single static
variable order not regarding� whether it is well suited for OBDD or ��OBDD
representation� Hence� in our experiments we simply used the variable orders
given by the circuit descriptions�

In Table
� the column circuit contains the name of the circuit netlist to be
simulated� As a reference� column two contains the �nal size for the OBDD
representing the circuit� The remaining columns contain the �nal sizes of the
resulting��OBDDs computed by the ite�algorithm and by positive or negative
Davio expansion�

Altogether� we required up to � distinct signatures of �� Bit length per
node� resulting in a maximum of additional �� bit of memory per node over
the conventional OBDD node size to simulate all circuits correctly� Of course
the additional memory required for signatures lessens memory e�ciency for
��OBDDs compared to OBDDs�

The ��OBDD�sizes given for the application of the ite�algorithm di�er only
from OBDD�sizes if EXOR�EQU� gates are included in the circuit description�
The exclusive application of nDE�pDE sometimes leads to very good results�
e�g� for s���
� but� in many cases too many ��nodes seem to be created

�

Meinel and Sack

circuit OBDD ��OBDD�size

ite nDE pDE

c��
���
��� �� ����

c�� ����
����
����
����

c��� ����� ����� ��
�� �����

c
��� ���� ����

��
���

c
��� ����� ����� ��
��
���

c��
� ����MB ����MB ����� ����

cordic
�� � �� ��

count �� �� �� ��

example� �� �� ��� �

frg� ��
 ��
 ���� ���

i� ��� ��� ��
 �
�

k� ����� ����� ���� ���

pcler�
��
��
�� ���

s����

���
���
��
��

s���
 ������ ������ ��� ���

s�
�
����
���� �
 ���

s
�
�
�
�
�
��
���

s��� ���
 ���
 ��� ���

s��� ���
 ���
 ��� ���

s���c ��� ���
�� ���

s���
���
���
��
��

s���c
���
���
��
��

x� ���� ���� ���
 ����

xi��
�

�� �� ��

Table �

Comparison of OBDD�size and ��OBDD�size for di�erent function expansions

Meinel and Sack

in the wrong places so that ��OBDD�size is greater than OBDD�size� But�

also in many cases ��OBDD�size is smaller than OBDD�size and therefore� we

think that ��OBDDs are a promising approach for combinatorial veri�cation

in a probabilistic way� For example� the OBDD for circuit C��
� could not

be created because of memory limitations� but the ��OBDDs depending on

pDE�nDE succeeded�

In Table � and Table �� we have tried to limit the use of pDE�nDE�

expansion during the simulation process� In the �rst column the circuit

name is given� The second column denotes the OBDD�size for compari�

son� Columns to � show ��OBDD�sizes in relation to the application of

pDE�nDE�expansion� The header ��� denotes that pDE�nDE�expansion was

applied in ��� of all apply�steps while the ite�algorithm was used in the re�

maining apply�steps during a single run� Note that the given percentage is

closely related to the number of ��nodes in the ��OBDD� For each circuit

under consideration we performed
� simulation runs with the given percent�

age of pDE�nDE usage� During a single run the consideration whether to

use pDE�nDE or ite as an apply�step was chosen at random with the given

percentage�

Thus� we tried to show the in�uence of the number of ��nodes in a

��OBDD on its size comparing the values in a given row� On the other hand�

the experiment also shows the in�uence of the positioning of ��nodes in the

��OBDD on its size� if we compare the column for a given circuit under a

�xed percentage� For each circuit in row
� we placed the minimum number of

achieved nodes� row � contains the average number of nodes out of
� random

runs� and row � contains the maximum number of nodes�

The di�erence of the maximum and the minimum size shows the impact

of the placement of ��nodes on the ��OBDD�size�

s

��� C
���� and C�� seem to be circuits that do not pro�t very much

from the use of ��nodes at all� Therefore� the less ��nodes are used� the

smaller is the average size of the ��OBDDs�

For the other circuits the situation is di�erent� The more ��nodes are

used� the less becomes the overall size�

In many cases we achieve smaller ��OBDDs by limiting the application

of nDE�pDE expansion compared to the exclusive application of nDE�pDE�

It seems that if a circuit pro�ts from the usage of ��nodes� a more frequent

application of nDE�pDE expansion leads to smaller results� This may be

explained by the fact that if we use more ��nodes in a ��OBDD� we will

achieve a higher probability to apply reduction rules�

In all tables we have only listed the sizes of our obtained results and not

the runtime� because we are not able to compare our experimental ��OBDD

