

PatchR – A Framework for Linked Data
Change Requests

Magnus Knuth and Harald Sack
Hasso Plattner Institute for Software Systems Engineering, University of Potsdam, Germany

ABSTRACT
Incorrect or outdated data is a common problem when working with Linked Data in real world
applications. Linked Data is distributed over the web and under control of various dataset pub-
lishers. It is difficult for data publishers to ensure the quality and timeliness of the data all by
themselves, though they might receive individual complaints by data users, who identified incor-
rect or missing data. Indeed, we see Linked Data consumers equally responsible for the quality
of the datasets they use. PatchR provides a vocabulary to report incorrect data and to propose
changes to correct them. Based on the PatchR ontology a framework is suggested that allows us-
ers to efficiently report and data publishers to handle change requests for their datasets.

Keywords: Linked Data, RDF, data curation, change management, crowd-sourcing

INTRODUCTION
With the continuous growth of Linked Data
on the World Wide Web and the increase of
web applications that consume Linked Data,
the quality of Linked Data resources has be-
come a relevant issue. Recent initiatives, as
the Pedantic Web group

1
 and DBpedia Data

Quality Evaluation Campaign
2
 uncovered

various defects and flaws in Linked Data
resources. Apart from structural defects, se-
mantic flaws and factual mistakes are hard
to detect by automatic procedures and re-
quire updates on the schema level as well as
on the data level.

It is in fact a problem that erroneous data
is distributed and reused in various semantic
web applications, but it also opens up oppor-
tunities for joint efforts such as crowd-

1 https://groups.google.com/group/pedantic-
web
2 http://nl.dbpedia.org:8080/TripleCheckMat
e/

sourcing to improve data quality. Indeed, we
see Linked Data consumers equally respon-
sible for the quality of the datasets they use
within their applications. For example, a
semantic web application might offer the
possibility of user feedback to signalize
facts, which need to be revised. Then, de-
tected errors could be shared with the origi-
nal data publisher and other users of the
dataset. Both would be able to correct the
identified defects. While the need of error
correction and data cleansing has reached
the interest of the Linked Data community
there exists no generally accepted method to
expose, advertise, and retrieve suitable up-
dates for Linked Data resources. In order to
reuse curation efforts and to realize the vi-
sion of a collaborative method for error de-
tection and effective exchange of corre-
sponding corrections the following require-
ments have to be considered:
1. The description of defects and their cor-

responding fixes for Linked Data re-

sources should be facilitated combined
with various criteria, e. g. the scope of a
fix, provenance information, and the
type of defect to select fixes efficiently.

2. The realization of an appropriate
workflow that covers guidelines to pub-
lish detected errors has to notify the
original publishers as well as other users
of a particular dataset. To encourage ac-
ceptance the application of updates has
to be as convenient as possible.

3. Quality improvements for Linked Data
resources should also be published as
Linked Data to ease their exchange and
to make them available for rating, dis-
cussions, and reuse.

In this paper we propose an approach that
allows users to report Linked Data change
requests (patches) within datasets and re-
spective data publishers to effectively proc-
ess such reports in order to pick up im-
provement suggestions from the community.
The approach consists of the PatchR ontol-
ogy, a framework implementation, and an
appropriate workflow.

The arguments for the presented frame-
work start with an overview of related work
in the area of Linked Data curation. Next,
the overall workflow of requesting Linked
Data changes is explained. It allows to ex-
pose, rate, and select updates for particular
Linked Data resources with a specialized
ontology that is described in detail thereaf-
ter. Then, the internals of the framework and
general usage guidelines are discussed in
more detail. The feasibility and technical
opportunities of this approach are illustrated
exemplary for large knowledge bases, such
as DBpedia, where flaws have been detected
with the help of human users, in particular
with a collaborative data cleansing game
(WhoKnows?) and a fact ranking tool
(FRanCo), as well as heuristic data cleans-
ing tools (namely RDFUnit and SDType),
for single file Linked Data publications, and
for ontology evolution scenarios. The cre-

ated patches are exposed and shared using
the herein described ontology. Finally, the
conclusion of the paper and an outlook on
future work is given.

RELATED WORK
In order to raise quality in Linked Data pub-
lished on the web multiple efforts aim to as-
sure data consistency. On the one hand tools
have been developed to identify erroneous
data mainly on syntactic level and on the
other hand an increasing number of efforts
concentrate on the correction of broken or
incomplete data. In this section, first related
work on Linked Data validation and error
detection is discussed, followed by a discus-
sion of recent efforts on Linked Data correc-
tion and enhancement.

Validation
Various work has already focused on check-
ing syntactical and logical data consistency
by providing validators for the Semantic
Web languages RDF and OWL, e. g. W3C’s
RDF Validator

3
, Vapour

4
, and OWL Valida-

tor
5
. Poor data quality in Linked Data has

been identified, as for instance Hogan et al.
analyzed typical errors and set up the
RDF:Alerts Service

6
 that detects syntax and

datatype errors to assist Linked Data pub-
lishers (Hogan, Harth, Passant, Decker, &
Polleres, 2010). Similarly, LODStats

7
 identi-

fies errors within datasets registered at the
CKAN dataset metadata registry (Auer,
Demter, Martin, & Lehmann, 2012). How-
ever, validators are restricted to syntactical
consistency and thus are not able to fulfill
the following requirements:
1. Recognize the inconsistent usage of do-

main or range restricted properties with

3 http://www.w3.org/RDF/Validator/
4 http://validator.linkeddata.org/vapour
5 http://owl.cs.manchester.ac.uk/validator/
6 http://swse.deri.org/RDFAlerts/
7 http://stats.lod2.eu/rdfdoc/?errors=1

entities that are not members of the des-
ignated class restrictions. Let’s consider
the following RDF triple:
dbp:IKEA dbo:keyPerson
 dbp:Chairman.
The RDF triple is syntactically correct,
while the range restriction of the prop-
erty dbo:keyPerson implies the en-
tity dbp:Chairman to be type of the
class dbo:Person. But, according to
DBpedia, dbp:Chairman actually is
an untyped entity. Moreover, it is rather
a business role and from a user’s point of
view this might be incorrect because an
actual person entity is expected to be a
key person of a company.

2. Recognize false facts that do not corre-
spond to the (objective) reality, e. g. the
given birthdate of a person can be syn-
tactically correct, when considered as an
RDF triple, though it may be factually
wrong.

3. Identify missing data. Missing informa-
tion that is generally included in the
dataset for applicable resources can lead
to wrong conclusions, as it might as well
be omitted for a reason. E. g. the absence
of a person’s spouse could lead to the as-
sumption the person is unmarried.

Although the existing validators are use-
ful to verify syntactical consistency and cor-
rectness, they cannot detect semantic or fac-
tual mistakes that are probably evident to a
human user. Therefore, an efficient integra-
tion of (human) intelligence, i. e. crowd-
sourcing, is required to detect these kinds of
errors. We address this important issue by
enabling interoperable exchange of feedback
on Linked Data facts. So far, this concept is
only sparsely present in the Linked Data
community.

Dataset Correction and Enhancement
The DBpedia Data Quality initiative (Zaveri
et al., 2013) has evaluated the major Linked
Data hub with a semiautomatic process and

reports an overall error rate of 11.93%. The
process also aims to raise data quality by
gradually improving the DBpedia extraction
framework and the applied mappings ac-
cording to the identified data quality prob-
lems. The evaluation has been performed on
a relatively small sample of 500 entities and
exclusively targets the DBpedia and its ex-
traction framework, while the approach pre-
sented in this paper is applicable to any
Linked Dataset.

Several approaches apply statistical
methods to identify shortcomings in Linked
Data, such as SDType (Paulheim & Bizer,
2013), which is a heuristic method based on
the link usage among resources that deter-
mines and complements missing type infor-
mation about entities in DBpedia. It resulted
in 1,682,704 new type statements with an
achieved overall precision of 99 %. The ap-
plication of sufficiently expressive ontolo-
gies connected to the Linked Data resources
allows detecting inconsistent statements also
by logical inference. Based on an ontology
enriched with assertions deduced from sta-
tistical evaluation of DBpedia entities (Töp-
per, Knuth, & Sack, 2012) have been able to
identify inconsistent facts in DBpedia.

Within the LOD2 project (Auer, Leh-
mann, Ngonga Ngomo, & Zaveri, 2013) tool
support for Evolution and Repair of Linked
Open Data has been developed: LODRefine
(Verlič, 2012) provides Linked Data exten-
sions and services for OpenRefine

8
, a

standalone open source desktop application
for cleanup and transformation of tabular
data to other formats. LODRefine enables to
triplify, reconcile, and clean tabular data, as
well as to export it to RDF. Though the tool
is primarily designed for the pre-publishing
process, it can also support cleansing Linked
Datasets manually.

Harnessing human intelligence for creat-
ing semantic content has been studied by

8 https://github.com/OpenRefine/

Siorpaes and Simperl, who provide a collec-
tion of games with a purpose that contribute
to the tasks of ontology design, video clip
annotation, or ontology matching (Siorpaes
& Hepp, 2008; Siorpaes & Simperl, 2010).
However, these games generally concentrate
on content enrichment rather than on content
curation. Another game with a purpose is
WhoKnows?, a quiz game in the style of
‘Who Wants to Be a Millionaire?’ published
previously by our research group. It is espe-
cially designed also to detect errors and
shortcomings in DBpedia resources (Waite-
lonis et al., 2011). Likewise, RISQ! is a
‘Jeopardy!’-like game that focuses on the
evaluation and ranking of Linked Data prop-
erties about famous people. Both games are
already well accepted but lack a standard-
ized method to publish the obtained curation
efforts.

In general, all these achievements are
welcome to data providers, more so as data
providers might receive regular complaints
from the user community because of data
quality issues. But since it is very costly to
validate and integrate such change requests
they are often disregarded and get lost. That
also points out the open issue of remote up-
dates in Linked Data management. The
W3C’s Read Write Web Community

9
 and

Linked Data Platform
10

 groups work on
specifications, infrastructure, and applica-
tions for trusted read and write operations.
Since it is questionable to what extent pub-
lishers will allow direct write access to their
data, with our proposed approach the full
control over updates remains with the pub-
lisher bolstered by the proposals and sugges-
tions of the data consumers.

On the other hand big data providers for
Linked Data, as the European digital library
Europeana, already might collect user feed-
back but handle curation results only inter-

9 http://www.w3.org/community/rww/
10 http://www.w3.org/2012/ldp/

nally (Haslhofer & Isaac, 2011). In the con-
text of Semantic Search Google presents
facts about entities from the Knowledge
Graph next to search results. These facts are
not always correct or up-to-date

11
. Users

may report such wrong data by using a feed-
back button, but are not able to correct it di-
rectly or propose a correction.

In this paper a new approach is proposed
to curate Linked Data in a collaborative
way, e. g. flaws in Linked Data resource de-
scriptions that are hard to detect by auto-
matic procedures. With respect to data
cleansing of DBpedia resources one could
argue that curation efforts should be applied
directly to the original sources, i. e. to the
online encyclopedia Wikipedia

12
. Indeed,

this is the most sustainable practice and data
might be correct with the next extraction
phase. But, automatic revision of manually
curated Wikipedia content does not fit into
the guidelines and rules of the Wikipedia
community. Therefore, the herein proposed
approach goes beyond re-extraction efforts,
such as DBpedia Live (Stadler, Martin,
Lehmann, & Hellmann, 2010) and can be
applied to any Linked Data resource.

WORKFLOW DESCRIPTION
By design, data providers and consumers in
the Web of Data are not always the same
party. Linked Data explicitly promotes the
use of external data resources within own
applications. As a result, the datasets are not
necessarily under control of the agents who
actually employ the dataset, so that they
could fix identified inconsistencies by their
selves. An overall approach would be to pe-
tition the dataset provider to take care of a
fix. Though, nowadays it is common prac-
tice to set up a private local data store or at
least a data cache containing web data as a

11 http://tinyurl.com/outdatedgkg
12 http://www.wikipedia.org/

local copy, may it be for reasons concerning
performance or data control.

Either way, there is currently no stan-
dardized methodology to inform data pro-
viders distributing a particular dataset about
inconsistencies that have been detected
within the data. To tackle this problem, we
suggest the PatchR vocabulary (c. f. next
section) that allows describing various kinds
of patch requests including provenance in-
formation encoded in RDF.

The proposed PatchR system including
its components and their interaction is de-
picted in the workflow diagram in Fig. 1.
Whenever a Client, whereby this may be
equally a human or software agent, identi-
fies inconsistent facts (RDF triples) within
the dataset, he can create a new patch re-
quest. The patch request describes the up-
date that has to be performed on the dataset
to solve the identified issue. As illustrated
with the example in Listing 1 an update con-

sists out of a set of RDF triples to add and/or
a set of RDF triples to delete in the particu-
lar dataset. The patch request needs to be
submitted to the PatchR Instance belonging
to the dataset. To achieve this, either a
PatchR side API can be applied to send the
patch request directly, or the client publishes
the patch request in an own repository and
announces this publication via semantic
pingback RPC service (Tramp, Frischmuth,
Ermilov, & Auer, 2010). The decision on the
execution of particular patch requests is left
to the publisher’s Moderator instance based
on individual rules.

The framework also encourages giving
access to collected patch requests to data
consumers in order to let them vote for or
against proposed updates. Furthermore,
modifications in the dataset should be prop-
agated via an Update Feed that allows
subscribers to update local copies of the
dataset or to invalidate their caches.

Change Monitor

Moderator

RDF Repository

Client

SubscriberUpdates Feed

consumes resource

creates patch and submits

on update

PatchR Instance
/ Collector (a) send patch via API

(b) publish patch locally and ping PatchR

Discover PatchR instance by

(a) HTTP header attribute X-PatchR

(b) resources patchrService property

Figure 1. Workflow diagram for patch submission and processing

DESCRIPTION OF THE PATCH
REQUEST ONTOLOGY

The Patch Request Ontology (pat)
13

(Knuth, Hercher, & Sack, 2012), subse-
quently referred to as PatchR, allows ex-
pressing change requests within a Linked
Data dataset that is under control of an ex-
ternal publisher. Since PatchR wraps the
guo:UpdateInstruction concept
adopted from the Graph Update Ontology
(guo)

14
, change requests are always entity-

centric, i. e. within a patch request
pat:Patch a foaf:Agent may demand

13 cf. http://purl.org/hpi/patchr
14 cf. http://webr3.org/owl/guo

the insertion, deletion, or substitution of (a
sub-graph of) RDF triples related to a single
entity. The main constituent of the PatchR
ontology is a patch request (pat:Patch).
Each patch is endorsed by provenance in-
formation provided by the Provenance Vo-
cabulary Core Ontology (prov)

15
 and a

void:Dataset it applies to. Furthermore,
a patch can be classified using the
pat:patchType property to allow effi-
cient retrieval of common patches. These
patch types may refer to commonly ob-
served errors, e. g. encoding problems or
factual errors. There might be patch tax-

15 cf. http://trdf.sourceforge.net/provenance

@prefix : <http://example.org/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix pat: <http://purl.org/hpi/patchr#> .
@prefix guo: <http://webr3.org/owl/guo#> .
@prefix prov: <http://purl.org/net/provenance/ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix dbp: <http://dbpedia.org/resource/> .
@prefix dbo: <http://dbpedia.org/ontology/> .

