URL: http://www.elsevier.nl/loca{:e/entcs/volumei2.htlml 15 pages

Probabilistic Symbolic Simulation and

Verification with @-OBDDs

Christoph Meinel, Harald Sack

FB IV - Informatik, Universitat Trier
D-54286 Trier, Germany
email: {meinel,sack} Quni-trier.de

Abstract

Ordered Binary Decision Diagrams (OBDDs) have already proved useful in the
verification of combinational and sequential circuits. Due to limitations of the de-
scriptive power of OBDDs several more general models of Binary Decision Diagrams
have been studied. In this paper, ©-OBDDs - also known as Mod20BDDs - in re-
spect to their ability to serve as a tool for combinational verification are considered.
Besides the application of @-OBDDs, the more general problem of how to exploit
the inherent potential of ®-OBDDs more efficiently is addressed.

1 Introduction

A major problem in the computer aided design of digital circuits (VLSI-
CAD)is to choose a suitable representation of the circuit functionality for
the computer’s internal use. A concise representation which simultaneously
provides fast manipulation is very important for problems in form of Boolean
functions. During the last years, Ordered Binary Decision Diagrams (OB-
DDs) have proved to be well qualified for this purpose. Although OBDDs
were introduced in the context of CAD applications, they are now used in
many different fields like e.g. the solution of combinatorial problems or design
and verification of communication protocols. For an overview see [11].
Applications based on OBDDs are limited, since the descriptive power of
OBDDs is limited. Therefore, not every Boolean function of practical impor-
tance can be represented efficiently. For example, the OBDD-representations
of the multiplication or the hidden weighted bit function (HWB) are of expo-
nential size [4]. Hence, more general BDD models have been studied. In this
paper we address ®-OBDDs (also known as Mod2-OBDDs), introduced as an
extension of OBDDs [6]. &-OBDDs are more, sometimes even exponentially
more, space-efficient than OBDDs. &-OBDDs preserve the OBDD property
of being an efficient data structure for Boolean function manipulation: Im-
portant operations as apply, quantification, and composition have the same

(©1999 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license,

http://creativecommons.org/licenses/by-nc-nd/3.0/

4Ava AN AN LS AV IA

complexity as in the case of OBDDs. Even better, the Boolean functions ex-
clusive or (EXOR), logical equivalence (EQU), and negation can be performed
in constant time.

However, &-OBDDs do not provide a canonical representation of Boolean
functions. For canonical representations like OBDDs, testing the equivalence
of two OBDDs reduces to a simple pointer comparison in the computer. For
non canonical representations, the equivalence test is much more difficult.
Doing symbolic simulation of digital circuits with OBDD-like data structures,
the efficiency crucially depends on a fast equivalence test. More precisely,
synthesis of OBDDs becomes an operation of exponential time complexity
if there is no cache available to look up - rather than to recompute - the
result of single synthesis operations that already occurred at a previous step
of the computation. Looking up this cache requires that the equivalence of
the OBDDs of the current and the cached operation is easy to check.

The fastest known deterministic equivalence test for ©-OBDDs based on a
minimisation algorithm introduced in [12] requires time cubic in the number
of nodes. Hence, it is not suitable for practical purposes. In [6], a fast proba-
bilistic equivalence test for &-OBDDs has been proposed that requires only a
number of arithmetic operations that is linear in the number of variables.

In this paper we show how to work with &-OBDDs in symbolic simulation
of digital circuits based on a probabilistic equivalence test. Another problem
that we address is that the potential of the &-OBDDs in symbolic simulation
often can not be exploited, because no EXOR(EQU) gates appear in the
description of the circuit to be simulated. To avoid this problem, we propose
methods on how to integrate additional @-nodes into the data structure.

The paper is structured as follows: In Section 2, we remind some basic
definitions concerning &-OBDDs. In Section 3, we present the probabilistic
equivalence test based on Boolean signatures. Section 4 deals with reduction
rules and @-OBDD synthesis. Section 5 deals with integration of additional
@-nodes into the BDD data structure and Section 6 concludes the paper with
experimental results and an outlook on future work.

