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ABSTRACT 
Incorrect or outdated data is a common problem when working with Linked Data in real world 
applications. Linked Data is distributed over the web and under control of various dataset pub-
lishers. It is difficult for data publishers to ensure the quality and timeliness of the data all by 
themselves, though they might receive individual complaints by data users, who identified incor-
rect or missing data. Indeed, we see Linked Data consumers equally responsible for the quality 
of the datasets they use. PatchR provides a vocabulary to report incorrect data and to propose 
changes to correct them. Based on the PatchR ontology a framework is suggested that allows us-
ers to efficiently report and data publishers to handle change requests for their datasets.  
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INTRODUCTION 
With the continuous growth of Linked Data 
on the World Wide Web and the increase of 
web applications that consume Linked Data, 
the quality of Linked Data resources has be-
come a relevant issue. Recent initiatives, as 
the Pedantic Web group

1
 and DBpedia Data 

Quality Evaluation Campaign
2
 uncovered 

various defects and flaws in Linked Data 
resources. Apart from structural defects, se-
mantic flaws and factual mistakes are hard 
to detect by automatic procedures and re-
quire updates on the schema level as well as 
on the data level. 

It is in fact a problem that erroneous data 
is distributed and reused in various semantic 
web applications, but it also opens up oppor-
tunities for joint efforts such as crowd-

                                                                                                                        
1 https://groups.google.com/group/pedantic-
web 
2 http://nl.dbpedia.org:8080/TripleCheckMat
e/ 

sourcing to improve data quality. Indeed, we 
see Linked Data consumers equally respon-
sible for the quality of the datasets they use 
within their applications. For example, a 
semantic web application might offer the 
possibility of user feedback to signalize 
facts, which need to be revised. Then, de-
tected errors could be shared with the origi-
nal data publisher and other users of the 
dataset. Both would be able to correct the 
identified defects. While the need of error 
correction and data cleansing has reached 
the interest of the Linked Data community 
there exists no generally accepted method to 
expose, advertise, and retrieve suitable up-
dates for Linked Data resources. In order to 
reuse curation efforts and to realize the vi-
sion of a collaborative method for error de-
tection and effective exchange of corre-
sponding corrections the following require-
ments have to be considered: 
1. The description of defects and their cor-

responding fixes for Linked Data re-



  

  

sources should be facilitated combined 
with various criteria, e. g. the scope of a 
fix, provenance information, and the 
type of defect to select fixes efficiently. 

2. The realization of an appropriate 
workflow that covers guidelines to pub-
lish detected errors has to notify the 
original publishers as well as other users 
of a particular dataset. To encourage ac-
ceptance the application of updates has 
to be as convenient as possible. 

3. Quality improvements for Linked Data 
resources should also be published as 
Linked Data to ease their exchange and 
to make them available for rating, dis-
cussions, and reuse. 

In this paper we propose an approach that 
allows users to report Linked Data change 
requests (patches) within datasets and re-
spective data publishers to effectively proc-
ess such reports in order to pick up im-
provement suggestions from the community. 
The approach consists of the PatchR ontol-
ogy, a framework implementation, and an 
appropriate workflow. 

The arguments for the presented frame-
work start with an overview of related work 
in the area of Linked Data curation. Next, 
the overall workflow of requesting Linked 
Data changes is explained. It allows to ex-
pose, rate, and select updates for particular 
Linked Data resources with a specialized 
ontology that is described in detail thereaf-
ter. Then, the internals of the framework and 
general usage guidelines are discussed in 
more detail. The feasibility and technical 
opportunities of this approach are illustrated 
exemplary for large knowledge bases, such 
as DBpedia, where flaws have been detected 
with the help of human users, in particular 
with a collaborative data cleansing game 
(WhoKnows?) and a fact ranking tool 
(FRanCo), as well as heuristic data cleans-
ing tools (namely RDFUnit and SDType), 
for single file Linked Data publications, and 
for ontology evolution scenarios. The cre-

ated patches are exposed and shared using 
the herein described ontology. Finally, the 
conclusion of the paper and an outlook on 
future work is given. 
 
RELATED WORK 
In order to raise quality in Linked Data pub-
lished on the web multiple efforts aim to as-
sure data consistency. On the one hand tools 
have been developed to identify erroneous 
data mainly on syntactic level and on the 
other hand an increasing number of efforts 
concentrate on the correction of broken or 
incomplete data. In this section, first related 
work on Linked Data validation and error 
detection is discussed, followed by a discus-
sion of recent efforts on Linked Data correc-
tion and enhancement. 
 