:Patch_15 a pat:Patch ;
 pat:appliesTo <http://dbpedia.org/void.ttl#DBpedia_3.5> ;
 pat:status pat:Open ;
 pat:update [
 a guo:UpdateInstruction ;
 guo:target_graph <http://dbpedia.org/> ;
 guo:target_subject dbp:Oregon ;
 guo:delete [
 dbo:language dbp:De_jure] ;
 guo:insert [
 dbo:language dbp:English_language]
] ;
 prov:wasGeneratedBy [
 a prov:Activity ;
 pat:confidence "0.5"^^xsd:decimal ;
 prov:wasAssociatedWith :WhoKnows ;
 prov:actedOnBehalfOf :WhoKnows#Player_25 ;
 prov:performedAt "..."^^xsd:dateTime] .

Listing 1. An example patch request

onomies from different applications that de-
fine the reason for a patch on their own.

Individual patches can be bundled into a
pat:PatchGroup, e. g. patches of a par-
ticular service that apply to a common prob-
lem or have relevance only for specialized
domains or regions. Fig. 2 provides an over-
view on the main concepts of the PatchR
ontology, which are described in Table 1.

Dedicated error detection algorithms of-
ten base on statistics and are to some extent
uncertain. To express this level of certainty
in a patch, the confidence can be stated as a
numeric value in the range of [−1, 1],
whereas higher values indicate a higher cer-
tainty and negative values attribute criticism
towards this patch request. This confidence
value is bound to the agent’s provenance
information for the patch. In case multiple
agents propose the same patch the total con-
fidence for the patch raises. By collecting
the confidences of multiple agents a shared
commitment can be reached, expressed as a
numerical value that sums agreement and
subtracts disagreement on a patch request.
Therefore, confidence values of multiple

agents (confp|a and confp|b) of the same patch
p can be combined by an associative, com-
mutative operation. We proposed a uni-
formly continuous operation � in (0, 1], i. e.
for combining positive confidences, and the
inclusion of trust values towards individual
agents in (Knuth & Sack, 2014):

!!

confp|a ,b = confp|a⊕confp|b
=1−((1− confp|a)⋅(1− confp|b))
= confp|a + confp|b −(confp|a ⋅confp|b)

A central aspect considered by the ontol-
ogy is voting for or against patch requests.
Therefore, votes of advocates and criticizers
can be linked to an existing patch as addi-
tional prov:Activitys with appropriate
confidence values: any positive confidence
will raise the total confidence, any negative
confidence will reduce the total patch confi-
dence.

PATCHR FRAMEWORK
The proposed framework comprises several
components on consumer (client) and pub-

pat:Patchpat:Patch

pat:PatchGrouppat:PatchGroupguo:UpdateInstructionguo:UpdateInstruction

prov:Activityprov:Activity

void:Datasetvoid:Dataset

pat:PatchStatuspat:PatchStatus

rdfs:Literalrdfs:Literal

pat:memberOf
pat:update

pat:appliesTo

pat:statusprov:wasGeneratedBy

rdfs:comment

pat:PatchTypepat:PatchType

pat:patchType

pat:Open
pat:Obsolete
pat:Postponed
pat:Rejected
pat:Resolved

pat:Open
pat:Obsolete
pat:Postponed
pat:Rejected
pat:Resolved

ex:encodingError
ex:incorrectFact

ex:misuseOfStandards

ex:encodingError
ex:incorrectFact

ex:misuseOfStandards

xsd:doublexsd:double

pat:confidence

owl:Thingowl:Thing rdfs:Resourcerdfs:Resource

guo:target_subject
guo:insert

guo:delete

prov:Agentprov:Agent

prov:wasAssociatedWith

Figure 2. Overview on the patch request ontology

lisher (server) side. In the following these
components and their behavior is described
in more detail.

Client behavior
A PatchR Client consumes Linked Data, i. e.
resource descriptions, from a publisher’s
repository directly or via a local copy or
cache. Any Linked Data consuming applica-
tion that includes some sort of data valida-
tion or inconsistency detection may serve as
a PatchR client. That could be for example a
simple interface to display information from
the data repository to a human user, which
provides a reporting functionality, or also a
dedicated data cleansing algorithm. Once an
inconsistency is detected by the client, it cre-
ates a patch request to delete, add, or alter
RDF triples that relate to a particular subject
resource using the PatchR vocabulary as de-
scribed in the previous section. For the crea-
tion and management of patch requests a
Java API

16
 is provided.

16 Available on GitHub:
https://github.com/mgns/PatchR

To announce the patch request the client
needs to discover the URL of the PatchR
instance responsible for the respective re-
source. To allow the client the auto-
discovery of the collector instance an HTTP
response header attribute X-PatchR should
be set when sending a resource description
that holds the respective URL of the PatchR
server. Alternatively and for a better integra-
tion with Linked Data principles, an OWL
property pat:patchrService, can be
used to link the PatchR server directly to the
resource or dataset description as shown in
Listing 2. The advantages of using the prop-
erty would be to cache this information lo-
cally and the possibility to assign individual
PatchR server instances to Hash URIs as
well, while the header attribute approach
only requires an HTTP header request in-
stead of retrieving and parsing the full re-
source description.

Since patch requests are RDF resources a
method to transmit RDF data is required. To
achieve this and to submit a patch request
two options are considered suitable: Either,
clients may call a dedicated API provided by
the PatchR Instance to submit patches.