2 @®-0OBDDs and Some Basic Facts

A ®-OBDD P over a set X, ={z1,...,2,} of Boolean variables is a directed
acyclic connected graph P = (V) E). V is the set of nodes, consisting of
nonterminal nodes with out-degree 2 and of terminal nodes with out-degree
0. There is a distinguished nonterminal node, the root, which, as only node,
has the in-degree 0.

(To deal with Boolean functions f : B®* — B™, we consider
multi rooted shared @&-OBDDs by introducing multiple roots into a sin-
gle &-OBDD, each root representing a subfunction of f = (fi,..., fm),
fi : B* — B.) The two terminal nodes with no outgoing arcs are labelled
with the Boolean constants 0 and 1. The remaining nodes are either labelled

2

4Ava AN AN LS AV IA

with Boolean variables x; € X,,, denoted as branching nodes, or with the bi-
nary Boolean function & (EXOR), denoted as @-nodes. On each path, every
variable must occur at most once. In the following, let I(v) denote the label
of the node v €V and size(P) the number of nonterminal nodes of P.

ECV xV denotes the set of edges. The two edges starting in a branching
node v are labelled with 0 and 1. The 0(1)-successor of node v is denoted
by v0(v1l). There is a permutation o on the variable indices which defines an
order To(1) <Ty2) <...<ZTy(n) on the set of input variables. If w is a successor
of v in P with [(v),l(w) € X,,, then [(v) <I(w) according to o.

The function fp associated with the @-OBDD P is determined in the
following way: For a given input assignment a = (aq,...,a,) € {0,1}", the
Boolean values assigned to the leaves extend to Boolean values associated
with all nodes of P as follows:

* Let v0 and v1 be the successors of v, carrying the Boolean values ¢y, d; €
{0, 1}.

 If v is a branching node labelled with x; € X,,, then v is associated with d,, .

o If v is a ®-node, then v is associated with @(dg, d1)=(dp+3d1) mod 2.

fp(a) takes the value associated with the source of P. Thus, the value of
a Boolean function fp represented by the ®&-OBDD P can be computed in
time O(size(P)). Furthermore, we can also consider the use of complemented
edges as introduced in [9] to achieve an even more compact representation.

~
~

8
—
5]
)

3

gal
R
8.8

Figure 1. &-OBDD P and OBDD O with complemented edges, both computing fp

= = = = O O O O
= o= O O = = O O

0
1
0
1
0
1
0
1

S = = O = = O O

For an illustration of the concept of &-OBDDs see Figure 1. Let fp:{0,1}*—
{0,1} be defined by the given truth table. Moreover, let m be the natural
order on the set of variables, i.e., (i) =4. For branching nodes, the dashed
line always represents the edge labelled with 0. A dot on an edge denotes that
the function represented by the successing @-OBDD is complemented. Note
that if we are working with complemented edges one of the two leaf nodes can
be omitted.

Since OBDDs are special cases of &-OBDDs (namely &-OBDDs without
@-nodes), for each variable order every Boolean function can be represented
by means of a @-OBDD. Therefore, we may conclude that the size of an

3

4Ava AN AN LS AV IA

optimal @&-OBDD for a given Boolean function f is not greater than the
size of an optimal OBDD for f. Moreover, we can show that there exist
Boolean functions with small (low polynomial degree) &-OBDD representation
whose OBDDs are of exponential size. One example is the hidden weighted bit
function HWB, which is defined as follows: If wt(z) is the number of ones in
the input assignment of x=(xz,...,z,) (the weight) and if, for simplicity, xg
denotes 0, then HWB is defined by HWB(2) =% y(s). In [4] it has been shown
that each OBDD representation of the HWB must be of exponential size, but
its @-OBDD representation is only of cubic size [6]:

The equality HWB(z) =@, _, (zx A Eg (X)) where Ej(z) equals one if the
input assignment of = contains exactly k£ ones can be verified easily. Since,
for each variable order, x; A Ej(x) can be represented by an OBDD of at
most quadratic size, the above equality can be immediately transformed into
a cubic size &-OBDD for HWB.