Validation 
Various work has already focused on check-
ing syntactical and logical data consistency 
by providing validators for the Semantic 
Web languages RDF and OWL, e. g. W3C’s 
RDF Validator

3
, Vapour

4
, and OWL Valida-

tor
5
. Poor data quality in Linked Data has 

been identified, as for instance Hogan et al. 
analyzed typical errors and set up the 
RDF:Alerts Service

6
 that detects syntax and 

datatype errors to assist Linked Data pub-
lishers (Hogan, Harth, Passant, Decker, & 
Polleres, 2010). Similarly, LODStats

7
 identi-

fies errors within datasets registered at the 
CKAN dataset metadata registry (Auer, 
Demter, Martin, & Lehmann, 2012). How-
ever, validators are restricted to syntactical 
consistency and thus are not able to fulfill 
the following requirements: 
1. Recognize the inconsistent usage of do-

main or range restricted properties with 
                                                                                                                        
3 http://www.w3.org/RDF/Validator/ 
4 http://validator.linkeddata.org/vapour 
5 http://owl.cs.manchester.ac.uk/validator/ 
6 http://swse.deri.org/RDFAlerts/ 
7 http://stats.lod2.eu/rdfdoc/?errors=1 



  

  

entities that are not members of the des-
ignated class restrictions. Let’s consider 
the following RDF triple:   
dbp:IKEA dbo:keyPerson 
   dbp:Chairman. 
The RDF triple is syntactically correct, 
while the range restriction of the prop-
erty dbo:keyPerson implies the en-
tity dbp:Chairman to be type of the 
class dbo:Person. But, according to 
DBpedia, dbp:Chairman actually is 
an untyped entity. Moreover, it is rather 
a business role and from a user’s point of 
view this might be incorrect because an 
actual person entity is expected to be a 
key person of a company. 

2. Recognize false facts that do not corre-
spond to the (objective) reality, e. g. the 
given birthdate of a person can be syn-
tactically correct, when considered as an 
RDF triple, though it may be factually 
wrong. 

3. Identify missing data. Missing informa-
tion that is generally included in the 
dataset for applicable resources can lead 
to wrong conclusions, as it might as well 
be omitted for a reason. E. g. the absence 
of a person’s spouse could lead to the as-
sumption the person is unmarried. 

Although the existing validators are use-
ful to verify syntactical consistency and cor-
rectness, they cannot detect semantic or fac-
tual mistakes that are probably evident to a 
human user. Therefore, an efficient integra-
tion of (human) intelligence, i. e. crowd-
sourcing, is required to detect these kinds of 
errors. We address this important issue by 
enabling interoperable exchange of feedback 
on Linked Data facts. So far, this concept is 
only sparsely present in the Linked Data 
community. 
 
Dataset Correction and Enhancement 
The DBpedia Data Quality initiative (Zaveri 
et al., 2013) has evaluated the major Linked 
Data hub with a semiautomatic process and 

reports an overall error rate of 11.93%. The 
process also aims to raise data quality by 
gradually improving the DBpedia extraction 
framework and the applied mappings ac-
cording to the identified data quality prob-
lems. The evaluation has been performed on 
a relatively small sample of 500 entities and 
exclusively targets the DBpedia and its ex-
traction framework, while the approach pre-
sented in this paper is applicable to any 
Linked Dataset. 

Several approaches apply statistical 
methods to identify shortcomings in Linked 
Data, such as SDType (Paulheim & Bizer, 
2013), which is a heuristic method based on 
the link usage among resources that deter-
mines and complements missing type infor-
mation about entities in DBpedia. It resulted 
in 1,682,704 new type statements with an 
achieved overall precision of 99 %. The ap-
plication of sufficiently expressive ontolo-
gies connected to the Linked Data resources 
allows detecting inconsistent statements also 
by logical inference. Based on an ontology 
enriched with assertions deduced from sta-
tistical evaluation of DBpedia entities (Töp-
per, Knuth, & Sack, 2012) have been able to 
identify inconsistent facts in DBpedia. 

Within the LOD2 project (Auer, Leh-
mann, Ngonga Ngomo, & Zaveri, 2013) tool 
support for Evolution and Repair of Linked 
Open Data has been developed: LODRefine 
(Verlič, 2012) provides Linked Data exten-
sions and services for OpenRefine

8
, a 

standalone open source desktop application 
for cleanup and transformation of tabular 
data to other formats. LODRefine enables to 
triplify, reconcile, and clean tabular data, as 
well as to export it to RDF. Though the tool 
is primarily designed for the pre-publishing 
process, it can also support cleansing Linked 
Datasets manually. 

Harnessing human intelligence for creat-
ing semantic content has been studied by 
                                                                                                                        
8 https://github.com/OpenRefine/ 



  

  

Siorpaes and Simperl, who provide a collec-
tion of games with a purpose that contribute 
to the tasks of ontology design, video clip 
annotation, or ontology matching (Siorpaes 
& Hepp, 2008; Siorpaes & Simperl, 2010). 
However, these games generally concentrate 
on content enrichment rather than on content 
curation. Another game with a purpose is 
WhoKnows?, a quiz game in the style of 
‘Who Wants to Be a Millionaire?’ published 
previously by our research group. It is espe-
cially designed also to detect errors and 
shortcomings in DBpedia resources (Waite-
lonis et al., 2011). Likewise, RISQ! is a 
‘Jeopardy!’-like game that focuses on the 
evaluation and ranking of Linked Data prop-
erties about famous people. Both games are 
already well accepted but lack a standard-
ized method to publish the obtained curation 
efforts. 