package to sophisticated OBDD packages� which are highly optimized for run�

time�

The di�erence of minimum and maximum ��OBDD�size in Table � and

Table � con�rmes us that we should concentrate our work on a more sophisti�

�

Meinel and Sack

circuit OBDD ��OBDD�size

��� ��� ��� ��

C
��� ���� min
���� ����� ���
 ����

avg ���� ��� ��� ��

max ����� ���� ���� �
�

C
��� ����� min
��� ���� ����� �����

avg ��� ��� ��� �����

max ���� ���� ���� ����

C��
��� min ��

��

��
���

avg �
�� ��� �

��

max ��� ���
 ��
 ���

C�� ���� min
���� �

� ���� ��

avg
���� ���� ���
�

�

max
���� ����

��

��

s����

��� min

�
� �
� ��

avg ��� ��� ��� ���

max
��
���
�

���

s���
 ������ min ��
�
��
�
�� �����

avg ��
�� ������ ���
 ���

max
�
��� ������ ������ ������

s�
�
���� min ��� �� ��� ���

avg ����
���
���
����

max
����
����
�
��
����

Table �

Inuence of placement and number of of ��nodes on ��OBDD�size ���

cated��node placement� This could be done by exploiting linear combinations

as proposed in section �� but up to now we were not able to achieve a su�cient

implementation with a reasonable runtime�

The chosen variable orders may not be well suited for both OBDDs and

��OBDDs� Hence� for a better comparison of OBDD and ��OBDD perfor�

mance we are currently implementing dynamic variable reordering techniques

�

Meinel and Sack

circuit OBDD ��OBDD�size

��� ��� ��� ��

s��� ���
 min

�
��� ���

��

avg
��� ���� ���� ����

max
���
��
���
��

max ���� ���� ���� ����

s��� ���
 min ���
���
��� ����

avg
�� ��� ��� ���

max ���� ��� ���� ����

s

�� ��� min ���� ���� ���� ����

avg ���� ��� ��� ����

max ���� ���� ���� ���

s���
��� min
��
���
���
���

avg
���
��
��

��

max
���
��
���
��

s���c
��� min
��
���
��
���

avg
���
��
���
���

max
���
���
���
���

Table �

Inuence of placement and number of of ��nodes on ��OBDD�size ���

for ��OBDDs�

All in all� ��OBDDs seem to be well suited for all tasks based on symbolic

circuit simulation� working on the base of a probabilistic equivalence test� The

achieved results motivate further research with emphasis on ��node placement

and the adaption and implementation of dynamic reordering techniques for

��OBDDs�

References

�� M� Blum� A� K� Chandra� and M� N� Wegman� Equivalence of Free Boolean
Graphs Can be Decided Probabilistically in Polynomial Time� Information

Processing Letters� ���������� ����

�� K� S� Brace� Ordered Binary Decision Diagrams for Optimization in

Meinel and Sack

Symbolic Switch�Level Analysis of MOS Circuits� PhD thesis� Carnegie Mellon

University� Pittsburgh� Pennsylvania� �����

�� K� S� Brace� R� L� Rudell� and R� E� Bryant� E�cient Implementation of a

BDD Package� In ��th ACM�IEEE Design Automation Conference� pages ��

��� ����

�� R� E� Bryant� On the Complexity of VLSI Implementations and

Graph Representations of Boolean Functions with Application to Integer

Multiplication� IEEE Transactions on Computers� ������������ �����

�� J� Gergov and Ch� Meinel� Frontiers of Feasible and Probabilistic Feasible

Boolean Manipulation with Branching Programs� In Proc� of the ��th annual

Symposium on Theoretical Aspects of Computer Science� volume ��� of LNCS�

pages �������� Springer� �����

�� J� Gergov and Ch� Meinel� Mod��OBDDs� A Data Structure that Generalizes

EXOR�Sum�of�Products and Ordered Binary Decision Diagrams� In Formal

Methods in System Design� volume �� pages �������� Kluwer Academic

Publishers� �����

�� The VIS Group� VIS� A system for Veri�cation and Synthesis� In Proc� of the

�th Int� Conference on Computer Aided Veri�cation� number ��� in Lecture

Notes in Computer Science� pages �������� Springer� �����

�� J� Jain� J� Bitner� D� S� Fussel� and J� Abraham� Probabilistic Veri�cation

of Boolean Functions� In Formal Methods in System Design� volume �� pages

������� �����

�� J��C� Madre and J��P� Billon� Proving Circuit Correctness Using Formal

Comparison Between Expected and Extracted Behaviour� In Proc� of the ��th

ACM�IEEE Design Automation Conference� pages ������� �����

�� Ch� Meinel� Modi�ed Branching Programs and Their Computational Power�

volume �� of LNCS� Springer Verlag� Heidelberg� �����

��� Ch� Meinel and T� Theobald� Algorithms and Data Structures in VLSI Design�

Springer� �����

��� S� Waack� On the Descriptive and Algorithmic Power of Parity Ordered Binary

Decision Diagrams� In Proc� of the ��th Symposium on Theoretical Aspects of

Computer Science� volume �� of LNCS� Springer� �����

�

