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Abstract. Knowledge Graphs (KGs) are composed of structured information about a particular domain in the form of entities
and relations. In addition to the structured information KGs help in facilitating interconnectivity and interoperability between
different resources represented in the Linked Data Cloud. KGs have been used in a variety of applications such as entity linking,
question answering, recommender systems, etc. However, KG applications suffer from high computational and storage costs.
Hence, there arises the necessity for a representation able to map the high dimensional KGs into low dimensional spaces, i.e.,
embedding space, preserving structural as well as relational information. This paper conducts a survey of KG embedding models
which not only consider the structured information contained in the form of entities and relations in a KG but also its unstructured
information represented as literals such as text, numerical values, images, etc. Along with a theoretical analysis and comparison
of the methods proposed so far for generating KG embeddings with literals, an empirical evaluation of the different methods
under identical settings has been performed for the general task of link prediction.

Keywords: Knowledge Graphs, Knowledge Graph Embeddings, Knowledge Graph Embeddings with Literals, Link Prediction,
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1. Introduction

K nowledge Graphs (KGs) have become quite cru-
cial for storing structured information. There

has been a sudden attention towards using KGs for var-
ious applications mainly in the area of artificial intelli-
gence. For instance, in a more general sense, KGs can
be used to support decision making process and to im-
prove different machine learning applications such as
question answering [1], recommender systems [2], and
relation extraction [3]. Some of the most popular pub-
licly available general purpose KGs are DBpedia [4],
Wikidata [5], and YAGO [6]. These general purpose
KGs often consist of huge amount of facts constructed

*Corresponding author. E-mail: genet-asefa.gesese@fiz-
karlsruhe.de.

using millions of entities (represented as nodes) and
relations (as edges connecting these nodes).

Although KGs are effective in representing struc-
tured data, there exist some issues which hinder their
efficient manipulation such as i) different KGs are usu-
ally based on different rigorous symbolic frameworks
and this makes it hard to utilize their data in other ap-
plications [7] and ii) the fact that a significant number
of important graph algorithms needed for the efficient
manipulation and analysis of graphs have proven to be
NP-complete [8]. In order to address these issues and
use a KG more efficiently, it is beneficial to transform
it into a low dimensional vector space while preserving
its underlying semantics. To this end, various attempts
have been made so far to learn vector representations
(embeddings) for KGs.
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As discussed in [9], a typical KG embedding ap-
proach, which uses only structured information from
the KG, generally follows three steps: (i) determin-
ing the form of entity and relation representations, (ii)
defining a scoring function, and (iii) learning entity
and relation representations. In the first step, the forms
in which entities and relations are represented in the
vector space are determined. Entities can be repre-
sented as vectors or modeled as multivariate Gaussian
distributions whereas relations can be encoded as op-
erations, matrices, tensors, multivariate Gaussian dis-
tributions, or mixtures of Gaussians. Once the form
of the entities are determined, in the second step, a
scoring function which measures the plausibility of a
triple is defined. The main goal is to enable the model
to assign higher score to true triples and lower scores
to false/negative/corrupted triples. Thus, in order to
achieve this, the third step solves an optimization prob-
lem which maximizes the plausibility of true facts in
order to learn the embeddings of entities and relations.
Note that the method used to generate false/negative/-
corrupted triples has an impact on the performance of a
model. The various negative triple generation methods
and their differences are discussed in detail in [10].

Among the different embedding approaches pro-
posed so far, TransE [11] is, to the best of our knowl-
edge, the very first attempt to use distance-based scor-
ing function to learn KG embedding. Given a triple
< h, r, t > where h and t are head and tail entities re-
spectively and r is a relation, TransE represents h, r,
and t as vectors h, r, and t respectively by modeling
the relation r as a translation vector which connects the
vectors h and t. The problem with TransE is that it fails
to model certain type of relations such as one-to-many
or many-to-one. In order to address such limitations,
different embedding techniques which are extension of
TransE or are entirely new have been proposed. How-
ever, most of the existing approaches, including the
current state-of-the-art models such as ConvE [12], are
structure-based embeddings which do not make use of
any literal information i.e., only triples consisting of
entities connected via properties are usually consid-
ered. This is a major disadvantage because informa-
tion encoded in the literals will be left unused when
capturing the semantics of a certain entity.

Literals can bring advantages to the process of learn-
ing KG embeddings in two major ways:

1. Learning embeddings for novel entities: Novel
entities are the entities which are not linked to any
other entity in the KG but have literal values as-

sociated with them such as their textual descrip-
tion, numeric literals, and images. In most exist-
ing structure-based embedding models, it is not
possible to learn embeddings for such novel en-
tities. However, this can be addressed by utiliz-
ing the information represented in literals to learn
embeddings. For example, considering the dataset
FB15K-20 [13], which is a subset of Freebase, the
entity ’/m/0gjd61t’ is a novel entity which
does not occur in any of the training triples, but
it has a description given as follows in the form
<subject, relation, object>.

</m/0gjd61t, http://rdf.freebase.com/
ns/common.topic.description, "
Vincent Franklin is an English
actor best known for his roles
in comedy television programmes
...">

In order to learn the embedding for this particular
entity (i.e., /m/0gjd61t), the model can make
use of the entity’s textual description. DKRL [13]
is one of those approaches which provide embed-
dings for novel entities using their descriptions.

2. Improving the representation of entities in struc-
ture based embedding models: Literals play a vi-
tal role in improving the representation learn-
ing where an entity is required to appear in at
least a minimum number of relational triples. For
example, taking into consideration only the in-
formation provided in a sample KG presented
in Figure 1, which is extracted from DBpe-
dia, it is not possible to tell apart the enti-
ties dbr:Gina_Torres, dbr:Patrick_-
J.Adams, and dbr:Sarah_Rafferty from
one another. This is the case due to the fact
that the only information that is available re-
garding these entities in this KG is that they
all star in the series dbr:Suits_(season_-
1) and this is not enough to know which en-
tities are similar to each other and which are
not. Therefore, if some KG embedding model
is trained using only this KG, it is not pos-
sible to get good representations for the enti-
ties dbr:Gina_Torres, dbr:Patrick_-
J.Adams, and dbr:Sarah_Rafferty.
However, having the model trained with more
triples containing literal values for these entities,
as shown in Figure 2, would improve the embed-
dings for the entities. For instance, based on the
values of the data relation dbr:birthDate, it



G. A. Gesese et al. / Survey on Knowledge Graph Embeddings with Literals 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 1. A small fraction of triples taken from the KG DBpedia [4].

is possible to deduce the fact that dbr:Sarah_-
Rafferty and dbr:Gina_Torres are al-
most the same age but they are both older than
dbr:Patrick_J.Adams. On the other hand,
the images of the entities along with the textual
descriptions (dbo:abstract) would allow us
to infer the entities’ gender, i.e., dbr:Sarah_-
Rafferty and dbr:Gina_Torres are fe-
male and dbr:Patrick_J.Adams is male.
The above example indicates that the use of liter-
als along with their respective entities would add
more semantics so that similar entities can be rep-
resented close to each other in the vector space
while those dissimilar are further apart.

Recently, some approaches have been proposed
which leverage the information present in literals to
learn KG embeddings. The types of literals considered
in these embedding methods are either text, numeric,
images, or multi-modal literals, i.e., a combination of
more than one medium of information. These meth-
ods use different techniques in order to incorporate the
literals into the KG embeddings. However, data typed
literals are not addressed in these KG embedding mod-
els and surveys that are conducted on KG embeddings.
The main challenge with data typed literals, such as
date and time, is that they require additional semantics
to be represented in KG embeddings.

This survey analyses different embedding approaches,
which make use of literals, and highlights their ad-
vantages and drawbacks in handling different chal-
lenges such as multi-valued data properties/relations,
data typed literals, and units of literals. A review of
the different applications used for model evaluation by
different KG embedding models is also presented. Fur-
thermore, experiments with some of the models have
been conducted specifically on the link prediction task.
The contribution of this paper is summarized as fol-
lows:

1. A detailed analysis of the existing literal enriched
KG embedding models and their approaches. In
addition, the models are categorized into different
classes based on the type of literals used.

2. An evaluation oriented comparison of the existing
models on the link prediction task is performed
under same experimental settings.

3. The research gaps in the area of KG embeddings
in using literals are indicated which can open di-
rections for further research.

The rest of this paper is organized as follows: Sec-
tion 2 presents a brief overview of related work. In
Section 3, the problem formulation including defini-
tions, preliminaries, types of literals and research ques-
tions are provided while Section 4 analyses different
KG embedding techniques with literals is discussed.
Section 5 reviews different tasks used to train or eval-
uate the embedding models is given. Section 6 dis-
cusses the experiment conducted with the existing KG
embedding models with literals on the link prediction
task. Finally, concluding remarks summarize our find-
ings on KGs with literals and are presented along with
future directions in Section 7.