In general, all these achievements are 
welcome to data providers, more so as data 
providers might receive regular complaints 
from the user community because of data 
quality issues. But since it is very costly to 
validate and integrate such change requests 
they are often disregarded and get lost. That 
also points out the open issue of remote up-
dates in Linked Data management. The 
W3C’s Read Write Web Community

9
 and 

Linked Data Platform
10

 groups work on 
specifications, infrastructure, and applica-
tions for trusted read and write operations. 
Since it is questionable to what extent pub-
lishers will allow direct write access to their 
data, with our proposed approach the full 
control over updates remains with the pub-
lisher bolstered by the proposals and sugges-
tions of the data consumers. 

On the other hand big data providers for 
Linked Data, as the European digital library 
Europeana, already might collect user feed-
back but handle curation results only inter-
                                                                                                                        
9 http://www.w3.org/community/rww/ 
10 http://www.w3.org/2012/ldp/ 

nally (Haslhofer & Isaac, 2011). In the con-
text of Semantic Search Google presents 
facts about entities from the Knowledge 
Graph next to search results. These facts are 
not always correct or up-to-date

11
. Users 

may report such wrong data by using a feed-
back button, but are not able to correct it di-
rectly or propose a correction. 

In this paper a new approach is proposed 
to curate Linked Data in a collaborative 
way, e. g. flaws in Linked Data resource de-
scriptions that are hard to detect by auto-
matic procedures. With respect to data 
cleansing of DBpedia resources one could 
argue that curation efforts should be applied 
directly to the original sources, i. e. to the 
online encyclopedia Wikipedia

12
. Indeed, 

this is the most sustainable practice and data 
might be correct with the next extraction 
phase. But, automatic revision of manually 
curated Wikipedia content does not fit into 
the guidelines and rules of the Wikipedia 
community. Therefore, the herein proposed 
approach goes beyond re-extraction efforts, 
such as DBpedia Live (Stadler, Martin, 
Lehmann, & Hellmann, 2010) and can be 
applied to any Linked Data resource. 
 
WORKFLOW DESCRIPTION 
By design, data providers and consumers in 
the Web of Data are not always the same 
party. Linked Data explicitly promotes the 
use of external data resources within own 
applications. As a result, the datasets are not 
necessarily under control of the agents who 
actually employ the dataset, so that they 
could fix identified inconsistencies by their 
selves. An overall approach would be to pe-
tition the dataset provider to take care of a 
fix. Though, nowadays it is common prac-
tice to set up a private local data store or at 
least a data cache containing web data as a 

                                                                                                                        
11 http://tinyurl.com/outdatedgkg 
12 http://www.wikipedia.org/ 



  

  

local copy, may it be for reasons concerning 
performance or data control. 

Either way, there is currently no stan-
dardized methodology to inform data pro-
viders distributing a particular dataset about 
inconsistencies that have been detected 
within the data. To tackle this problem, we 
suggest the PatchR vocabulary (c. f. next 
section) that allows describing various kinds 
of patch requests including provenance in-
formation encoded in RDF. 

The proposed PatchR system including 
its components and their interaction is de-
picted in the workflow diagram in Fig. 1. 
Whenever a Client, whereby this may be 
equally a human or software agent, identi-
fies inconsistent facts (RDF triples) within 
the dataset, he can create a new patch re-
quest. The patch request describes the up-
date that has to be performed on the dataset 
to solve the identified issue. As illustrated 
with the example in Listing 1 an update con-

sists out of a set of RDF triples to add and/or 
a set of RDF triples to delete in the particu-
lar dataset. The patch request needs to be 
submitted to the PatchR Instance belonging 
to the dataset. To achieve this, either a 
PatchR side API can be applied to send the 
patch request directly, or the client publishes 
the patch request in an own repository and 
announces this publication via semantic 
pingback RPC service (Tramp, Frischmuth, 
Ermilov, & Auer, 2010). The decision on the 
execution of particular patch requests is left 
to the publisher’s Moderator instance based 
on individual rules. 

The framework also encourages giving 
access to collected patch requests to data 
consumers in order to let them vote for or 
against proposed updates. Furthermore, 
modifications in the dataset should be prop-
agated via an Update Feed that allows 
subscribers to update local copies of the 
dataset or to invalidate their caches. 