For Boolean function manipulation we are in need of an efficient algorithm
performing the application of a binary Boolean operator on two @-OBDDs.
As shown in [5] the result of the application of a generic boolean operator
® on two B-OBDDs R and @ of the variable ordering 7 can be constructed
in time O(size(R)-size(Q)). Even better, if ® € {®,=}, then the resulting
@-OBDD can be constructed in constant time.

But, &-OBDDs do not provide a canonical representation of Boolean func-
tions.

3 Probabilistic Equivalence Test for &-OBDDs

Similarly to @-OBDDs, we can consider (2-OBDDs for a basis {2 of binary
Boolean functions by allowing all so-called functional nodes labelled with an
element of 2 [10]. By introducing functional nodes into the OBDD repre-
sentation, we lose canonicity. Hence, it becomes an essential task to decide
whether two representations denote the same function. The equivalence test
for all Q-OBDDs, Qe {{V},{A},{V,A}} is co-NP-complete. The situation is
different for Q={@®}, where the determination of equivalence is within co-R
(see [5]).

Recently, a deterministic equivalence test for a @-OBDD-like data struc-
ture was introduced [12] that can be adapted to our model. This equivalence
test is based on a minimisation algorithm that requires the solution of a sys-
tem of linear equations. Doing this by Gaussian elimination, the runtime is
cubic in the number of nodes and therefore to time expensive for practical
applications.

The probabilistic equivalence test for &-OBDDs proposed in [5] needs only
linearly many arithmetic operations in the number of variables. It is based
on a probabilistic equivalence test for read-once branching programs (BP1),
originally introduced in [1]. Equivalence of two @-OBDDs is determined by
an algebraic transformation of the &-OBDDs in terms of polynomials over a

4

4Ava AN AN LS AV IA

finite field. More precisely, we assign the polynomial p, = x to a variable x
and for each Boolean function F' represented by a @-OBDD, we transform the
Boolean Functions —F" and F} A F; into the arithmetic expressions 1—pgr and
DrF, * Pr,, Where pp represents the polynomial assigned to F. By exploiting
the law of DeMorgan and idempotence we derive pp,vr, = P, +Dr, —Dr PRy
and pg,gr, = Pr, +Dr, — 2pr,Pr, for the binary Boolean operations OR and
EXOR. For a more detailed description of the application of this algebraisation
technique see [8].

Let GF(2™),meN, m> (logn)+1, denote a Galois field with 2™ elements
of characteristic 2. Note that using GF'(2™) simplifies the polynomial for the
EXOR operation. If we consider the elements of GF'(2™) as bit vectors of
length m, addition can be performed by bitwise EXOR. Multiplication has to
be carried out according to the rules of the polynomial ring over GF'(2™).
With each node v of a @-OBDD P we associate the following polynomial
po: (GF(2™))" — GF(2™) :

0 (1) v is 0(1)-sink
Po(Z1y s T0) =4 wopr (21, ..., 2n) + (=) pyol1, ..., 2,) l(v)=0€X,

va(ajla"'axn)+pv1(x17"'7xn) l(v):69

The polynomial associated with the @-OBDD P is the polynomial associated
with the root vy of P. Note that the polynomial remains unchanged for
different representations P of the same Boolean function.

Let P and @ be two &-OBDDs and let aq, ..., a, € GF(2™) be generated
independently and uniformly random. The equivalence of two polynomials in
symbolic representation can be tested by a random algorithm in the following
way [5]:

pplay, ... a,) =polar,...,a,) if fp = fo and
Prob(pp(ay,-..,a,) =pgla,...,a,)) < % if fp # fo-

Thus, if P and @) compute the same function, the algorithm always answers
“yes” otherwise it answers “yes” with a probability smaller than 1/2. The bit
string representing the polynomial associated with the function fp computed
by the &-OBDD P is called Boolean signature. The error probability depends
on the number of elements in GF(2™). Therefore, we are able to reduce the
error by enlarging m or by using multiple signatures per node with different
random instances of ay,...,a, € GF(2™). In [1,2] an estimation of the prob-
ability of degeneracy in BDD synthesis based on signatures is given, i.e., the
probability that during the synthesis of a &-OBDD P the signatures for two
nodes representing different Boolean functions are computed to be equal. By

5

4Ava AN AN LS AV IA

using s different signatures per node the error probability computes to at most

size(P)? - n®

error < 2|GF|5

where size(P) denotes the number of nodes of the -OBDD P, n the number
of variables, and |GF| the number of elements in the finite field. For our
experiments in section 5 we are working with up to 3 different signatures of
32 bit length per node. Thus, we were sufficient to perform all computations
without error. If we have, for example, a @-OBDD with 107 Nodes depending
on 100 Variables and if we are working with 3 different signatures each of 32
bit length, we have to face an error probability of less than 6.31 - 107,

4 Reduction and Synthesis of ®-OBDDs

In general, reduction rules for OBDDs are also suitable for &-OBDDs, but,
as a major difference, their application does only lead to a smaller &-OBDD-
representation and not to a canonical one. We distinguish two types of reduc-
tions, the deletion rule, also referred to as simple reduction, and the merging
rule, also known as algebraic reduction.

In a -OBDD, a node v is redundant if both of its edges point to the
same successor. Then we can apply the deletion rule: In a case of a branching
node, this node can be replaced by reconnecting all its incoming edges to its
successor; a @-node with two equal successors has to be replaced by the 0-sink.

The merging rule performs to identification of isomorphic subgraphs and
applies for branching nodes in the same way as for @-nodes (see Figure 2).

4

¥ g b K- X

© o]
Figure 2. Deletion rule and merging rule for &-OBDDs.

R IR BN Y I

—= ,’:‘
o] ©® © ©) OO, OO
Figure 3. ®-0OBDD reduction rules for terminal nodes and complemented edges.

Additionally, we also have to consider the case that one successor of a @G-node
is a terminal node. If the 0-sink is a successor of a @-node, then the ®-node is
replaced by its second successor. On the other hand, if the 1-sink is a successor
of a @-node, then the @-node is replaced by complementing all its incoming
edges and connecting them to its second successor. Note that rules concerning

6

4Ava AN AN LS AV IA

complemented edges must also be taken into account. Hence, the deletion rule
replaces each @-node v having successors which are the complement of each
other (v, = T;) by the I-sink. The merging rule reduces @-nodes v and w
having isomorphic subgraphs of different complementation parity ({v;,v,} =
{wy, w;} or {vy, v, } ={w;, w,}) to a single node v by using equivalence relations
for complemented edges (see Figure 3). Using complemented edges, we can
ensure a more efficient usage of the caches required for synthesis operations if
we restrict edge complementation to the 0-successor, respectively to the left
successor in case of a @-node, of the node under consideration. To achieve
this, we can choose one of the equivalences shown in Figure 4.

Figure 4. Equivalences for @-nodes and complemented edges.

Furthermore, we have to take under consideration reduction possibilities con-
cerning groups of @-nodes. If, e.g. we have a complete subtree of @-nodes
within an @-OBDD, each leaf has to be compared with every other leaf of that
subtree. If two leafs are representing the same function, they can be replaced
by a 0-sink which may also affect the node in the level above. Two leafs rep-
resenting the complement of each others function can be replaced by a 1-sink.
Also we have to consider chains of @-nodes where we have to compare all of
its leaf nodes to apply all possible reductions in the way described above.
Next, we are going to describe a synthesis algorithm for @-OBDDs. We
will assume that the reader is familiar with standard OBDD synthesis al-
gorithms. The conventional apply algorithm for &-OBDDs proposed in [6]
shows that applying a binary Boolean operation to two &-OBDDs requires at
most quadratic time. But in convenient OBDD implementations, all Boolean
operations are implemented by means of the ite operator [3] which is defined
as a ternary Boolean function for the inputs F, G, H by “If F then G else H”
or ite(F,G,H)=F -G + F - H and can be evaluated by recursive application
of the Boole-/Shannon function decomposition:

[=aflsz1 +Tf|s=0.