2. Related Work

This section describes the state-of-the-art algo-
rithms proposed for generating KG embeddings. It also
gives a brief overview of the surveys already published
following these lines and what is lacking in those stud-
ies.

A brief overview of the most popular KG em-
bedding techniques, including the state-of-the-art ap-
proaches are short listed in Table 1. The categories
presented in this table are inspired by a previous sur-
vey work [9] for the models without literals (column
1). These categories are created based on the methods
used by the models, i.e., translation distance, seman-
tic matching, entity types, relation paths, logical rules,
temporal information, and graph structures. We have
also categorized the techniques which use literals with
respect to the same set of categories. Since a detailed
discussion on these categories on the models without
literals has already been presented in [9], in the cur-
rent study, the main focus lies on analysing the mod-
els which make use of literals. The standard KG em-
bedding techniques which are extended by the models
with literals are listed in Table 2.

Few attempts have been made to conduct surveys
on the techniques and applications of KG embed-
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Fig. 2. A small fraction of triples with literals taken from the KG DBpedia [4].

Table 1
KG embedding models and their categories.

Categories - based on the method
used

Models without literals Models with Literals

Translational Distance TransE [11] and its extensions: TransH [14] TransR
[15], TransD [16], TranSparse [17], TransA [18] etc.

TransEA [19], DKRL [13], IKRL
[20], Jointly(desp) [21], Jointly
[22], SSP [23], KDCoE [24], EAK-
GAE [25]

Semantic Matching
RESCAL [26] and Its Extensions: DistMult [27],
HolE [28], ComplEx [29], and etc. Semantic Match-
ing with Neural Networks: SME [30], NTN [31],
MLP [32], and etc.

LiteralE [33], MKBE [34],
MTKGNN [35], KGlove with
literals [36], Extended RESCAL
[37], LiteralE with blocking [38]

Entity Types
SSE [39], TKRL [40], Type constrained representa-
tion learning [41], Rules incorporated KG completion
models [42], TRESCAL [43], Entity Hierarchy Em-
bedding [44]

Extended RESCAL [37]

Relation Paths
PTransE [45], Traversing KGs in Vector Space [46],
RTRANSE [47], Compositional vector space [48],
Reasoning using RNN [49], Context-dependent KG
embedding [50]

KBLRN [51]

Logical Rules
Rules incorporated KG completion models [42],
Large-scale Knowledge Base Completion [52],
KALE [53], Logical Background Knowledge for Re-
lation Extraction [54], and etc.

Temporal Information Time-Aware Link Prediction [55], co-evolution of
event and KGs [56], Know-evolve [57]

Graph Structures GAKE [58], Link Prediction in Multi-relational
Graphs [59]

KBLRN [51]

dings [9, 61, 62]. The survey [61] is conducted on fac-

torization based, random walk based, and deep learn-

ing based network embedding approaches such as

DeepWalk, Node2vec, and etc. [9, 62] discuss only

RESCAL [26] and KREAR [63] as methods which

use attributes of entities for KG embeddings, and fo-

cus mostly on the structure-based embedding meth-

ods, i.e., methods using non-attributive triples, for ex-
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Table 2
KG embedding models with literals and their corresponding base models.

Models with literals The standard models they extend
Extended RESCAL [37] RESCAL [26]
Jointly(desp) [21] TransE [11]
DKRL [13] TransE [11]
Jointly [22] TransE [11]
SSP [23] TransE [11]
KDCoE [24] TransE [11]
KGlove with literals [36] KGlove
LiteralE [33] DistMult [27], ComplEx [29],

ConvE [12]
TransEA [19] TransE [11]
IKRL [20] TransE [11]
MTKGRL [60] TransE [11]
EAKGAE [25] TransE [11]
MKBE [34] DistMult [27], ConvE [12]

ample, translation based embedding models listed in
Table 1. However, RESCAL is a matrix-factorization
method for relational learning which encodes each ob-
ject/data property as a slice of the tensor leading to
an increase in the dimensionality of the tensor auto-
matically. This method suffers from efficiency issues if
literals are utilized while generating KG embeddings.
Similarly, KREAR only considers those data proper-
ties which have categorical values, i.e., fixed number
of values and ignores those which take any random lit-
erals as values. One of the recent surveys [64] sum-
marizes the methods proposed so far on refining KGs.
However, this survey does not confine itself to embed-
ding techniques and also does not consider most of
the approaches which are making use of literals. An-
other very recent related study [65], discusses differ-
ent aspects of KG embedding models such as model
architectures, training strategies, and hyperparameter
optimization but it takes into consideration only those
models without literals.

None of the surveys mentioned above include all
the existing KG embedding models which make use
of literals, such as the ones categorized as models in-
corporating information represented in literals in Ta-
ble 1. To the best of our knowledge, this is the first
attempt to analyse the algorithms proposed so far for
generating KG embeddings using literals. In this paper,
discussions on the type of literals, the embedding ap-
proaches, and the applications/tasks on which the em-
bedding models are evaluated are given. A categoriza-
tion of the models based on the type of literals they use
is also provided.

This survey is an extension of an already published
short survey [66]. The major difference between the
two versions is that (i) this survey contains a much
more detailed theoretical analysis of the KG embed-
ding models with literals proposed so far, and (ii) it
performs empirical evaluation of the discussed models
under the same experimental settings under the exam-
ple of link prediction.

3. Problem Formulation

This section briefly introduces the fundamentals of
KGs and KG embeddings followed by a formal def-
inition of KG embeddings with literals. It also poses
various research questions about why conducting this
study is a stepping stone for future development.

3.1. Preliminaries

Knowledge Graphs. Knowledge Graphs (KGs) con-
sist of a set of triples K ⊆ E × R × (E ∪ L), where
E is a set of resources referred to as entities, L a set
of literals, and R a set of relations. An entity is identi-
fied by a URI which represents a real-world object or
an abstract concept. A relation (or property) is a binary
predicate and a literal is a string, date, or number even-
tually followed by its data type. For a triple <h, r,
t>, h is a subject, r is a relation and t is an object. The
subject and object are often referred to as head and tail
entity respectively. The triples consisting of literals as
objects are often referred to as attributive triples.
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Relations (or Properties). Based on the nature of the
objects, relations are classified into two main cate-
gories:

– Object Relation links an entity to another entity.
E.g., in the triple
<dbr:Albert_Einstein, dbo:field,
dbr:Physics>, both dbr:Albert_Ein-
stein and dbr:Physics are entities, the re-
lation dbo:field is an Object Relation.

– Data Type Relation links an entity to its values,
i.e., literals. For example, in
<dbr:Albert_Einstein, dbo:birthDate,
"1879-03-14">, where "1879-03-14" is a
literal value, the relation dbo:birthDate is a
Data Type Relation.

3.2. Types of Literals

Literals in a KG encode additional information
which is not captured by the entities or relations. There
are different types of literals present in the KGs:

– Text Literals: A wide variety of information can
be stored in KGs in the form of free text such as
names, labels, titles, descriptions, comments, etc.
In most of the KG embedding models with lit-
erals, text information is further categorized into
Short text and Long text. The literals which are
fairly short such as for relation like names, ti-
tles, labels, etc. are considered as Short text. On
the other hand, for strings that are much longer
such as descriptions of entities, comments, etc.
are considered as Long text and are usually pro-
vided in natural language.

– Numeric Literals: Information encoded as inte-
gers, float and so on such as height, date, popula-
tion, etc. also provide useful information about an
entity. It is worth considering the numbers as dis-
tinct entities in the embedding models, as it has
its own semantics to be covered which cannot be
covered by string distance metrics. For instance,
777 is more similar to 788 than 77.

– Units of Measurement: Numeric literals of-
ten denote units of measurements to a defi-
nite magnitude. For example, Wikidata property
wdt:P2048 ("height") takes values in mm, cm,
m, km, inch, foot and pixel. Hence, discarding
the units and considering only the numeric values
without normalization results in loss of seman-
tics, especially if units are not comparable, e.g.,
units of length and units of weight.

– Image Literals: Images also provide latent use-
ful information for modelling the entities. For ex-
ample, a person’s details such as age, gender, etc.
can be deduced via visual analysis of an image
depicting the person.

– Other Types of Literals: Useful information en-
coded in the form of other literals such as external
URIs which could lead to an image, text, audio or
video files.

3.3. Research Questions

As it can be seen from the above discussion that the
information represented in the KGs is diverse, mod-
elling these entities is a challenging task. The chal-
lenges which are further targeted in this study are given
as follows:

– RQ1 – How can structured (triples with object re-
lations) and unstructured information (attributive
triples) in the KGs be combined into the represen-
tation learning?