Change Monitor

Moderator

RDF Repository

Client

SubscriberUpdates Feed

consumes resource

creates patch and submits

on update

PatchR Instance
/ Collector (a) send patch via API

(b) publish patch locally and ping PatchR

Discover PatchR instance by

(a) HTTP header attribute X-PatchR

(b) resources patchrService property

Figure 1. Workflow diagram for patch submission and processing 
 



  

  

 
DESCRIPTION OF THE PATCH 
REQUEST ONTOLOGY 

The Patch Request Ontology (pat)
13

 
(Knuth, Hercher, & Sack, 2012), subse-
quently referred to as PatchR, allows ex-
pressing change requests within a Linked 
Data dataset that is under control of an ex-
ternal publisher. Since PatchR wraps the 
guo:UpdateInstruction concept 
adopted from the Graph Update Ontology 
(guo)

14
, change requests are always entity-

centric, i. e. within a patch request 
pat:Patch a foaf:Agent may demand 

                                                                                                                        
13 cf. http://purl.org/hpi/patchr 
14 cf. http://webr3.org/owl/guo 

the insertion, deletion, or substitution of (a 
sub-graph of) RDF triples related to a single 
entity. The main constituent of the PatchR 
ontology is a patch request (pat:Patch). 
Each patch is endorsed by provenance in-
formation provided by the Provenance Vo-
cabulary Core Ontology (prov)

15
 and a 

void:Dataset it applies to. Furthermore, 
a patch can be classified using the 
pat:patchType property to allow effi-
cient retrieval of common patches. These 
patch types may refer to commonly ob-
served errors, e. g. encoding problems or 
factual errors. There might be patch tax-

                                                                                                                        
15 cf. http://trdf.sourceforge.net/provenance 

@prefix :     <http://example.org/> . 
@prefix rdf:  <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 
@prefix pat:  <http://purl.org/hpi/patchr#> . 
@prefix guo:  <http://webr3.org/owl/guo#> . 
@prefix prov: <http://purl.org/net/provenance/ns#> . 
@prefix xsd:  <http://www.w3.org/2001/XMLSchema#> . 
@prefix dbp:  <http://dbpedia.org/resource/> . 
@prefix dbo:  <http://dbpedia.org/ontology/> . 
 
:Patch_15 a pat:Patch ; 
   pat:appliesTo <http://dbpedia.org/void.ttl#DBpedia_3.5> ; 
   pat:status pat:Open ; 
   pat:update [ 
      a guo:UpdateInstruction ; 
      guo:target_graph <http://dbpedia.org/> ; 
      guo:target_subject dbp:Oregon ; 
      guo:delete [ 
         dbo:language dbp:De_jure ] ; 
      guo:insert [ 
         dbo:language dbp:English_language ] 
      ] ; 
   prov:wasGeneratedBy [ 
      a prov:Activity ; 
      pat:confidence "0.5"^^xsd:decimal ; 
      prov:wasAssociatedWith :WhoKnows ; 
      prov:actedOnBehalfOf :WhoKnows#Player_25 ; 
      prov:performedAt "..."^^xsd:dateTime ] . 

 

Listing 1. An example patch request 

  



  

  

onomies from different applications that de-
fine the reason for a patch on their own. 

Individual patches can be bundled into a 
pat:PatchGroup, e. g. patches of a par-
ticular service that apply to a common prob-
lem or have relevance only for specialized 
domains or regions. Fig. 2 provides an over-
view on the main concepts of the PatchR 
ontology, which are described in Table 1. 

Dedicated error detection algorithms of-
ten base on statistics and are to some extent 
uncertain. To express this level of certainty 
in a patch, the confidence can be stated as a 
numeric value in the range of [−1, 1], 
whereas higher values indicate a higher cer-
tainty and negative values attribute criticism 
towards this patch request. This confidence 
value is bound to the agent’s provenance 
information for the patch. In case multiple 
agents propose the same patch the total con-
fidence for the patch raises. By collecting 
the confidences of multiple agents a shared 
commitment can be reached, expressed as a 
numerical value that sums agreement and 
subtracts disagreement on a patch request. 
Therefore, confidence values of multiple 

agents (confp|a and confp|b) of the same patch 
p can be combined by an associative, com-
mutative operation. We proposed a uni-
formly continuous operation � in (0, 1], i. e. 
for combining positive confidences, and the 
inclusion of trust values towards individual 
agents in (Knuth & Sack, 2014): 
 

!!

confp|a ,b = confp|a⊕confp|b
=1−((1− confp|a)⋅(1− confp|b))
= confp|a + confp|b −(confp|a ⋅confp|b)

 

A central aspect considered by the ontol-
ogy is voting for or against patch requests. 
Therefore, votes of advocates and criticizers 
can be linked to an existing patch as addi-
tional prov:Activitys with appropriate 
confidence values: any positive confidence 
will raise the total confidence, any negative 
confidence will reduce the total patch confi-
dence. 
 