Property Description
update Refers to a guo:UpdateInstruction. There must be exactly one

guo:UpdateInstruction per patch.
memberOf Assignment of a patch to a pat:PatchGroup.

appliesTo Refers to a void:Dataset to allow convenient selection of patches per
dataset.

patchType Refers to a classification of a patch. A patch can have multiple types.

confidence A confidence assigned by the creator of the patch, e. g. in case heuristic
methods identified an inconsistency. This confidence must be expressed
in the range of [−1, 1], whereas a high value means higher confidence and
a value of 1 signifies absolute certainty. Negative values indicate criticism
towards this patch.

status The status of the patch, might be one of pat:Open, pat:Resolved,
pat:Obsolete, pat:Postponed, or pat:Rejected.

Table 0. Description of properties in the patch request ontology

Therefore, a Linked Data serialization and
messaging format such as the JSON-LD
standard

17
 can be applied. The API also will

need an identification mechanism to ensure
the authorship, e. g. by API key or WebID.
Alternatively, the patch request can also be
published at a client side web server. In this
case the collector needs to be informed
about the creation, which can be carried out
through the semantic pingback mechanism
(Tramp et al., 2010). Hereby, the client calls
an RPC method on the Collector side having
the URL of the patch as an argument. This
enables the PatchR service to retrieve the
patch from the client’s repository.

Server behavior
The Collector receives and validates patches
from the clients, and stores them in a local
repository that should allow open access to
retrieve patches.

For further processing of the collected
data, the Moderator decides about the appli-
cation of submitted patches to the dataset
individually. This module needs to employ
guidelines custom-made for the dataset
owner. Such guidelines might be represented
by a simple majority vote, but might also
consider the submitter’s reputation or given
trust, e. g. obtained by previous submissions
of high quality patch requests. A final deci-
sion about the application of a patch should
be recorded using the pat:status prop-
erty (set from “Open” to “Obsolete”, “Re-
jected”, “Postponed”, or “Resolved”).

To keep dataset consumers informed
about updates to the original dataset a
Change Monitor should report changes, e. g.
as an RSS feed or by proactive notification.

17 http://www.w3.org/TR/json-ld/

The granularity and range of the reports
could be arbitrary, e. g. including the whole
dataset, individual resources, or sets of re-
sources.

USE CASES FOR PATCHR
In this section, the application of the PatchR
ontology is demonstrated in several scenar-
ios that cover crowd-based and heuristic
agents for the large DBpedia knowledge
base, a submission mechanism for single
resource Linked Data publications, and an
ontology evolution scenario, which may fa-
cilitate user involvement in the development
process.

DBpedia
DBpedia is an openly available, multi-
domain and multilingual RDF dataset ex-
tracted from Wikipedia content and a major
source for structured knowledge on the Web
(Auer et al., 2007). The latest release
(DBpedia 2014) consists of over 880 million
RDF triples

18
 describing 4.58 million enti-

ties. DBpedia is heavily interlinked with
other datasets and plays a central role in the
Linked Open Data cloud. It is therefore a
suitable data source for integration in cross-
domain Linked Data applications, such as
document annotation, faceted search, loca-
tion-based information services, information
extraction, and natural language processing
services. Nevertheless, it became obvious
that DBpedia lacks sufficient data quality for
a range of applications (Zaveri et al., 2013).

18 Number of triples available via the DBpe-
dia SPARQL endpoint and published as
Linked Data, more triples are available as
RDF dump files.

<http://magnus.13mm.de/> pat:patchrService
 <http://patchr.s16a.org/> .

Listing 2. Usage example of the patchrService property

Patching the DBpedia knowledge base
can be regarded as a special case, since this
data is based on Wikipedia articles that are
curated manually by the Wikipedia commu-
nity. Identified problems should sustainably
be fixed in the respective Wikipedia article
source page or the DBpedia Extraction
Framework

19
 or Mappings Wiki

20
, so they

won’t occur in future DBpedia releases.
Since DBpedia is freshly extracted and re-
leased approximately once a year, change
requests should apply for a particular ver-
sion. With every new release change re-
quests might become obsolete in case triples
requested for deletion have vanished or tri-
ples requested for insertion have been intro-
duced to the new version. Because of that,
one could argue that patch requests for prior
DBpedia versions become useless and the
patching process has to start from it’s begin-
ning, but since DBpedia resources are in
general not substantially changing over ver-
sions and resource URIs are more or less

19 https://github.com/dbpedia/extraction-
framework

stable, we see that patches need to be
checked for obsolescence when migrating to
a newer version but remain valid as the in-
consistent facts persist. Due to it’s sheer size
it is unlikely to fix all errors in DBpedia by
patches. Nevertheless, patches can give use-
ful hints to identify structural problems in
the extraction process.