– RQ2 – How can the heterogeneity of the types of
literals present in the KGs be captured and com-
bined into representation learning?

4. Knowledge Graph Embeddings with Literals

This section investigates KG embedding models
with literals divided into the following different cate-
gories based on the types of literals utilized: (i) Text,
(ii) Numeric, (iii) Image, and (iv) Multi-modal. A KG
embedding model which makes use of at least two
types of literals providing complementary information
is considered as multi-modal. In the subsequent sec-
tions, a description of the models for each of the previ-
ously described categories analyzing their similarities
and differences, followed by a discussion of potential
drawbacks are provided.

4.1. Models with Text Literals

In this section, seven KG embedding models uti-
lizing text literals are discussed, namely, Extended
RESCAL [37], Jointly(desp) [21], DKRL [13], Jointly
[22], SSP [23], KDCoE [24], and KGloVe with liter-
als [36]. A detailed description followed by a summary
presenting the comparison of these models is given
along with their drawback. Moreover, in order to show
the differences between the models based on complex-
ity, the number of parameters of each model is pre-
sented in Table 3.
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Extended RESCAL aims to improve the original
RESCAL approach by extending its algorithm to pro-
cess literal values more efficiently and to deal with the
drawback of sparsity that accompanies tensors. In the
original RESCAL approach, relational data is modeled
as a three-way tensor X of size n×n×m, where n is the
number of entities and m is the number of relations. An
entry Xi jk = 1 denotes the existence of the triple with
i-th entity as a subject, k-th relation as a predicate, and
j-th entity as an object. If Xi jk is set to 0, it indicates
that the triple doesn’t exist. A new approach for tensor
factorization is proposed which is performed on X. For
further details refer to [37]. If attributive triples have
to be modeled in such a way, then the literals will be
taken as entities even if they cannot occur as subject in
the triples. Including literals may lead to an increment
in the runtime since a larger tensor has to be factorized.

In contrast to the original algorithm, the extended
RESCAL algorithm handles the attributive triples in
a separate matrix. The matrix factorization is per-
formed jointly with the tensor factorization of the non-
attributive triples. The attributive triples containing
only text literals are encoded in an entity-attribute ma-
trix D in such a way that the rows are entities and the
columns are < data type relation, value > pairs. Given
a triple with a textual data type such as rdfs:label
or yago:hasPreferredMeaning, one or more
such pairs are created by tokenizing and stemming the
text in the object literal. The matrix D is then factor-
ized into D ≈ AV with A and V being the latent-
component representations of entities and attributes re-
spectively. Despite the advantage that this approach
has for handling multi-valued literals, it does not con-
sider the sequence of words of the literal values. Note
that Extended RESCAL represents RDF(S) data in
such a way that there is no distinction drawn among
A-Box and T-Box, i.e., both classes and instances are
modeled equally as entities in a tensor. The T-Box is
rather taken as soft constraints instead of letting them
impose hard constraints on the model.
Jointly(Disp) is an approach which jointly learns em-
beddings of KGs and a text corpus of entity descrip-
tions, i.e, it uses an alignment model to make sure
the entities, relations, and words are represented in
the same vector space. This approach consists of three
components, namely, knowledge model, text model,
and alignment model. The knowledge model is used
to capture the semantics of the structured information
from the KG. Given a triple < h, r, t >, the model de-

fines the plausibility of the triple, same as in [67]:

Pr(h|r, t) =
exp{z(h, r, t)}∑
h̃∈I exp{z(h̃, r, t)}

, (1)

where z(h, r, t) = b− 0.5 · ‖h + r − t‖22, b = 7. Anal-
ogously, Pr(r|h, t) and Pr(t|h, r) are defined.

Then, the loss function of the knowledge model is
defined as follows:

LK =
∑
(h,r,t)

[log Pr(h|r, t) + log Pr(t|h, r)

+ log Pr(r|h, t)].
(2)

The text model adopts the same assumption made
in [67] that is if two words occur in the same context
then there is a relation between them. Based on this
assumption, the text model defines the probability of a
pair of words w and v co-occurring in a text window as
follows:

Pr(w|v) =
exp{z(w, v)}∑

w̃∈V exp{z(w̃, v)}
, (3)

where z(w, v) = b − 0.5 · ‖w − v‖22. Then, the loss
function of the text model is given as:

LT =
∑
(w,v)

log Pr(w|v). (4)

The role of the third component, the alignment model,
is to put the embeddings of the entities, relations,
and words into the same vector space. This submodel
works by utilizing entity descriptions to align these
embeddings. For every word w in the description of en-
tity e, the conditional probability of predicting w given
e is defined as :

Pr(w|e) =
exp{z(e,w)}∑

w̃∈V exp{z(e, w̃)}
, (5)

where z(e,w) = b − 0.5 · ‖e − w‖22. The entity vec-
tor e in Eq 5 is the same as the entity vector appear-
ing in Eq 1, i.e., an entity has a single unified repre-
sentation which captures the semantics from both the
structured KG and the entity descriptions. Pr(e|w) is
defined analogously. Based on the definition given in
Eq 5, the loss function of the alignment model is de-
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fined as:

LA =
∑
e∈E

∑
w∈De

[log Pr(w|e) + log Pr(e|w)], (6)

where E and De denote the set of entities and the de-
scription of the entity e respectively.

By adopting the joint embedding framework in [67],
the main loss of Jointly(desp) is defined as follows:

L({ei}, {r j}, {wl}) = LK + LT + LA. (7)

DKRL extends TransE [11] by utilizing the descrip-
tions of entities. For each entity e, two kinds of vector
representations are learned, i.e., structure-based es and
description-based ed. These two kinds of entity rep-
resentations are learned simultaneously into the same
vector space but not forced to be unified so that novel
entities with only descriptions can be represented. In
order to achieve this, given a certain triple < h, r, t >
the energy function of the DKRL model is defined as:

E = ||hs + r − ts||+ ||hd + r − td||

+||hs + r − td||+ ||hd + r − ts||,
(8)

where hs and ts are the structure-based representations,
and hd and td are the description-based representations
of their corresponding entities.

In order to learn structure-based representations, the
TransE approach is directly applied which considers
the relation in a triple as the translation from the head
entity to the tail entity. On the other hand, Continu-
ous Bag of Words (CBOW) and a deep Convolutional
Neural Network (CNN) model have been used to gen-
erate the description-based representations of the head
and tail entities. In case of CBOW, short text is gen-
erated from the description based on keywords and
their corresponding word embeddings are summed up
to generate the entity embedding. In the CNN model,
after preprocessing the description, pretrained word
vectors from Wikipedia are provided as input. This
CNN model has five layers and after every convolu-
tional layer pooling is applied to decrease the param-
eter space of CNN and filter noises. Max-pooling is
applied for the first pooling and mean pooling for the
last one. The activation function used is either tanh or
ReLU. The CNN model works better than CBOW be-
cause it preserves the sequence of words.

In order to train DKRL, the following margin-based
score function is considered as an objective function

and minimized using a standard back propagation us-
ing stochastic gradient descent (SGD)

L =
∑

(h,r,t)∈T

∑
(h′,r′,t′)∈T ′

max(γ + d(h + r, t)

−d(h′ + r′, t′), 0),

(9)

where γ > 0 is a margin hyperparameter, d is a
dissimilarity function and T ′ is the set of corrupted
triples. The representation of the entities can be either
structure-based or description-based.
Jointly [22] learns KG embeddings by leveraging en-
tity descriptions. Specifically, it learns a joint embed-
ding of an entity by combining its structure-based and
description-based representations with a gating mech-
anism. The gate is used to find balance between the
structure-based and the description-based representa-
tions. For a certain entity a representation can be en-
coded from its descriptions by converting the descrip-
tion into fixed length vector. In Jointly, different text
encoders have been used such as bag-of-words, LSTM,
and Attentive LSTM.

For an entity e, its joint representation e is a lin-
ear interpolation between its structure-based represen-
tation (es) and description-based representation (ed),
which is defined as:

e = ge � es + (1− ge)� ed, (10)

where � is an element-wise multiplication and ge is a
gate to balance the two information sources (structure
and text) which is computed as ge = α(g̃e) with ge =
g̃e ∈ Rd being real-value vector stored in a lookup
table.

The entity descriptions are encoded using either
bag-of-words, LSTM, or Attentive LSTM (ALSTM)
encoders in order to generate text-based representation
for the corresponding entities. On the other hand, to
better model the structure-based embedidngs, entities
and relations can be pre-trained with any existing KG
embedding models, such as TransE.