PATCHR FRAMEWORK 
The proposed framework comprises several 
components on consumer (client) and pub-

pat:Patchpat:Patch

pat:PatchGrouppat:PatchGroupguo:UpdateInstructionguo:UpdateInstruction

prov:Activityprov:Activity

void:Datasetvoid:Dataset

pat:PatchStatuspat:PatchStatus

rdfs:Literalrdfs:Literal

pat:memberOf
pat:update

pat:appliesTo

pat:statusprov:wasGeneratedBy

rdfs:comment

pat:PatchTypepat:PatchType

pat:patchType

pat:Open
pat:Obsolete
pat:Postponed
pat:Rejected
pat:Resolved

pat:Open
pat:Obsolete
pat:Postponed
pat:Rejected
pat:Resolved

ex:encodingError
ex:incorrectFact

ex:misuseOfStandards

ex:encodingError
ex:incorrectFact

ex:misuseOfStandards

xsd:doublexsd:double

pat:confidence

owl:Thingowl:Thing rdfs:Resourcerdfs:Resource

guo:target_subject
guo:insert

guo:delete

prov:Agentprov:Agent

prov:wasAssociatedWith

Figure 2. Overview on the patch request ontology 



  

  

lisher (server) side. In the following these 
components and their behavior is described 
in more detail. 
 
Client behavior 
A PatchR Client consumes Linked Data, i. e. 
resource descriptions, from a publisher’s 
repository directly or via a local copy or 
cache. Any Linked Data consuming applica-
tion that includes some sort of data valida-
tion or inconsistency detection may serve as 
a PatchR client. That could be for example a 
simple interface to display information from 
the data repository to a human user, which 
provides a reporting functionality, or also a 
dedicated data cleansing algorithm. Once an 
inconsistency is detected by the client, it cre-
ates a patch request to delete, add, or alter 
RDF triples that relate to a particular subject 
resource using the PatchR vocabulary as de-
scribed in the previous section. For the crea-
tion and management of patch requests a 
Java API

16
 is provided. 

                                                                                                                        
16 Available on GitHub: 
https://github.com/mgns/PatchR 

To announce the patch request the client 
needs to discover the URL of the PatchR 
instance responsible for the respective re-
source. To allow the client the auto-
discovery of the collector instance an HTTP 
response header attribute X-PatchR should 
be set when sending a resource description 
that holds the respective URL of the PatchR 
server. Alternatively and for a better integra-
tion with Linked Data principles, an OWL 
property pat:patchrService, can be 
used to link the PatchR server directly to the 
resource or dataset description as shown in 
Listing 2. The advantages of using the prop-
erty would be to cache this information lo-
cally and the possibility to assign individual 
PatchR server instances to Hash URIs as 
well, while the header attribute approach 
only requires an HTTP header request in-
stead of retrieving and parsing the full re-
source description. 

Since patch requests are RDF resources a 
method to transmit RDF data is required. To 
achieve this and to submit a patch request 
two options are considered suitable: Either, 
clients may call a dedicated API provided by 
the PatchR Instance to submit patches. 

Property Description 
update Refers to a guo:UpdateInstruction. There must be exactly one 

guo:UpdateInstruction per patch. 
memberOf Assignment of a patch to a pat:PatchGroup. 

appliesTo Refers to a void:Dataset to allow convenient selection of patches per 
dataset. 

patchType Refers to a classification of a patch. A patch can have multiple types. 

confidence A confidence assigned by the creator of the patch, e. g. in case heuristic 
methods identified an inconsistency. This confidence must be expressed 
in the range of [−1, 1], whereas a high value means higher confidence and 
a value of 1 signifies absolute certainty. Negative values indicate criticism 
towards this patch. 

status The status of the patch, might be one of pat:Open, pat:Resolved, 
pat:Obsolete, pat:Postponed, or pat:Rejected. 
 

  

Table 0. Description of properties in the patch request ontology 



  

  

Therefore, a Linked Data serialization and 
messaging format such as the JSON-LD 
standard

17
 can be applied. The API also will 

need an identification mechanism to ensure 
the authorship, e. g. by API key or WebID. 
Alternatively, the patch request can also be 
published at a client side web server. In this 
case the collector needs to be informed 
about the creation, which can be carried out 
through the semantic pingback mechanism 
(Tramp et al., 2010). Hereby, the client calls 
an RPC method on the Collector side having 
the URL of the patch as an argument. This 
enables the PatchR service to retrieve the 
patch from the client’s repository. 
 
Server behavior 
The Collector receives and validates patches 
from the clients, and stores them in a local 
repository that should allow open access to 
retrieve patches. 

For further processing of the collected 
data, the Moderator decides about the appli-
cation of submitted patches to the dataset 
individually. This module needs to employ 
guidelines custom-made for the dataset 
owner. Such guidelines might be represented 
by a simple majority vote, but might also 
consider the submitter’s reputation or given 
trust, e. g. obtained by previous submissions 
of high quality patch requests. A final deci-
sion about the application of a patch should 
be recorded using the pat:status prop-
erty (set from “Open” to “Obsolete”, “Re-
jected”, “Postponed”, or “Resolved”). 

To keep dataset consumers informed 
about updates to the original dataset a 
Change Monitor should report changes, e. g. 
as an RSS feed or by proactive notification. 
                                                                                                                        
17 http://www.w3.org/TR/json-ld/ 

The granularity and range of the reports 
could be arbitrary, e. g. including the whole 
dataset, individual resources, or sets of re-
sources. 
 