Crowd-based Agents. As presented in
(Knuth et al., 2012), the WhoKnows? game
(Waitelonis et al., 2011) has been extended
with support for the PatchR ontology

21
. The

game’s principle is to present multiple-
choice questions to the user that have been
directly generated out of facts from DBpedia
RDF triples. The player scores points by
providing correct answers within a limited
amount of time and loses lives whenever he
gives a wrong answer or no answer at all.
Due to inconsistent or incorrect facts in the
knowledge base, questions or expected an-
swers may appear defective to the player. In
such a case the player can report the ques-
tion by clicking a “Dislike” button. Thereon,
the player is asked to specify the particular
fact, which he thinks to be incorrect by se-
lecting it from a given set of constructed po-
tential inconsistencies. For simplicity, the
potential inconsistent RDF triples are pre-
sented to the user as natural language sen-
tences. Fig. 3 shows a screenshot of this re-
finement panel. Sentences of the form ‘Ob-
ject is not a property of subject.’ indicate a
wrong fact in the dataset, while sentences of
the form ‘Object is also a property of sub-
ject.’ indicate a missing fact. From this user
vote the system generates a patch request for
either
• deleting one or several triples or
• inserting one or several triples in the un-

derlying knowledge base.

20 http://mappings.dbpedia.org/
21 Play WhoKnows? at
http://tinyurl.com/whoknowsgame

Figure 3. Screenshot of WhoKnows?’ refinement
panel

WhoKnows? which is originally based on
DBpedia 3.5.1 delivered 4,819 unique patch
requests (5,605 including multiple reports of
the same change request). These patch re-
quests have been made publicly available by
a simple user interface

22
 including respec-

tive links to the DBpedia resource and the
Wikipedia article where the involved facts
originated.

It can be assumed that due to these re-
ports users have resolved only a minority of
the reported bugs in Wikipedia articles.
Nevertheless, in the current version of

22 http://tinyurl.com/patchrui

DBpedia (DBpedia 2014) only 2,657 patch-
es (55.1 %) remain open, while 2,162 patch-
es turned obsolete due to changes to Wik-
ipedia or the DBpedia extraction framework.
Listings 3 and 4 show a number of open and
obsolete change requests. This shows that
the players of the WhoKnows? game
proposed reasonable changes.

FRanCo (Fact Ranking Evaluation)
23

 is a
crowd-sourcing approach which collects
rankings of RDF triples for a sample of 541
individual DBpedia resources (DBpedia
2014) aiming to create a ground-truth for
fact ranking evaluation (Bobić, Waitelonis,

23 http://s16a.org/fr/

Undeleted
dbp:Aldiborontiphoskyphorniostikos dbo:country dbp:London .
dbp:Arbors_Records dbo:distributingCompany dbp:United_States .
dbp:Diedrich_Coffee dbo:keyPerson dbp:President .
dbp:Jordanus_de_Nemore dbo:nationality dbp:Europe .
dbp:Monster_Magnet dbo:hometown dbp:United_States .

Not Inserted
dbp:George_F._Kennan dbo:birthPlace dbp:United_States .
dbp:Oregon dbo:language dbp:English_language .
dbp:Turkey dbo:governmentType dbp:Federalism .
dbp:Volvo dbo:product dbp:Automobile .
dbp:YouTube dbo:language dbp:English_language .

Listing 3. Patch requests from DBpedia 3.5.1 lasting in 2014 (Open)

Removed
dbp:Liz_Carroll dbo:hometown dbp:United_States .
dbp:Quest_Software dbo:keyPerson dbp:President .
dbp:Singapore dbo:language dbp:English_alphabet .
dbp:United_States_Senate dbo:meetingCity dbp:United_States .
dbp:William_Douglas_Crowder dbo:country dbp:United_States_Navy .

Inserted
dbp:Combined_Arms_Research_Library dbo:country dbp:United_States .
dbp:Life_Sentence_Records dbo:country dbp:United_States .
dbp:Louisiana dbo:language dbp:English_language .
dbp:Texas dbo:language dbp:English_language .
dbp:United_Kingdom dbo:regionalLanguage dbp:Cornish_language .

Listing 4. Removed/inserted triples in DBpedia 2014 as requested (Obsolete)

& Sack, 2015). By doing that, it also offers
the possibility to highlight facts as faulty or
nonsense statements. Reported facts include
dbp:Joma dbo:product dbp:Tennis,
dbp:Barbera dbo:wineRegion
 dbp:California_wine, and
dbp:Peugeot_504 dbo:assembly
 dbp:River_Thames.

In order to improve the data quality of the
DBpedia dataset, these triples should be de-
leted from the knowledge base. So far, we
collected 2,494 corresponding change re-
quests from 203 unique users.

Heuristic Linked Data Cleansing Ap-
proaches. So far, the quality of extracted
triples in DBpedia is primarily improved by
post-processing techniques. One of these
approaches is SDType (Paulheim & Bizer,
2013), which provides missing type infor-
mation for resources without a known given
type to the DBpedia dataset. An entity’s
class membership is deduced based on sta-
tistics about the usage of properties with en-
tities of known type. Due to the statistical
character of this approach, the results are
somewhat vague and in order to achieve a
high precision lower ranked type mappings
are not accepted for application to the da-
taset. As a result, the additional types still
contain incorrect mappings while on the
other hand valid mappings have been ex-
cluded due to their potential vagueness. We
suggest to report lower ranked type map-
pings as patch requests.