Jointly’s score function is inspired by TransE and
defined as follows:

f (h, r, t; dh, dt) = ‖(gh � hs + (1− gh)

�hd) + r − (gt � ht + (1− gt)� td)‖22.
(11)

where hs, hd, and gh are the head entity’s structure-
based embedding, description-based embedding, and
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gate respectively whereas ts, td, and gt are the tail
entity’s structure-based embedding, description-based
embedding, and gate respectively.
SSP (Semantic Space Projection) [23] is a joint em-
bedding model which learns from both structured/sym-
bolic triples and textual descriptions. Differently from
DKRL and Jointly(Desp), where first-order constraints
which are weak in capturing the correlation of textual
descriptions and symbolic triples are applied, SSP fol-
lows the principle that triple embedding is considered
always as the main procedure and textual descriptions
must interact with triples in order to learn better rep-
resentation. Therefore, triple embedding is projected
onto a semantic subspace such as a hyperplane to allow
strong correlation by adopting quadratic constraint.

SSP applies the following scoring function:

fr(h, t) = −λ‖e− sT es‖22 + ‖e‖22, (12)

where

e .
= h + r− t, (13)

and

s .
=

sh + st

‖sh + st‖
. (14)

Note that λ is a suitable hyper-parameter, h and t are
the structure (symbolic triples) based embedding of the
head and tail entities respectively, sh and st are the se-
mantic vectors generated from the textual descriptions
of the head and tail entities respectively. SSE adopts
the Non-negative Matrix Factorization (NMF) topic
model to generate description-based semantic vectors
for entities (sh and st), i.e., by treating each entity de-
scription as a document and taking the topic distribu-
tion of the document as the representation of the cor-
responding entity.

SSP provides two different settings for training
which are referred to as Std and Joint. In Std, a
pre-trained topic model with NMF is used to obtain
description-based semantic vectors. These description-
based vectors are fixed during training but the other
parameters are optimized. On the other hand, in the
Joint setting the topic model is also learnt simultane-
ously with the KG embeddings instead of using a fixed
pre-trained vectors.
KDCoE focuses on the creation of an alignment
between entities of multilingual KGs by creating
new Inter-Lingual Links (ILLs) based on an embed-

ding approach which exploits entity descriptions. The
model uses a weakly aligned multilingual KG for
semi-supervised cross-lingual learning. It performs
co-training of a multilingual KG embedding Model
(KGEM) and a multilingual entity Description Em-
bedding Model (DEM) iteratively in order for each
model to propose a new ILL alternately. KGEM is
composed of two components, i.e., a knowledge model
and an alignment model, to learn embeddings based
on structured information from the KGs (the non at-
tributive triples). Given a set of languages L, a sepa-
rate k1-dimensional embedding space Rk1

L is used for
each language L ∈ L to represent the corresponding
relations RL and entities EL. In order to learn the em-
beddings for RL and EL, the knowledge model adopts
TransE and thus uses hinge loss as its objective func-
tion. On the other hand, a linear-transformation-based
technique which has the best performance in case of
cross-lingual inferences is adopted for the alignment
model. This technique employs the following objective
function:

S A =
∑

(e,e′)∈I(Li,L j)

‖Mi je− e′‖2, (15)

where I(Li, L j) is ILLs between the languages Li

and L j, and Mi j is a k1 × k1 matrix used as a linear
transformation on entity vectors from Li to L j.

Let S K be the hinge loss function used by the knowl-
edge model, the KGEM model then minimizes S KG =
S K + αS A, where α is a positive hyperparameter. In
case of DEM model, an attentive gated recurrent unit
encoder (AGRU) is used to encode the multilingual en-
tity descriptions. DEM applies multilingual word em-
beddings in order to capture the semantic information
of multilingual entity descriptions from the word level.
The two models, i.e., KGEM and DEM, are iteratively
co-trained in order for each model to propose a new
ILL alternately.
KGloVe with literals is an experimental attempt to in-
corporate entity descriptions in KGloVe KG embed-
ding approach. The experiment is conducted on DBpe-
dia considering the abstracts and comments of entities
as their descriptions. The main goal is to extract named
entities from the textual description and for every en-
tity in the text, to replace those words representing it
with the entity itself and then take its neighbouring
words and entities as its context. The approach works
by creating two co-occurrence matrices independently
and then by merging them at the end so that a joint em-
bedding can be performed. The first matrix is gener-
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ated using the same technique as in KGloVe [68], i.e.,
by performing Personalized PageRank (PPR) on the
(weighted) graph followed by the same optimisation
used in the GloVe [69] approach.

In order to create the second matrix, the Named En-
tity Recognition (NER) task is performed on the en-
tity description text using the list of entities and pred-
icates of the KG as an input. The NER step employs
a simple exact string matching technique which leads
to numerous drawbacks such as missing entities due
to having different keywords with the same semantics.
All the English words that do not match any entity la-
bels are added to the entity-predicate list. Then GloVe
co-occurrence for text is applied to the modified text
(i.e., DBpedia abstract and comments) using the entity-
predicate and word list as input. Finally, the two co-
occurrence matrices are summed up together to cre-
ate a single unified matrix. The proposed approach has
been evaluated on classification and regression tasks
and the result indicates that for most of the classifiers
used, except SVM, the approach does not bring signif-
icant improvement to KGloVe. However, the approach
can be improved using parameter tuning with extensive
experiments.

Summary The basic differences between these mod-
els lie in the methods used to exploit the informa-
tion given in the text literals and combine them with
structure-based representation. One major advantage
of KDCoE over text literal based embedding mod-
els is that it considers descriptions present in mul-
tilingual KGs. Also, both DKRL and KDCoE em-
bedding models are designed to perform well for the
novel entities, which have only attributive triples in the
KGs. Jointly(Desp) aligns KG embeddings and word
embeddings on word level, which may lead to los-
ing some semantic information on phrase or sentence
level. Jointly applies a gating mechanism which al-
lows to automatically find a balance between the struc-
tural and textual information. It also uses an LSTM en-
coder which enables the model to select the most re-
lated information for an entity from its text descrip-
tion according to different relations. Unlike DKRL
and Jointly(Desp), SSP focuses on characterizing the
stronger correlations between entity descriptions and
structured triples by projecting triple embedding onto
a semantic subspace such as a hyper-plane, as dis-
cussed above. Another common drawbacks among the
presented approaches with text literals is they focus
mostly on descriptions, which is long natural language
text and thus, other types of text literals, such as,

Table 3
Complexity of the models with text literals in terms of the number
of parameters. Θ is the number of parameters in the base model, H
is the entity embedding size, Nd is the number of data relations, L is
the number of attribute-value pairs, Nr is the number of relations, Nw

is the number of words, H′ is the word embedding size, N(1)
0 is the

dimension of input vectors at the first layer, N(1)
1 is the dimension

of output vectors at layer 1, K is window size, N(2)
0 is the dimension

of input vectors at the second layer, N(2)
1 is the dimension of output

vectors at second layer, Ne1 and Ne2 denote the number of entities
in two different languages of a multilingual KG, Nr1 and Nr2 denote
the number of relations in two different languages of a multilingual
KG, N is the total number of entities and relations, and M is the total
number of entities, relations and words.

Model #Parameter

Extended Rescal Θ + HL

Jointly(Desp) Θ + NwH′

DKRL Θ + NwH′ + N1
0KN(1)

1 + N(2)
0 KN(2)

1

Jointly(ALSTM) Θ + (2H + 4)H

SSP Θ + (Ne + Nw)H

KDCoE (Ne1 + Ne2 + Nr1 + Nr2 + H)H

+(5H′ + 3Nw)H′

KGlove with literals (N + 1)N + Nw + M

names, labels, titles, etc. are not widely considered.
Moreover, another way to compare these approaches is
by looking at their model complexity. Table 3 presents
the complexity of these models in terms of their num-
ber of parameters.

4.2. Models with Numeric Literals

In this section, the analysis of the presented KG em-
bedding models which use numeric literals, namely,
MT-KGNN [35], KBLRN [51], LiteralE [33], and
TransEA [19] are presented followed by a summary.
Moreover, in order to show the differences between the
models based on complexity, the number of parameters
of each model is presented in Table 4.

MT-KGNN is an approach for both relational learn-
ing and non-discrete attribute prediction on knowledge
graphs in order to learn embeddings for entities, object
properties, and data properties. It is composed of two
networks, namely, the Relational Network (RelNet)
and the Attribute Network (AttrNet). RelNet is a bi-
nary (pointwise) classifier for triple prediction whereas
AttrNet is a regression task for attribute value predic-
tion. Given n, m, and l as entity, relation, and literal
embedding dimensions respectively, the model passes
as an input [ei, rk, e j, t] to RelNet and [ai, vi, a j, v j] to
AttrNet, where ei , e j ∈ Rn, rk ∈ Rm, t is the classifi-
cation target which is 0 or 1, ai, a j ∈ Rl, and vi and v j
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are normalized continuous values in the interval [0, 1].
Note that the inputs to AttrNet, i.e., [ai, vi, a j, v j], are
taken from attributive triples with non-discrete literal
values. An embedding lookup layer is used to retrieve
the corresponding vector representations given these
inputs as one-hot encoded indices.