We decided to adapt the ite-algorithm for &-OBDDs: In combinational syn-
thesis, the description of a digital circuit is read and each gate of the circuit
will be simulated by a &-OBDD. Thus, for all gates except for those which
perform an EXOR(EQU)-operation we apply the regular ite-algorithm. Gates
implementing an EXOR/(EQU)-operation are simply simulated by é-nodes
connected to the @-OBDDs representing the gate’s inputs.

The second step of adaption involves the creation of &-OBDDs for cofactors
flz;=d, d€{0, 1} of a Boolean function f (a cofactor f|,—4 of a Boolean function

7

4Ava AN AN LS AV IA

f is the function that results if variable z is set to a fixed binary value d):
Regular cofactors f|,,, i.e., cofactors of a function associated with a branching
node v labelled by the variable z;, {(v) =;, are derived by simply returning the
0-successor, respectively the 1-successor, of node v. Creating the cofactors of a
function associated with a @-node v according to a variable x; may necessitate
the allocation of a new @-node connected to the cofactors of the left and right
successor of v. In the worst case we have to create new @-nodes for every &-
node on a path between v and the branching node vg labelled by the variable
z; (see Figure 5).
[f\

Figure 5. Cofactor creation f|;,—1 in @-OBDD P with l(sourcep)=@®.

To speed up the performance of the ite operation, we are using a computed
table, which is organised as a hash based cache, to store and reuse the results of
ite. Before a new node is created, we always look up a unique table organised
as a hash table to prevent the creation of already allocated nodes. In both,
computed table and unique table, every reference is made by application of the
probabilistic equivalence test to identify the underlying &-OBDDs. To avoid
redundant entries in the computed table, we transform the triple (F, G, H) to a
standard form by reordering it and checking the constraints for complemented
edges.

However, with the modified ite algorithm the &-OBDD that we create for
a circuit description which contains neither EXOR gates nor EQU gates is
isomorphic to an OBDD created by conventional ite-algorithm.

4Ava AN AN LS AV IA

5 Introduction of ®-nodes into the BDD data structure

In the case that the circuit under consideration contains no EXOR(EQU)
gate, we have to introduce @-nodes to take advantage of the potential of the
@-OBDDs. We have investigated two different approaches:

(i) Using alternative function decompositions that include @-node genera-
tion or,

(ii) substituting linearly dependent functions by linear combinations of &-
nodes.

The conventional ite-algorithm is based on the Boole/Shannon function de-
composition. As an alternative, we may use the positive (pDE) or negative
Davio (nDE) expansion:

pDE: f = flazo ® 2(f|o=1 @ f|s=0)
nDE: f = flo=1 @ Z(flo=1 @ flz=0)-

By applying a binary Boolean operator ® to two Boolean functions f, g ac-
cording to the positive Davio expansion, we introduce two new @-nodes for
each recursive apply step:

F®g=(fla=0o® gla=0) ® 2((f|2=1 ® gla=1) ® (f|2=0 ® g|a=0))-

But, the ongoing creation of @-nodes may increase the total number of nodes
beyond the size of conventional OBDDs for the same function. This is the case,
if none of the reduction rules can be applied. We can try to avoid this effect
by using the alternative function decompositions pDE and nDE not always
but only sometimes. But the problem remains that the created @&-nodes may
not be positioned at an appropriate place in the @-OBDD and therefore, will
be of no benefit.

Maybe @-nodes can be introduced in a more sophisticated way: It is conve-
nient to regard the space B, of Boolean functions of n variables as an algebra
over the two-element field Z,, i.e. a 2"-dimensional vector space with an addi-
tional multiplication operation. The product of f, g €B, which corresponds to
coordinate wise conjunction is denoted by f¢ and the sum, which corresponds
to coordinate wise EXOR, by f+g¢. In this context, the variable z; is taken
to represent the projection from {0,1}" to the ith coordinate and T; as the
according complement.