RDFUnit (a.k.a. “Databugger”) (Konto-
kostas et al., 2014) allows to unit test
RDF(S) datasets. Therefore, tests are gener-
ated in the form of SPARQL queries accord-
ing to predefined patterns based on onto-
logical constraints contained in the vocabu-
laries used in the dataset. The introduction
of additional restrictions to the applied
schema leads to a higher test coverage. Ad-
ditionally, custom tests can be defined for
the dataset. The tests are generally applica-

ble and are validated by executing the que-
ries on the dataset. In case of faulty data a
non-empty result set is returned, which
means the test failed. Likewise, Inconsis-
tency Checker (Töpper et al., 2012) detects
logical inconsistencies in DBpedia using a
reasoner-based approach on a previously
enriched ontology model with strict type
constraints and trained class disjointness.
While RDFUnit, due to the nature of
SPARQL, expects all statements explicitly
stated in the dataset, the reasoner-based ap-
proach assumes an open world and detects
logical conflicts. It may produce inconsis-
tency explanations that include deduced
facts as well.

Originally, these tests only indicate erro-
neous RDF triples in the dataset but do not
directly provide solutions to correct them.
Though for some patterns generic solutions
can easily be identified, that may be either
the insertion of missing triples or the dele-
tion of triples that cause the test failure.
E. g., the RDFUnit RDFSRANGE pattern
instantiated with the property
dbo:nationality would identify a test
failure for the triple
dbp:Jordanus_de_Nemore
 dbo:nationality dbp:Europe
because dbp:Europe is not of class
dbo:Country. This failure can be fixed
either by removing the causing triple or add-
ing the type information to the subject. Ei-
ther solution would solve the issue, but it is
not trivial to mechanically decide which so-
lution is better suitable.

Static File Linked Data Publications
Static RDF files and exporters are an easy
way to publish Linked Data on the Web. It is
often used for low-volume Linked Data pub-
lications, such as personal FOAF or SIOC
profiles. Such static files are often exported
by tools like the FOAF-a-Matic

24
 or plat-

24 http://www.ldodds.com/foaf/foaf-a-matic

forms such as Wordpress and Drupal, and
afterwards manually curated.

Since curating such static files is labori-
ous, they often fall into oblivion, and con-
tain outdated information or broken links to
external resources. Providing a PatchR in-
stance as a service for such micro-publishers
would be beneficial for consumers of this
data and the data owner as well. As correc-
tions are reported to the PatchR service, the
user gets notified via electronic mail or such
and decides on accepting or rejecting the
suggested change.

Additionally, the platform could provide
a file edit script that finally accomplishes the
change, to simplify the maintenance of the
publication just as the erstwhile creation.

Ontology Evolution
As OWL ontologies can be represented as
RDF their selves, they are equally suitable
as RDF datasets for patching. Especially
during the development phase of a vocabu-
lary, it can be fruitful to collect various
opinions on the technical design from poten-
tial future end users. Instead of discussing
design changes in informal communication
the collaborators could raise change requests
towards the vocabulary and vote for or
against suggestions of other members.

In such a setting, the voting mechanism
may become more relevant and democratic
decisions can be found more easily.

CONCLUSION AND OUTLOOK
In this paper we have presented PatchR, an
approach for involvement of the actual
Linked Data consumers into the processes of
Linked Data quality improvement, Linked
Data evolution, and Linked Data mainte-
nance. We described how the PatchR ontol-
ogy can be used to describe change requests,
and an appropriate workflow.

The feasibility of this approach has been
illustrated with multiple use cases that rely
on human actors as well as algorithmic data

curation systems on top of DBpedia. How-
ever, this concept is not limited to DBpedia,
but can be applied to any dataset that obeys
Linked Data principles, such as other
knowledge bases, small-scale Linked Data
publications, and web ontologies.

Therefore, the presented approach can be
of concern for various data providers that
are interested in data curation issues. In gen-
eral each aggregator of Linked Data can
help to leverage structural and factual qual-
ity of the semantic web. The following steps
are necessary for active participation:
1. Identify potential flaws in original or

aggregated data.
2. Implement facilities to gather user feed-

back.
3. Serialize identified flaws and corre-

sponding updates using the PatchR on-
tology.

4. Publish these patches within an appro-
priate repository that can be publicly ac-
cessed.

In regards to managing distributed infor-
mation on patches we suggest a rather cen-
tralized setting, where major dataset provid-
ers rely on dedicated patch repositories to
obtain patches for their particular dataset.
Further auxiliary tasks for effective syn-
chronization of patches such as further stan-
dardization and management of trust are not
covered in this publication and subject of
future research. By providing provenance
information for each patch request, the data
user may decide for himself whether to ap-
ply the proposed patch or – whenever in
doubt – to work with the original data or ap-
ply a competing but more trustworthy patch.

The current implementation of the
framework is available on GitHub

25
. It pro-

vides a Java API for patch creation and basic
repository management. On top of that client
side interfaces for creating and submitting

25 https://github.com/mgns/PatchR

patch requests to a patch repository has been
implemented. A web interface allows the
publication of the repository’s content and
browsing the patch requests. Furthermore, it
provides a REST-API to give access to the
content and to collect patch requests from
external applications. Further work will in-
clude the implementation of more advanced
trust and access control mechanisms. Fea-
tures like rating, feedback, and reputation
management are mandatory to provide ap-
propriate incentives in the long run. A ping-
back mechanism might be valuable to in-
form data providers about recently created
patch requests concerning their datasets.

It is planned to publicly provide the inter-
face to users of DBpedia and DBpedia Live.
Because it is not intentional to apply chang-
es directly to the DBpedia datasets, we
rather purpose a wrapper that allows derefer-
encing individual DBpedia resources with
patches applied on the fly.