In RelNet, a concatenated triple is passed through
a nonlinear transform and then a sigmoid function is
applied to get a linear transform:

grel(ei, rk, e j) = σ(−→w T f (WT
d [−→ei ;−→e j ;

−→rk ])

+brel),
(16)

where w ∈ Rh×1 and Wd ∈ R3n×h are parameters of
the network. σ, f , and brel are the sigmoid function,
the hyperbolic tangent function tanh, and a scalar bias
respectively. RelNet is trained by minimizing the fol-
lowing cross entropy loss function:

Lrel = −
N∑

i=1

ti log grel(ξi)

+(1− ti) log(1− grel(ξi))),

(17)

where ξi denotes triple i in batch of size N and ti takes
the value 0 or 1. In case of AttrNet, two regression
tasks are performed, one for the head data properties
and another for those of the tail. The following scoring
functions are defined for these two tasks:

gh(ai) = σ(−→u T f (BT [−→ai ;
−→ei ]) + bz1), (18)

and

gt(a j) = σ(−→y T f (CT [−→a j ;
−→e j ]) + bz2), (19)

where u, y ∈ Rha×1 and B,C ∈ R2n×ha are parameters
of AttrNet. ha is the size of the hidden layer and bz1 , bz2
are scalar biases. Each AttrNet is trained by optimizing
Mean Squared Error (MSE) loss function:

MS E(s, s∗) =
1

N

N∑
i=1

(si − s∗i )2. (20)

where s and s∗ are predicted labels (scores computed
by the model ) and ground truth labels respectively.
The overall loss of the AttrNet is computed by adding
the MSE of the head AttrNet and that of the tail AttrNet

as follows:

Lattr = MS E(gh(ai), (ai)
∗)

+MS E(gt(a j), (a j)
∗),

(21)

where (ai)
∗, (a j)

∗ are the ground truth labels. Finally,
the two networks are trained in a multi-task fashion
using a shared embedding space.
KBLRN works by combining relational (R), latent
(L), and numerical (N) features together. The model
is designed mainly for the purpose of KG comple-
tion. It uses a probabilistic PoE (Product of Experts)
method to combine these feature types and train them
jointly end to end. Each relational feature is formu-
lated as a logical formula, by adopting the rule min-
ing approach AMIE+ [70], to be evaluated in the KB
to compute the feature’s value. The latent features are
the ones that are usually generated using an embed-
ding approach such as DistMult. Numerical features
are used with the assumption that, for some relation
types, the differences between the head and tail can be
seen as characteristics for the relation itself. Given a
triple d = (h, r, t), for each (relation type r, and feature
type F ∈ {L,R,N}) pair, individual experts are de-
fined based on linear models and DistMult embedding
method as follows:

f(r,L)(d | θ(r,L)) = exp((eh ∗ et) · wr), (22)

f(r,R)(d | θ(r,R)) = exp(r(h,t) · wr
rel), (23)

f(r,N)(d | θ(r,N)) = exp(φ(n(h,t)) · wr
num), (24)

and

f(r′,F)(d | θ(r′,F)) = 1 f or all r′ 6= r (25)

where wr,wr
rel,w

r
num are the parameter vectors for the

latent, relational, and numerical features correspond-
ing to the relation r. Also, * is the element-wise prod-
uct, · is the dot product, and φ is the radial basis func-
tion (RBF) applied element-wise to the differences of
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values n(h,t) computed as follows:

φ(n(h,t)) = [exp(
−‖n(1)(h,t) − c1‖22

σ2
1

) . . .

exp(
−‖n(dn)

(h,t) − cdn‖22
σ2

dn

)].

(26)

Here, dn corresponds to the relevant numerical fea-
tures. A PoE’s probability distribution for a triple d =
(h, r, t) is defined as follows:

p(d | θ1 . . . θn) =
ΠF f(r,F)(d | θ(r,F))∑
c ΠF f(r,F)(c | θ(r,F))

, (27)

where c denotes all possible triples. The parameters of
the entity embedding model are shared by all the ex-
perts in order to create dependencies between them. In
this approach, the PoE are trained with negative sam-
pling and a cross entropy loss to give high probability
to observed triples.
LiteralE incorporates literals into existing latent fea-
ture models designed for link prediction. In this ap-
proach, without loss of generality, the focus lies on
incorporating numerical literals into three state-of-
the-art embedding methods: DistMult, ComplEx, and
ConvE. Given a base model, for instance Distmult, Lit-
eralE modifies the scoring function f used in Distmult
by replacing the vector representations of the entities
ei in f with literal enriched representations elit

i . In or-
der to generate elit

i , LiteralE uses a learnable transfor-
mation function g which takes ei and its corresponding
literal vectors li as inputs and maps them to a new vec-
tor. The function g is defined, as shown below, based
on the concept of GRU in order to make it flexible,
learnable, and capable to decide, if it is beneficial to
incorporate the literal information or not:

g : RH × RNd → RH , (28)

and

e, l 7→ z� h + (1− z)� e, (29)

where

z : σ(WT
zee + WT

zll + b), (30)

and

h = h(WT
h [e, l]). (31)

Note that Wze ∈ RH×H ,Wzl ∈ RNd×H ,b ∈ RH , and
Wh ∈ RH+Nd×H are the parameters of g, σ is the sig-
moid function, � denotes the element-wise multipli-
cation, and h is a component-wise nonlinearity. The
scoring function f (ei, e j, rk) has been replaced with
f (g(ei, li), g(e j, l j), rk) and trained following the same
procedure as in the base model.
TransEA has two component models; a directly
adopted translation-based structure embedding model
(i.e., TransE) and a newly proposed attribute embed-
ding model. In the former, the scoring function of a
given triple < h, r, t >, is defined as follows:

fr(h, t) = −‖h + r − t‖1/2, (32)

where ||x||1/2 denotes either the L1 or L2 norm. The
loss function of the structure embedding, for all the
relational triples in the KG, is defined as:

LR =
∑

<h,r,t>∈T

∑
<h′,r,t′>∈T ′

max(γ + fr(h, t)

− fr(h′, t′), 0),

(33)

where T ′ denotes the set of negative triples constructed
by corrupting either the head or the tail entity and γ >
0 is a margin hyperparameter.

For the attribute embedding, it uses all attributive
triples containing numeric values as input and applies a
linear regression model to learn embeddings of entities
and attributes. Given an attributive triple < e, a, v >,
the scoring function is defined as:

fa(e, v) = −‖aT · e + ba − v‖1/2, (34)

where a and e are vectors of attribute a and entity e,
ba is a bias for attribute a. On the other hand, given all
the attributive triples with numeric values S , the loss
function for the attributive embedding is computed as:

LA =
∑

<e,a,v>∈S

fa(e, v), (35)

The main loss function for TransEA (i.e., L = (1 −
α) · LR +α · LA) is defined by taking the sum of the re-
spective loss functions of the component models with
a hyperparameter to assign a weight for each of the
models. Finally, the two models are jointly optimized
in the training process by sharing the embeddings of
entities.
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Summary Despite their support for numerical liter-
als, all the embedding methods discussed fail to inter-
pret the semantics behind units/data typed literals. For
instance, given the following two triples taken from
DBpedia,

<http://dbpedia.org/resource/Anton_Baraniak,
dbp:weight, "110.0"^^<http://dbpedia.org/
datatype/kilogram>,

<http://dbpedia.org/resource/Katelin_Snyder,
dbp:weight, "110.0"^^<http://dbpedia.org/
datatype/pound>

the literal value "110.0" from the first triple and the lit-
eral value "110.0" from the second triple could be con-
sidered exactly the same if the semantics of the types
kilogram and pound are ignored. Moreover, most of
the models do not have a proper mechanism to handle
multi-valued literals.

Regarding model complexity, the number of param-
eters used in each model is presented in Table 4 to
show the complexity in terms of the parameters. It is
noted that the complexity of the models depend on the
size of the dataset and TransEA has lower complexity
as compared to the other models.

Table 4
Complexity of the models with numerical literals in terms of the
number of parameters. Θ is the number of parameters in the base
model, H is the entity embedding size, Nd is the number of data re-
lations, Λ is the size of the hidden layer in the Attrnet networks of
MTKGNN, Nr is the number of relations, and M is attribute embed-
ding size.