USE CASES FOR PATCHR 
In this section, the application of the PatchR 
ontology is demonstrated in several scenar-
ios that cover crowd-based and heuristic 
agents for the large DBpedia knowledge 
base, a submission mechanism for single 
resource Linked Data publications, and an 
ontology evolution scenario, which may fa-
cilitate user involvement in the development 
process. 
 
DBpedia 
DBpedia is an openly available, multi-
domain and multilingual RDF dataset ex-
tracted from Wikipedia content and a major 
source for structured knowledge on the Web 
(Auer et al., 2007). The latest release 
(DBpedia 2014) consists of over 880 million 
RDF triples

18
 describing 4.58 million enti-

ties. DBpedia is heavily interlinked with 
other datasets and plays a central role in the 
Linked Open Data cloud. It is therefore a 
suitable data source for integration in cross- 
domain Linked Data applications, such as 
document annotation, faceted search, loca-
tion-based information services, information 
extraction, and natural language processing 
services. Nevertheless, it became obvious 
that DBpedia lacks sufficient data quality for 
a range of applications (Zaveri et al., 2013). 

                                                                                                                        
18 Number of triples available via the DBpe-
dia SPARQL endpoint and published as 
Linked Data, more triples are available as 
RDF dump files. 

<http://magnus.13mm.de/> pat:patchrService 
      <http://patchr.s16a.org/> . 

Listing 2. Usage example of the patchrService property 

  



  

  

Patching the DBpedia knowledge base 
can be regarded as a special case, since this 
data is based on Wikipedia articles that are 
curated manually by the Wikipedia commu-
nity. Identified problems should sustainably 
be fixed in the respective Wikipedia article 
source page or the DBpedia Extraction 
Framework

19
 or Mappings Wiki

20
, so they 

won’t occur in future DBpedia releases. 
Since DBpedia is freshly extracted and re-
leased approximately once a year, change 
requests should apply for a particular ver-
sion. With every new release change re-
quests might become obsolete in case triples 
requested for deletion have vanished or tri-
ples requested for insertion have been intro-
duced to the new version. Because of that, 
one could argue that patch requests for prior 
DBpedia versions become useless and the 
patching process has to start from it’s begin-
ning, but since DBpedia resources are in 
general not substantially changing over ver-
sions and resource URIs are more or less 

                                                                                                                        
19 https://github.com/dbpedia/extraction-
framework 

stable, we see that patches need to be 
checked for obsolescence when migrating to 
a newer version but remain valid as the in-
consistent facts persist. Due to it’s sheer size 
it is unlikely to fix all errors in DBpedia by 
patches. Nevertheless, patches can give use-
ful hints to identify structural problems in 
the extraction process. 
 
Crowd-based Agents. As presented in 
(Knuth et al., 2012), the WhoKnows? game 
(Waitelonis et al., 2011) has been extended 
with support for the PatchR ontology

21
. The 

game’s principle is to present multiple-
choice questions to the user that have been 
directly generated out of facts from DBpedia 
RDF triples. The player scores points by 
providing correct answers within a limited 
amount of time and loses lives whenever he 
gives a wrong answer or no answer at all. 
Due to inconsistent or incorrect facts in the 
knowledge base, questions or expected an-
swers may appear defective to the player. In 
such a case the player can report the ques-
tion by clicking a “Dislike” button. Thereon, 
the player is asked to specify the particular 
fact, which he thinks to be incorrect by se-
lecting it from a given set of constructed po-
tential inconsistencies. For simplicity, the 
potential inconsistent RDF triples are pre-
sented to the user as natural language sen-
tences. Fig. 3 shows a screenshot of this re-
finement panel. Sentences of the form ‘Ob-
ject is not a property of subject.’ indicate a 
wrong fact in the dataset, while sentences of 
the form ‘Object is also a property of sub-
ject.’ indicate a missing fact. From this user 
vote the system generates a patch request for 
either 
• deleting one or several triples or 
• inserting one or several triples in the un-

derlying knowledge base. 
                                                                                                                                                                                  
20 http://mappings.dbpedia.org/ 
21 Play WhoKnows? at 
http://tinyurl.com/whoknowsgame 

Figure 3. Screenshot of WhoKnows?’ refinement 
panel 



  

  

 
WhoKnows? which is originally based on 
DBpedia 3.5.1 delivered 4,819 unique patch 
requests (5,605 including multiple reports of 
the same change request). These patch re-
quests have been made publicly available by 
a simple user interface

22
 including respec-

tive links to the DBpedia resource and the 
Wikipedia article where the involved facts 
originated. 

It can be assumed that due to these re-
ports users have resolved only a minority of 
the reported bugs in Wikipedia articles. 
Nevertheless, in the current version of 

                                                                                                                        
22 http://tinyurl.com/patchrui 

DBpedia (DBpedia 2014) only 2,657 patch-
es (55.1 %) remain open, while 2,162 patch-
es turned obsolete due to changes to Wik-
ipedia or the DBpedia extraction framework. 
Listings 3 and 4 show a number of open and 
obsolete change requests. This shows that 
the players of the WhoKnows? game 
proposed reasonable changes. 