Now let P be a &-OBDD representing fp. The Boolean function fp can be
regarded as the Boolean function assigned to the top node v of the &-OBDD
P and is defined by induction on i=n+1,n,...,0, where 7 denotes the level
to which v belongs:

(i) i=n+1: vis leaf, f,=1.

4Ava AN AN LS AV IA

(i) v is node at level i, 1<i<m: let f! be the function computed its 1-successor
and f)) the function computed its O-successor, then f, =z, fy + T fo -

If the function under consideration may be expressed as a linear combina-
tion of already computed functions, f =), f;, we are able to represent this
function as a tree of @-nodes connected to the &-OBDDs representing the
functions f;.

Unfortunately it is very expensive to include a test into the implementa-
tion that proves, whether an already computed @&-OBDD is part of a linear
combination of the already computed functions.

6 Experimental Results

For our experiments we used an Intel PPro200 Linux workstation, limiting
memory-size to at most 200MB. A symbolic simulation procedure based on our
@-OBDD-package was used together with a subset of the smaller LGSynth91
Benchmark circuits.

Because @-OBDD-based symbolic simulation of circuits is probabilistic,
we had to check our results for correctness. This was done by translating the
constructed &-OBDD into a multiplexer circuit containing EXOR gates coded
in BLIF (Berkeley Logic Interchange Format). Then the translated &-OBDD
was verified against the BLIF version of the circuit’s specification file from the
LGSynth91 Benchmarks. This verification procedure was performed by the
standard synthesis and verification tool VIS [7].

The size of OBDDs and &-OBDDs depends crucially on the chosen variable
order. Because our &-OBDD-package is already under construction and dy-
namic reordering is not yet implemented, we were working with a single static
variable order not regarding, whether it is well suited for OBDD or &-OBDD
representation. Hence, in our experiments we simply used the variable orders
given by the circuit descriptions.

In Table 1, the column circuit contains the name of the circuit netlist to be
simulated. As a reference, column two contains the final size for the OBDD
representing the circuit. The remaining columns contain the final sizes of the
resulting &-OBDDs computed by the ite-algorithm and by positive or negative
Davio expansion.

Altogether, we required up to 3 distinct signatures of 32 Bit length per
node, resulting in a maximum of additional 96 bit of memory per node over
the conventional OBDD node size to simulate all circuits correctly. Of course
the additional memory required for signatures lessens memory efficiency for
@®-OBDDs compared to OBDDs.

The ®-OBDD-sizes given for the application of the ite-algorithm differ only
from OBDD-sizes if EXOR(EQU) gates are included in the circuit description.
The exclusive application of nDE/pDE sometimes leads to very good results,
e.g. for s420.1, but, in many cases too many é-nodes seem to be created

10

4Ava AN AN LS AV IA

circuit OBDD @®-OBDD-size

ite | nDE | pDE
c432 1733 1733 4745 6266
c499 45922 12800 | 13703 | 13698
c880 346660 346660 | 284187 | 399071
c1355 45922 45922 | 14197 | 14392
c1908 36007 36007 | 39126 | 17824
ch315 >200MB | >200MB | 66376 | 73749
cordic 157 45 87 87
count 234 234 043 294
example2 469 469 605 644
frg2 6471 6471 7606 5049
i2 335 335 861 317
k2 28336 28336 7736 6054
pcler8 139 139 122 223
s208.1 1033 1033 186 158
s420.1 262227 262227 732 568
$510 19076 19076 641 767
s1494 1016 1016 1486 1378
s820 2651 2651 563 822
s832 2651 2651 565 822
s635¢ 656 656 1746 728
s967 1732 1732 1084 1281
s967¢ 1723 1723 1084 1281
x3 2670 2670 2391 2503
xi30 121 150 240 240

Table 1

Comparison of OBDD-size and @-0OBDD-size for different function expansions

11

4Ava AN AN LS AV IA

in the wrong places so that @-OBDD-size is greater than OBDD-size. But,
also in many cases @-OBDD-size is smaller than OBDD-size and therefore, we
think that &-OBDDs are a promising approach for combinatorial verification
in a probabilistic way. For example, the OBDD for circuit C5315 could not
be created because of memory limitations, but the &-OBDDs depending on
pDE/nDE succeeded.