Model #Parameters

LiteralE with g Θ + 2H2 + 2NdH + H
LiteralE with glin Θ + (NdH + H)H

MTKGNN Θ + NdH + 2(2HΛ + Λ)
KBLN Θ + NrNd

TransEA Θ + Nd M

4.3. Models with Image Literals

In this section, KG embedding models utilizing im-
ages of entities, namely, IKRL [20] and MTKGRL
[60] are discussed. First, a detailed analysis of the
models is presented followed by a summary. More-
over, in order to show the differences between the
models based on complexity, the number of parameters
of each model is presented in Table 5.

IKRL [20] learns embeddings for KGs by jointly
training a structure-based representation with an image-
based representation. The structure-based representa-
tion of an entity is learned by adapting a conventional
embedding model like TransE. For the image-based
representation, given the fact that an entity may have
multiple image instances, an image encoder is applied
to generate an embedding for each instance of a multi-
valued image relation. The image encoder consists of
a neural representation module and a projection mod-
ule to extract discriminative features from images and
to project these representations from image space to
entity space respectively.

For the i-th image, its image-based representation pi

in entity space is computed as:

pi = M · f (imgi), (36)

where M ∈ Rdi×ds is the projection matrix with di and
ds representing the dimension of image features and
the dimension of entities respectively. f (imgi) is the
i-th image feature representation in image space.

Attention-based multi-instance learning is used to
integrate the representations learned for each image in-
stance by automatically calculating the attention that
should be given to each instance. The attention for the
i-th image representation p(k)

i of the k-th entity is given
as:

att(p(k)
i , e(k)

S ) =
exp(p(k)

i · e
(k)
S )∑n

j=1 exp(p(k)
j · e

(k)
S )

, (37)

where e(k)
S denotes the structure-based representation

of the k-th entity. The higher the attention the more
similar the image-based representation is to its cor-
responding structure-based representation which indi-
cates that it should be given more importance when ag-
gregating the image-based representations. The aggre-
gated image-based representation for the k-th entity is
defined as follows:

e(k)
I =

n∑
i=1

att(p(k)
i , e(k)

S ) · p(k)
i∑n

j=1 att(p(k)
j , e(k)

S )
. (38)

Given a triple, the overall energy function is defined
by combining four energy functions (i.e., E(h, r, t) =
ES S +EII+ES I+EIS . These energy functions are based
on two kinds of entity representations (i.e, structure-
based and image-based representations). The first en-
ergy function (i.e., ES S = ‖hS + r − tS ‖) is same as
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TransE and the second function (i.e., EII = ‖hI + r −
tI‖) uses their corresponding image-based representa-
tions for both head and tail entities. The third function
(i.e., ES I = ‖hS + r − tI‖) is based on the structure-
based representation of the head entity and the image-
based representation of the tail entity whereas the
fourth function (i.e., EIS = ‖hI + r − tS ‖) is the exact
opposite. These third and forth functions ensure that
both structure-based representation and image-based
representations are learned into the same vector space.

Given the energy function E(h, r, t), a margin-based
scoring function is defined as follows:

L =
∑

(h,r,t)∈T

∑
(h′,r′,t′)∈T ′

max(γ + E(h, r, t)

−E(h′, r′, t′), 0),

(39)

where γ is a margin hyperparameter and T ′ is the neg-
ative sample set of T generated by replacing the head
entity, tail entity or the relation for each triple in T.
Note that triples which are already in T are removed
from T ′.
MTKGRL [60] is a KG embedding approach which
combines structural (symbolic), visual, and linguis-
tic KG representations. The structural representations
are created by adopting TransE embedding technique
whereas visual embeddings are obtained from the fea-
ture layers of deep networks for image classification
on the images that are associated with entities. For
linguistic representations, pre-trained word embedding
technique, specifically the skipgram model, is used.
However, the information source for the linguistic rep-
resentation are not literals from the KG but an exter-
nal source, i.e., the word embedding model, trained
on Google 100B token news dataset. Due to this fact,
the model MTKGRL is not considered as multi-modal
KG embedding model in the context of this survey and
thus, it is not categorized under ‘Models with Multi-
modal Literals’ (Sec 4.4).

MTKGRL defines an energy function for each kind
of representation and also their combinations, i.e.,
structural energy, multimodal energies, and structural-
multimodal energies. Structural energy is adopted
from TransE, which is defined as ES = ‖hs +

rs − ts‖. The multimodal representations for the head
and tail entities are computed as hm = hw ⊕ hi and
tm = tw ⊕ ti respectively, where the operator ⊕ can be
a concatenation operator or a mapping function.

The multimodal energy function under the transla-
tional assumption is given as:

EM1 = ‖hm + rs − tm‖. (40)

EM1 can be extended by considering the structural em-
beddings in addition to the multimodal embeddings as
follows:

EM2 = ‖(hm + hs)rs − (tm + ts)‖. (41)

On the other hand, in order to allow the structural and
multimodal embeddings to be learned in the same vec-
tor space, the following structural-multimodal energies
are defined as shown below:

ES M = ‖hs + rs − tm‖ (42a)

EMS = ‖hm + rs − ts‖ (42b)

The overall energy function, shown in Equation 43,
is defined by combining the aforementioned energy
functions, i.e., ES , EM1, EM2, ES M , EMS .

E(h, r, t) = ES + EM1 + EM2 + ES M

+EMS
(43)

Finally, a margin-based ranking loss function is mini-
mized in order to train the model.

Summary IKRL makes use of the images of en-
tities for KG representation learning by combining
structure-based representation with image-based rep-
resentation. However, given a triple < h, r, t >, in order
to achieve very good representations for the entities h
and t, both entities are required to have images associ-
ated with them. The other issue with this model is that
an image is considered as an attribute of only those en-
tities it is associated with. For example, if there is an
image of two entities e1 and e2 but the image is asso-
ciated with only e1, then it will be taken as one im-
age instance of e1 but not of e2. However, it would be
more beneficial to explicitly associate images with all
the entities they represent before using them for learn-
ing KG embedding. Some of the main points which
make MTKGRL differ from IKRL are: i) in addition
to images, MTKGRL uses linguistic embeddings for
entities, ii) MTKGRL introduces an additional energy
function that considers both linguistic and visual rep-
resentations of entities as discussed above. These dif-
ferences allow MTKGRL to learn better representation
for KGs as compared to IKRL.
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Table 5
Complexity of the models with text literals in terms of the number
of parameters. Θ is the number of parameters in the base model, H
is the entity embedding size, Hi represents the dimension of image
features, θAlexNet is the number of parameters in AlexNet [71], Ne

represents the number of entities, and Ni is the number of images.

Model #Parameter

IKRL Θ + HiH + ΘAlexNet

MTKGRL Θ + NeH + NiHi

4.4. Models with Multi-modal Literals

This section presents an analysis of the embedding
models making use of at least two types of literals pro-
viding complementary information. First, the category
with numeric and text literals is discussed followed by
the category with numeric, text, and image. Moreover,
in order to show the differences between the models
based on complexity, the number of parameters of each
model is presented in Table 6.

4.4.1. Models with Numeric and Text Literals

LiteralE with blocking [38] proposes to improve
the effectiveness of the data linking task by combin-
ing LiteralE with a CER blocking [72] strategy. Unlike
LiteralE, given an attributive triple < h, d, v >, in ad-
dition to the object literal value v it also takes literals
from URI infixes of the head entity h and the data re-
lation d. The CER blocking is based on a two-pass in-
dexing scheme. In the first pass, Levenshtein distance
metric is used to process literal objects and URI in-
fixes whereas in the second pass semantic similarity
computation with WordNet [73] is applied to process
object/data relations. All the extracted literals are tok-
enized into word lists so as to create inverted indices.
The same training procedure as in LiteralE is used to
train this model. For every given triple < h, r, t >, the
scoring function f from LiteralE is adopted to com-
pute scores for all the triples < h, r, t′ > in the knowl-
edge graph. A sigmoid function, p = σ( f (.)) , is used
to produce probabilities. Then, the model is trained by
minimizing the binary cross-entropy loss of the pro-
duced probability function vector with respect to the
vector of truth values for the triples.
EAKGAE [25] is an approach designed for entity
alignment between KGs by learning a unified embed-
ding space for the KGs. The entity alignment task has
three main modules: Predicate alignment, Embedding
learning, and Entity alignment. The predicate align-
ment module merges two KGs together by renam-
ing similar predicates so as to create unified vector

space for the relationship embeddings. The embed-
ding learning module jointly learns entity embeddings
of two KGs using structure embedding (by adapt-
ing TransE) and attribute character embedding. The
adapted TransE is customized in a way that more focus
can be given to triples with aligned predicates. This is
obtained by adding a weight α to control the embed-
ding learning over the triples. Thus, the following ob-
jective function JS E is defined for the structure-based
embedding:

JS E =
∑
tr∈Tr

∑
t′r∈T ′

r

max(0, γ + α( f (tr)− f (t′r))),

(44)

and

α =
count(r)

|T |
, (45)

where Tr and T ′r are the sets of valid triples and cor-
rupted triples respectively, count(r) is the number of
occurrences of the relation r, and |T | is the total num-
ber of triples in the merged KG.