To enable the application of distributed
and publicly maintained Linked Data re-
sources in professional applications, suffi-
cient data quality standards have to be en-
sured. The proposed PatchR framework is
one step towards the support and mainte-
nance of Linked Data quality standards
throughout the data lifecycle, which is es-
sential for adaption in a professional envi-
ronment.

REFERENCES

Auer, S., Bizer, C., Kobilarov, G., Lehmann,
J., Cyganiak, R., & Ives, Z. (2007).
DBpedia: a nucleus for a web of open data.
In The Semantic Web, ISWC 2007 (Vol.
4825, pp. 722–735). Springer.

Auer, S., Demter, J., Martin, M., &
Lehmann, J. (2012, October). LODStats – an
extensible framework for high-performance
dataset analytics. In Proceedings of 18th
International Conference on Knowledge

Engineering and Knowledge Management,
EKAW 2012 (pp. 353–362). Galway,
Ireland: Springer.

Auer, S., Lehmann, J., Ngonga Ngomo, A.-
C., & Zaveri, A. (2013). Introduction to
linked data and its lifecycle on the web. In
Proceedings of the 9th International
Conference on Reasoning Web: Semantic
Technologies for Intelligent Data Access
(pp. 1– 90). Berlin, Heidelberg: Springer.

Bobić, T., Waitelonis, J., & Sack, H. (2015).
FRanCo – a ground truth corpus for fact
ranking evaluation. In Proceedings of the 1st
International Workshop on Summarizing
and Presenting Entities and Ontologies,
SumPre 2015. (submitted)

Haslhofer, B., & Isaac, A. (2011). da-
ta.europeana.eu – The Europeana Linked
Open Data Pilot. In Proceedings of the In-
ternational Conference on Dublin Core and
Metadata Applications.

Hogan, A., Harth, A., Passant, A., Decker,
S., & Polleres, A. (2010). Weaving the pe-
dantic web. In Linked Data on the Web
Workshop, LDOW 2010, co-located with the
19th International World Wide Web Confer-
ence, WWW 2010 (Vol. 628, pp. 30–34).
CEUR-WS.

Knuth, M., Hercher, J., & Sack, H. (2012,
April). Collaboratively patching linked data.
In Proceedings of 2nd International Work-
shop on Usage Analysis and the Web of Da-
ta, USEWOD 2012, co-located with the 21st
International World Wide Web Conference,
WWW 2012, Lyon, France. archix.org.

Knuth, M., & Sack, H. (2014, May). Data
cleansing consolidation with PatchR. In
Proceedings of the 11th Extended Semantic
Web Conference, ESWC 2014, Satellite
Events. Springer.

Kontokostas, D., Westphal, P., Auer, S.,
Hellmann, S., Lehmann, J., Cornelissen, R.,
& Zaveri, A. J. (2014). Test-driven evalua-
tion of linked data quality. In Proceedings of
the 23rd International Conference on World
Wide Web, WWW 2014 (pp. 747–758).
ACM.

Paulheim, H., & Bizer, C. (2013). Type in-
ference on noisy RDF data. In The Semantic
Web, ISWC 2013 (Vol. 8218, pp. 510–525).
Springer.

Siorpaes, K., & Hepp, M. (2008). Onto-
Game: Weaving the semantic web by online
games. In Proceedings of the 5th European
Semantic Web Conference, ESWC 2008 (pp.
751-766). Springer.

Siorpaes, K., & Simperl, E. (2010). Human
intelligence in the process of semantic con-
tent creation. World Wide Web (Vol. 13(1–
2), pp. 33–59). Springer.

Stadler, C., Martin, M., Lehmann, J., &
Hellmann, S. (2010, May). Update strategies
for DBpedia Live. In 6th Workshop on
Scripting and Development for the Semantic
Web, SFSW 2010, co-located with 7th Ex-
tended Semantic Web Conference, ESWC
2010 (Vol. 699). CEUR-WS.

Töpper, G., Knuth, M., & Sack, H. (2012,

September). DBpedia ontology enrichment
for inconsistency detection. In Proceedings
of the 8th International Conference on Se-
mantic Systems, i-Semantics 2012 (pp. 33–
40). ACM.

Tramp, S., Frischmuth, P., Ermilov, T., &
Auer, S. (2010). Weaving a social data web
with semantic pingback. In Knowledge En-
gineering and Management by the Masses
(Vol. 6317, p. 135–149). Springer.

Verlič, M. (2012, September). LODGrefine
– LOD-enabled Google Refine in action.
Proceedings of the 8th International Con-
ference on Semantic Systems, i-Semantics
2012 (Posters & Demos) (pp. 31–37). ACM.

Waitelonis, J., Ludwig, N., Knuth, M., &
Sack, H. (2011). Who-Knows? – Evaluating
linked data heuristics with a quiz that cleans
up DBpedia. International Journal of Inter-
active Technology and Smart Education,
ITSE (Vol. 8(3), pp. 236–248). Emerald.

Zaveri, A., Kontokostas, D., Sherif, M. A.,
Bühmann, L., Morsay, M., Auer, S., &
Lehmann, J. (2013, September). User-driven
quality evaluation of DBpedia. In Proceed-
ings of the 9th International Conference on
Semantic Systems, i-Semantics 2013 (pp.
97–104). ACM.