FRanCo (Fact Ranking Evaluation)
23

 is a 
crowd-sourcing approach which collects 
rankings of RDF triples for a sample of 541 
individual DBpedia resources (DBpedia 
2014) aiming to create a ground-truth for 
fact ranking evaluation (Bobić, Waitelonis, 

                                                                                                                        
23 http://s16a.org/fr/ 

## Undeleted 
dbp:Aldiborontiphoskyphorniostikos dbo:country dbp:London . 
dbp:Arbors_Records dbo:distributingCompany dbp:United_States . 
dbp:Diedrich_Coffee dbo:keyPerson dbp:President . 
dbp:Jordanus_de_Nemore dbo:nationality dbp:Europe . 
dbp:Monster_Magnet dbo:hometown dbp:United_States . 
 
## Not Inserted 
dbp:George_F._Kennan dbo:birthPlace dbp:United_States . 
dbp:Oregon dbo:language dbp:English_language . 
dbp:Turkey dbo:governmentType dbp:Federalism . 
dbp:Volvo dbo:product dbp:Automobile . 
dbp:YouTube dbo:language dbp:English_language . 

 

Listing 3. Patch requests from DBpedia 3.5.1 lasting in 2014 (Open) 

  

## Removed 
dbp:Liz_Carroll dbo:hometown dbp:United_States . 
dbp:Quest_Software dbo:keyPerson dbp:President . 
dbp:Singapore dbo:language dbp:English_alphabet . 
dbp:United_States_Senate dbo:meetingCity dbp:United_States . 
dbp:William_Douglas_Crowder dbo:country dbp:United_States_Navy . 
 
## Inserted 
dbp:Combined_Arms_Research_Library dbo:country dbp:United_States . 
dbp:Life_Sentence_Records dbo:country dbp:United_States . 
dbp:Louisiana dbo:language dbp:English_language . 
dbp:Texas dbo:language dbp:English_language . 
dbp:United_Kingdom dbo:regionalLanguage dbp:Cornish_language . 

 

Listing 4. Removed/inserted triples in DBpedia 2014 as requested (Obsolete) 

  



  

  

& Sack, 2015). By doing that, it also offers 
the possibility to highlight facts as faulty or 
nonsense statements. Reported facts include 
dbp:Joma dbo:product dbp:Tennis, 
dbp:Barbera dbo:wineRegion 
      dbp:California_wine, and 
dbp:Peugeot_504 dbo:assembly 
      dbp:River_Thames. 

In order to improve the data quality of the 
DBpedia dataset, these triples should be de-
leted from the knowledge base. So far, we 
collected 2,494 corresponding change re-
quests from 203 unique users. 
 
Heuristic Linked Data Cleansing Ap-
proaches. So far, the quality of extracted 
triples in DBpedia is primarily improved by 
post-processing techniques. One of these 
approaches is SDType (Paulheim & Bizer, 
2013), which provides missing type infor-
mation for resources without a known given 
type to the DBpedia dataset. An entity’s 
class membership is deduced based on sta-
tistics about the usage of properties with en-
tities of known type. Due to the statistical 
character of this approach, the results are 
somewhat vague and in order to achieve a 
high precision lower ranked type mappings 
are not accepted for application to the da-
taset. As a result, the additional types still 
contain incorrect mappings while on the 
other hand valid mappings have been ex-
cluded due to their potential vagueness. We 
suggest to report lower ranked type map-
pings as patch requests. 

RDFUnit (a.k.a. “Databugger”) (Konto-
kostas et al., 2014) allows to unit test 
RDF(S) datasets. Therefore, tests are gener-
ated in the form of SPARQL queries accord-
ing to predefined patterns based on onto-
logical constraints contained in the vocabu-
laries used in the dataset. The introduction 
of additional restrictions to the applied 
schema leads to a higher test coverage. Ad-
ditionally, custom tests can be defined for 
the dataset. The tests are generally applica-

ble and are validated by executing the que-
ries on the dataset. In case of faulty data a 
non-empty result set is returned, which 
means the test failed. Likewise, Inconsis-
tency Checker (Töpper et al., 2012) detects 
logical inconsistencies in DBpedia using a 
reasoner-based approach on a previously 
enriched ontology model with strict type 
constraints and trained class disjointness. 
While RDFUnit, due to the nature of 
SPARQL, expects all statements explicitly 
stated in the dataset, the reasoner-based ap-
proach assumes an open world and detects 
logical conflicts. It may produce inconsis-
tency explanations that include deduced 
facts as well. 

Originally, these tests only indicate erro-
neous RDF triples in the dataset but do not 
directly provide solutions to correct them. 
Though for some patterns generic solutions 
can easily be identified, that may be either 
the insertion of missing triples or the dele-
tion of triples that cause the test failure. 
E. g., the RDFUnit RDFSRANGE pattern 
instantiated with the property 
dbo:nationality would identify a test 
failure for the triple 
dbp:Jordanus_de_Nemore 
   dbo:nationality dbp:Europe 
because dbp:Europe is not of class 
dbo:Country. This failure can be fixed 
either by removing the causing triple or add-
ing the type information to the subject. Ei-
ther solution would solve the issue, but it is 
not trivial to mechanically decide which so-
lution is better suitable. 
 