In Table 2 and Table 3, we have tried to limit the use of pDE/nDE-
expansion during the simulation process. In the first column the circuit
name is given. The second column denotes the OBDD-size for compari-
son. Columns 4 to 7 show ©-OBDD-sizes in relation to the application of
pDE/nDE-expansion. The header 50% denotes that pDE/nDE-expansion was
applied in 50% of all apply-steps while the ite-algorithm was used in the re-
maining apply-steps during a single run. Note that the given percentage is
closely related to the number of &-nodes in the &-OBDD. For each circuit
under consideration we performed 10 simulation runs with the given percent-
age of pDE/nDE usage. During a single run the consideration whether to
use pDE/nDE or ite as an apply-step was chosen at random with the given
percentage.

Thus, we tried to show the influence of the number of @-nodes in a
@-OBDD on its size comparing the values in a given row. On the other hand,
the experiment also shows the influence of the positioning of @-nodes in the
@-OBDD on its size, if we compare the column for a given circuit under a
fixed percentage. For each circuit in row 1, we placed the minimum number of
achieved nodes, row 2 contains the average number of nodes out of 10 random
runs, and row 3 contains the maximum number of nodes.

The difference of the maximum and the minimum size shows the impact
of the placement of ®-nodes on the &-OBDD-size.

s1196, C1908, and C432 seem to be circuits that do not profit very much
from the use of @-nodes at all. Therefore, the less @®-nodes are used, the
smaller is the average size of the @-OBDDs.

For the other circuits the situation is different. The more @-nodes are
used, the less becomes the overall size.

In many cases we achieve smaller &-OBDDs by limiting the application
of nDE/pDE expansion compared to the exclusive application of nDE/pDE.
It seems that if a circuit profits from the usage of ®-nodes, a more frequent
application of nDE/pDE expansion leads to smaller results. This may be
explained by the fact that if we use more @-nodes in a &-OBDD, we will
achieve a higher probability to apply reduction rules.

In all tables we have only listed the sizes of our obtained results and not
the runtime, because we are not able to compare our experimental &-OBDD
package to sophisticated OBDD packages, which are highly optimized for run-
time.

The difference of minimum and maximum @-OBDD-size in Table 2 and
Table 3 confirmes us that we should concentrate our work on a more sophisti-

12

4Ava AN AN LS AV IA

circuit | OBDD @-0OBDD-size
50% 20% 10% 5%
C1355 45922 | min | 13868 | 39766 | 43581 | 43036
avg | 24700 | 44877 | 46497 | 46714
max | 36783 | 49877 | 48780 | 49418
C1908 36007 | min | 41876 | 36485 | 36080 | 35600
avg | 45294 | 40664 | 40664 | 37678
max | 50455 | 46929 | 46270 | 43779
C432 1733 | min 2811 1861 1748 1737
avg 3156 2234 2111 1821
max 3540 2791 2641 2091
€499 45922 | min | 12890 7113 7095 7244
avg | 13273 7607 8405 | 10110
max | 13688 8302 | 11581 | 13461
s208.1 1033 | min 118 146 613 642
avg 602 796 996 995
max 1054 1057 1041 1038
s420.1 262227 | min 433 | 131040 | 131483 | 254720
avg | 79133 | 235379 | 223144 | 234514
max | 131593 | 262279 | 262236 | 262252
s510 19076 | min 596 634 603 588
avg 8050 | 17264 | 17246 | 17227
max | 19237 | 19098 | 19175 | 19098

Table 2

Influence of placement and number of of ®-nodes on &-OBDD-size (1)

cated @-node placement. This could be done by exploiting linear combinations
as proposed in section 5, but up to now we were not able to achieve a sufficient
implementation with a reasonable runtime.