On the other hand, the attributing character embed-
ding is designed to learn embeddings for entities from
the strings occurring in the attributes associated with
the entities. The purpose is to enable the entity embed-
dings from two KGs to fall into the same vector space
despite the fact that the attributes come from differ-
ent KGs. The attribute character embedding is inspired
by the concept of translation in TransE. Given a triple
(h, r, a), the data property r is interpreted as a trans-
lation from the head entity h to the literal value a i.e.
h + r = fa(a) where fa(a) is a compositional function.
This function encodes the attribute values into a sin-
gle vector mapping similar attribute values into simi-
lar representation. Three different compositional func-
tions SUM, LSTM, and N-gram-based functions have
been proposed. SUM is defined as a summation of all
character embeddings of the attribute value. In LSTM,
the final hidden state is taken as a vector representa-
tion of the attribute value. The N-gram-based function,
which shows better performance than the others ac-
cording to their experiments, uses the summation of
n-gram combination of the attribute value.



16 G. A. Gesese et al. / Survey on Knowledge Graph Embeddings with Literals

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

The following objective function is defined for the
attribute character embedding:

JCE =
∑
ta∈Ta

∑
t′a∈T ′

a

max(0, [γ + α( f (ta)− f (t′a))]),

(46)

Ta = < h, r, a > h ∈ G; f (ta) = ‖h + r − fa(a)‖,

and

T ′a = {< h′, r, a > h′ ∈ G} ∪ {< h, r, a′ > a′ ∈ A},

where, Ta and T ′a are the sets of valid attribute triples
and corrupted attribute triples with A being the set of
attributes in a given KG G. The corrupted triples are
created by replacing the head entity with a random en-
tity or the attribute with a random attribute value. Here,
f (ta) is the plausibility score computed based on the
embedding of the head entity h, the embedding of the
relation r, and the vector representation of the attribute
value obtained using one of the compositional func-
tions fa(a).

The attribute character embedding hce is used to
shift the structure embedding hse into the same vector
space by minimizing the following objective function:

JS IM =
∑

h∈G1∪G2

[1− ‖hse‖2 · ‖hce‖2], (47)

where, ‖x‖2 is the L2-Norm of vector x. This way the
similarity of entities from two KGs is captured by the
structure embedding based on the entity relationships
and by the attribute embedding based on the attribute
values.

All the three functions are summed up to an over-
all objective function J (i.e., J = JS E + JCE + JS IM)
for jointly learning both structure and attribute embed-
dings. Finally, the alignment is done by defining a sim-
ilarity equation with a specified threshold. Moreover,
a transitivity rule has been applied to enrich triples in
the KGs to get a better attribute embedding result.

Summary The common drawback with both meth-
ods (LiteralE with blocking and EAKGE) is that text
and numeric literals are treated in the same way. They
also do not consider literal data type semantics or
multi-valued literals in their approach. Furthermore,
since EAKGAE is using character-based attribute em-

bedding, it fails to capture the semantics behind the
co-occurrence of syllables.

4.4.2. Models with Numeric, Text, and Image Literals

MKBE [34] is a multi-modal KG embedding, in
which the text, numeric and image literals are mod-
elled together. The main objective of this approach is
to utilize all the observed subjects, objects, and rela-
tions (object properties and data properties) in order
to predict whether any fact holds. It extends DistMult,
which creates embedding for entities and relations, by
adding neural encoders for different data types. Given
a triple < s, r, o >, the head entity s and the relation r
are encoded as independent embedding vectors using
one-hot encoding through a dense layer. Similarly, if
the object o is a categorical value, then it will be rep-
resented through a dense layer with a relu activation
which has the same number of nodes as the embedding
space dimension. On the other hand, if the object o is
rather a numerical value, then a feed forward layer, af-
ter standardizing the input, is used in order to learn em-
beddings for o by projecting it to a higher-dimensional
space. If o is a short text (such as names and titles),
it is encoded using character-based stacked, bidirec-
tional GRUs and the final output of the top layer will
be taken as the representation of o. On the contrary, if
o is a long text such as entity descriptions, CNN over
word embeddings will be used to get the embeddings
for o. The object o can also be an image, and in such
a case, the last hidden layer of VGG pretrained net-
work on ImageNet [74], followed by compact bilinear
pooling, is used to obtain the embedding of o. Given
the vector representations of the entities, relations and
attributes, the same scoring function from DistMult is
used to determine the correctness probability of triples.

The binary cross-entropy loss, as defined below, is
used to train the model:∑

(s,r)

∑
o

ts,r
o log(ps,r

o )+(1−ts,r
o ) log(1− ps,r

o ), (48)

where for a given subject relation pair (s, r), binary
label vector ts,r over all entities is used to indicate
whether < s, r, o > is observed during training. ps,r

o
denotes the model’s probability of truth for any triple
< s, r, o > computed using a sigmoid function.

Moreover, using these learned embeddings and dif-
ferent neural decoders, a novel multimodal imputation
model is introduced to generate missing multimodal
values, such as numerical data, categorical data, text,
and images, from information in the knowledge base.



G. A. Gesese et al. / Survey on Knowledge Graph Embeddings with Literals 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 6
Complexity of the models with multimodal literals in terms of the
number of parameters. Θ is the number of parameters in the base
model, H is the entity embedding size, Nd is the number of data re-
lations, Nchar is the number of characters, and Ni is the number of
images, ΘCNN is the number of parameters in the CNN model used
in [75], ΘARAE is the number of parameters in ARAE [76] where in-
stead of using the random noise vector z, the generator is conditioned
on the entity embeddings, ΘGAN denotes the sum of the number of
parameters in BE-GAN [77] and in pix2pix-GAN [78].

Model #Parameter

LiteralE with blocking Θ + (NdH + H)H

EAKGAE Θ + (Nd + Nchar)H

MKBE Θ + (2(Nd + 3(Nchar + H)) + Ni)H

+ΘCNN + ΘARAE + ΘGAN

In order to predict the missing numerical and cate-
gorical data such as dates, gender, and occupation, a
simple feed-forward network on the entity embedding
is used. For text, the adversarially regularized autoen-
coder (ARAE) has been used to train generators that
decodes text from continuous codes, having the gen-
erator conditioned on the entity embeddings instead
of random noise vector. Similarly, the combination of
BE-GAN structure with pix2pix-GAN model is used
to generate images, conditioning the generator on the
entity embeddings.

Summary Despite the attempt made in incorporating
text literals, numeric literals, and images into the KG
embedding, the model (MKBE) fails to capture the se-
mantics of the data types/units of (numeric) literal val-
ues. Besides, similar to IKRL, it takes an image I as
an instance of a certain entity e only if, I is initially as-
sociated with e in the dataset considered (refer to Sec-
tion 4.3 for more details).

5. Applications

This section discusses different applications of KG
embeddings on which the previously described meth-
ods have been trained and/or evaluated.

Link prediction. In general terms, link prediction
can be defined as a task of identifying missing infor-
mation in complex networks [79, 80]. Specifically in
the case of KGs, link prediction models aim at pre-
dicting new relations between entities leveraging the
existing links for training. Along with predicting rela-
tions between the entities link prediction also focuses
on the task of predicting either the head or the tail
entity with respect to a relation. Then it decides if a

new triple, which is not observed in the KG, is valid
or not. Formally, let G be a KG with a set of entities
E = {e1, . . . , en} and a set of object relations R =
{r1, . . . , rm}, then link prediction can be defined by a
mapping function ψ : E× E× R→ R which assigns a
score to every possible triple (ei, e j, rk) ∈ E × E × R.
A high score indicates that the triple is most likely to
be true.

Link prediction is one of the most common tasks
used for evaluating the performance of KG embed-
dings. Head prediction, tail prediction, and relation
prediction are different kinds of sub-tasks related
to link prediction. Head prediction aims at identi-
fying a missing head entity where the relation and
tail entity are given, and analogously for tail predic-
tion and relation prediction. Most of the models dis-
cussed in Section 4 have been evaluated on some or
all of these prediction tasks. Head and tail predic-
tion are used to evaluate the models LiteralE [33],
TransEA [19], KBLRN [51], KDCoE [24], EAK-
GAE [25], IKRL [20], MKBE [34], MTKGRL [60],
Jointly(Desp) [21], Jointly [22], and SSP [23]. On the
other hand, DKRL [13] has been evaluated on all kinds
of link prediction tasks: head, tail, and relation predic-
tions. In Extended RESCAL [37], two kinds of link
prediction experiments have been conducted on the
Yago 2 [81], i.e., i) tail prediction by fixing the rela-
tion type to rdf:type, and ii) general link predic-
tion experiments for all relation types. Unfortunately,
it is not possible to compare the obtained evaluation re-
sults of all these models because the experiments have
been carried out on different datasets and also different
link prediction procedures have been followed. Tak-
ing this into consideration, in this survey, experiments
have been conducted on head and tail prediction tasks
for these models (see Section 6).