Static File Linked Data Publications 
Static RDF files and exporters are an easy 
way to publish Linked Data on the Web. It is 
often used for low-volume Linked Data pub-
lications, such as personal FOAF or SIOC 
profiles. Such static files are often exported 
by tools like the FOAF-a-Matic

24
 or plat-

                                                                                                                        
24 http://www.ldodds.com/foaf/foaf-a-matic 



  

  

forms such as Wordpress and Drupal, and 
afterwards manually curated. 

Since curating such static files is labori-
ous, they often fall into oblivion, and con-
tain outdated information or broken links to 
external resources. Providing a PatchR in-
stance as a service for such micro-publishers 
would be beneficial for consumers of this 
data and the data owner as well. As correc-
tions are reported to the PatchR service, the 
user gets notified via electronic mail or such 
and decides on accepting or rejecting the 
suggested change. 

Additionally, the platform could provide 
a file edit script that finally accomplishes the 
change, to simplify the maintenance of the 
publication just as the erstwhile creation. 
 
Ontology Evolution  
As OWL ontologies can be represented as 
RDF their selves, they are equally suitable 
as RDF datasets for patching. Especially 
during the development phase of a vocabu-
lary, it can be fruitful to collect various 
opinions on the technical design from poten-
tial future end users. Instead of discussing 
design changes in informal communication 
the collaborators could raise change requests 
towards the vocabulary and vote for or 
against suggestions of other members. 

In such a setting, the voting mechanism 
may become more relevant and democratic 
decisions can be found more easily. 
 
CONCLUSION AND OUTLOOK 
In this paper we have presented PatchR, an 
approach for involvement of the actual 
Linked Data consumers into the processes of 
Linked Data quality improvement, Linked 
Data evolution, and Linked Data mainte-
nance. We described how the PatchR ontol-
ogy can be used to describe change requests, 
and an appropriate workflow. 

The feasibility of this approach has been 
illustrated with multiple use cases that rely 
on human actors as well as algorithmic data 

curation systems on top of DBpedia. How-
ever, this concept is not limited to DBpedia, 
but can be applied to any dataset that obeys 
Linked Data principles, such as other 
knowledge bases, small-scale Linked Data 
publications, and web ontologies. 

Therefore, the presented approach can be 
of concern for various data providers that 
are interested in data curation issues. In gen-
eral each aggregator of Linked Data can 
help to leverage structural and factual qual-
ity of the semantic web. The following steps 
are necessary for active participation: 
1. Identify potential flaws in original or 

aggregated data. 
2. Implement facilities to gather user feed-

back. 
3. Serialize identified flaws and corre-

sponding updates using the PatchR on-
tology. 

4. Publish these patches within an appro-
priate repository that can be publicly ac-
cessed. 

In regards to managing distributed infor-
mation on patches we suggest a rather cen-
tralized setting, where major dataset provid-
ers rely on dedicated patch repositories to 
obtain patches for their particular dataset. 
Further auxiliary tasks for effective syn-
chronization of patches such as further stan-
dardization and management of trust are not 
covered in this publication and subject of 
future research. By providing provenance 
information for each patch request, the data 
user may decide for himself whether to ap-
ply the proposed patch or – whenever in 
doubt – to work with the original data or ap-
ply a competing but more trustworthy patch. 

The current implementation of the 
framework is available on GitHub

25
. It pro-

vides a Java API for patch creation and basic 
repository management. On top of that client 
side interfaces for creating and submitting 
                                                                                                                        
25 https://github.com/mgns/PatchR 



  

  

patch requests to a patch repository has been 
implemented. A web interface allows the 
publication of the repository’s content and 
browsing the patch requests. Furthermore, it 
provides a REST-API to give access to the 
content and to collect patch requests from 
external applications. Further work will in-
clude the implementation of more advanced 
trust and access control mechanisms. Fea-
tures like rating, feedback, and reputation 
management are mandatory to provide ap-
propriate incentives in the long run. A ping-
back mechanism might be valuable to in-
form data providers about recently created 
patch requests concerning their datasets. 

It is planned to publicly provide the inter-
face to users of DBpedia and DBpedia Live. 
Because it is not intentional to apply chang-
es directly to the DBpedia datasets, we 
rather purpose a wrapper that allows derefer-
encing individual DBpedia resources with 
patches applied on the fly. 

To enable the application of distributed 
and publicly maintained Linked Data re-
sources in professional applications, suffi-
cient data quality standards have to be en-
sured. The proposed PatchR framework is 
one step towards the support and mainte-
nance of Linked Data quality standards 
throughout the data lifecycle, which is es-
sential for adaption in a professional envi-
ronment. 
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