The chosen variable orders may not be well suited for both OBDDs and
@®-OBDDs. Hence, for a better comparison of OBDD and ¢&-OBDD perfor-
mance we are currently implementing dynamic variable reordering techniques

13

4Ava AN AN LS AV IA

circuit | OBDD @®-OBDD-size

50% | 20% | 10% | 5%
s820 2651 | min | 1417 | 1253 | 2571 | 1746
avg | 1920 | 2283 | 2725 | 2605
max | 1689 | 1842 | 1868 | 1804
max | 2332 | 2898 | 2979 | 2820
s832 2651 | min | 723 | 1290 | 1253 | 2280
avg | 1594 | 2469 | 2450 | 2646
max | 2883 | 2924 | 2720 | 2877
s1196 2294 | min | 2657 | 2279 | 2335 | 2252
avg | 2795 | 2543 | 2420 | 2373
max | 2830 | 2772 | 2528 | 2545
s967 1732 | min | 1483 | 1567 | 1533 | 1672
avg | 1637 | 1704 | 1731 | 1748
max | 1689 | 1842 | 1868 | 1804
s967c 1723 | min | 1483 | 1622 | 1546 | 1360
avg | 1592 | 1749 | 1753 | 1735
max | 1689 | 1806 | 1830 | 1803

Table 3
Influence of placement and number of of ®-nodes on &-OBDD-size (2)

for @-OBDDs.

All in all, &-OBDDs seem to be well suited for all tasks based on symbolic
circuit simulation, working on the base of a probabilistic equivalence test. The
achieved results motivate further research with emphasis on ®-node placement

and the adaption and implementation of dynamic reordering techniques for
@-OBDDs.

References

[1] M. Blum, A. K. Chandra, and M. N. Wegman. Equivalence of Free Boolean
Graphs Can be Decided Probabilistically in Polynomial Time. Information
Processing Letters, 10(2):80-82, 1980.

[2] K. S. Brace. Ordered Binary Decision Diagrams for Optimization in
14

4Ava AN AN LS AV IA

Symbolic Switch-Level Analysis of MOS Circuits. PhD thesis, Carnegie Mellon
University, Pittsburgh, Pennsylvania, 1992.

[3] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient Implementation of a
BDD Package. In 27th ACM/IEEE Design Automation Conference, pages 40—
45, 1990.

[4] R. E. Bryant. On the Complexity of VLSI Implementations and
Graph Representations of Boolean Functions with Application to Integer
Multiplication. IEEE Transactions on Computers, 40(2):205-213, 1991.

[5] J. Gergov and Ch. Meinel. Frontiers of Feasible and Probabilistic Feasible
Boolean Manipulation with Branching Programs. In Proc. of the 10th annual

Symposium on Theoretical Aspects of Computer Science, volume 665 of LNCS,
pages 576-585. Springer, 1993.

[6] J. Gergov and Ch. Meinel. Mod2-OBDDs: A Data Structure that Generalizes
EXOR-Sum-of-Products and Ordered Binary Decision Diagrams. In Formal
Methods in System Design, volume 8, pages 273-282. Kluwer Academic
Publishers, 1996.

[7] The VIS Group. VIS: A system for Verification and Synthesis. In Proc. of the
8th Int. Conference on Computer Aided Verification, number 1102 in Lecture
Notes in Computer Science, pages 428-432. Springer, 1996.

[8] J. Jain, J. Bitner, D. S. Fussel, and J. Abraham. Probabilistic Verification
of Boolean Functions. In Formal Methods in System Design, volume 1, pages
63-117, 1992.

[9] J.-C. Madre and J.-P. Billon. Proving Circuit Correctness Using Formal
Comparison Between Expected and Extracted Behaviour. In Proc. of the 25th
ACM/IEEE Design Automation Conference, pages 308-313, 1988.

[10] Ch. Meinel. Modified Branching Programs and Their Computational Power,
volume 370 of LNCS. Springer Verlag, Heidelberg, 1989.

[11] Ch. Meinel and T. Theobald. Algorithms and Data Structures in VLSI Design.
Springer, 1998.

[12] S. Waack. On the Descriptive and Algorithmic Power of Parity Ordered Binary
Decision Diagrams. In Proc. of the 14th Symposium on Theoretical Aspects of
Computer Science, volume 1200 of LNCS. Springer, 1997.

15