Triple Classification. The goal of the triple classifi-
cation task is the same as that of link prediction. A po-
tential triple < h, r, t > is classified as 0 (false) or 1
(true), i.e., a binary classification task. The embedding
models MTKGNN [13], IKRL [20], MTKGRL [60],
Jointly(Desp) [21], and Jointly [22] have been eval-
uated on this task. However, since they do not use a
common evaluation dataset, it is not possible to com-
pare the reported results directly.

Entity Classification. Given a KG G, with a set of
entities E and types T and with an entity e ∈ E
and type t ∈ T , the task of entity classification is to
determine if a potential entity type pair (e, t) which
is not observed in G ((e, t) /∈ G) is a missing fact
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or not. This task is an entity type prediction using a
multi-label classification algorithm considering the en-
tity types in G as given classes. In DKRL [13], Ex-
tended RESCAL [37], and SSP [23], Entity classifica-
tion has been used for model evaluation.

Entity Alignment. Given two KGs G1 and G2, the
goal of the entity alignment task is to identify those
entity pairs (e1, e2) where e1 is an entity in G1 and
e2 is an entity in G2 which denote the same real
world entities, and hence the integration of G1 and
G2 can be possible through these unified entities, i.e.,
entity pairs. Different embedding-based models have
been proposed recently for the entity alignment task.
Among the models that are included in this survey,
EAKGAE [25] and KDCoE [24] have been proposed
for the entity alignment task. Specifically, KDCoE [24]
uses a cross-lingual entity alignment task which deter-
mines similar entities in different languages. Despite
the fact that both these models use the same task for
evaluation, the entity alignment task, their experimen-
tal results cannot be compared since they are based on
different datasets.

Other Applications. Attribute-value prediction, near-
est-neighbor analysis, data linking, document classi-
fication, and relational fact extraction are other appli-
cation scenarios used for the evaluation of the mod-
els under discussion. Attribute-value prediction is the
process of predicting the values of (discrete or non-
discrete) attributes in a KG. For example, a missing
value of a person’s weight can be identified using the
attribute value prediction task which is commonly seen
as a KG completion task. In MTKGNN [35], attribute-
value prediction is applied using an attribute-specific
Linear Regression classifier for evaluation. The same
task has been employed in MKBE [34] for model eval-
uation by imputing different multi-modal attribute val-
ues.

Nearest Neighbor Analysis is a task of detecting
the nearest neighbors of some given entities in the la-
tent space learned by an embedding model. This task
has been performed in LiteralE [33] to compare Dist-
Mult+LiteralE with the base model DistMult. On the
other hand, data linking and document classification
tasks have been used in LiteralE with blocking [38]
and KGlove with literals [36] respectively (refer to
[38] and [36] for more details). Relational fact ex-
traction is a task of extracting facts/triples from plain
text and has been used as a model evaluation task in
Jointly(Desp) [21]. Table 16 summarizes all the appli-

cations on which the KG embedding models with lit-
erals have been evaluated.

6. Experiments on Link Prediction

This section provides an empirical evaluation of the
methods discussed in the previous section under a uni-
fied environmental settings and discusses the results
based on the performance of the approaches applied to
the task of link prediction. In this work, link prediction
is chosen because most of the KG embedding mod-
els with literals are trained and evaluated on it. One of
the major issues encountered while conducting these
experiments is that the source code of some of these
models is not openly available and is not easily repro-
ducible. Such methods were excluded from the experi-
mentation. In the subsequent sections, the datasets and
the experiments with text, numeric, images and multi-
modal literals are presented.

Based on the results of the experiments, a clear com-
parison is presented between the models with liter-
als on link prediction. In addition, these models are
also compared with the standard KG embedding ap-
proaches that they extend. Note that these models may
inherit the problems that already exist in their corre-
sponding base models - the standard KG embedding
models that they extend). For instance, the models that
extend DistMult such as DistMult-LiteralEg inherit the
problem of DistMult, which is not being capable to
properly capture anti-symmetric relations due to the
way its scoring function is defined.

6.1. Datasets

The performance of the aforementioned models
was measured using two of the most commonly used
datasets for link prediction, i.e., FB15K [11] and
FB15K-237 [82] are considered. FB15K is a subset of
Freebase [83] which mostly contains triples describ-
ing the facts about movies, actors, awards, sports and
sport teams. It contains a randomly split training, vali-
dation, and test sets. The issue with this dataset is that
the test set contains a large number of triples which are
obtained by simply inverting triples in the training set.
This enables a simple embedding model which is sym-
metric with respect to the head and tail entity to obtain
an excellent performance. In order to avoid this, the
dataset FB15K-237 has been created by removing the
inverse relations from FB15K. The statistics of these
datasets is given in Table 7.
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Table 7
The number of entities, object relations, data relations, relational
triples, train sets, valid sets, and test sets of the FB15K and the
FB15K-237 datasets.

Datasets
FB15K FB15K-237

Entities 14951 14541

Object Relations 1345 237

Relational triples 592213 310116

Train sets 483142 272115

Valid sets 50000 17535

Test sets 59071 20466

6.2. Experiments with Text Literals

As discussed in Section 4.1, the embedding mod-
els Extended RESCAL, DKRL, KDCoE, and KGloVe
with literals utilize text literals. However, all of these
models except DKRL are not considered for experi-
mentation due to the following issues:

– The implementation of the model KGloVe with
literals is not publicly available and it is not easily
reproducible.

– KDCoE is designed specifically for cross-lingual
entity alignment task which makes it difficult to
apply it for link prediction.

– In case of Extended RESCAL, practically this
method is computationally expensive and thus not
considered as a feasible embedding model to in-
corporate literals.
Moreover, none of the models with literals which
are discussed in this paper consider Extended
RESCAL in their experiments.

In order to conduct experiments with text literals,
15239 English entity descriptions of the entities com-
mon in both datasets FB15K and FB15K-237 shown
in Table 7 are taken from LiteralE [33]. The focus lies
on the common entity descriptions, i.e., for those en-
tities existing in FB15K but not in FB15K-237 no de-
scription is used, because there has already been ex-
periments done using the whole entity descriptions for
FB15K dataset in the original paper. This way it would
be possible to analyse the effect of the size of the
dataset (the entity descriptions) on the performance of
the embedding models. The average number of words
(tokens) in the descriptions is 143 whereas the maxi-
mum and minimum are 804 and 2.

Dataset Pre-processing: For pre-processing of the
text (the entity descriptions), spacy.io1 has been used.
This includes tokenization, named entity recognition
and conversion of numbers to text, i.e., 16 has been
converted to ‘sixteen’. After the pre-processing step,
all the entities along with the corresponding triples
having no or short description of less than 3 words
are removed. Also, the triples containing these entities
are removed as mentioned by the authors in the paper.
Moreover, only one description is chosen randomly for
the entities with multiple text descriptions.

Experimental Setup: The hyperparameters used for
DKRL are as follows: learning rate 0.001, embedding
size 100, loss margin 1, batch size 100 and epochs
1000. For TransE, learning rate 0.01, embedding size
50, margin 1, and epochs 1000 are used. The experi-
ments with DKRL were performed on Ubuntu 16.04.5
LTS system with 503GiB RAM and 2.60GHz speed.
On the other hand,the experiments with TransE are
performed with TITAN X (Pascal) GPU.

Runtime: Note that the codes used in the experi-
ments for both models DKRL and TransE are not im-
plemented in the same environment, i.e., for DKRL,
the code that is released by the authors of the paper
is used and for TransE the code provided by the au-
thors of TransEA [19] is used. Therefore, it is not fair
to compare the runtime results of these two models di-
rectly. However, in order to provide some insights into
the computational complexity of the models, their run-
time results on the FB15K dataset are given as follows.
DKRL takes 142 seconds to train 1 epoch using 16
threads whereas the runtime of TransE for a single it-
eration with batch size 4831 is 3.271 millisecond. This
is computed by taking the average of 1000 iterations.

Evaluation Procedure and Results: The perfor-
mance of the model is evaluated based on the link pre-
diction task. For each triple in the test set, a set of cor-
rupted triples is generated with respect to the head or
the tail entity. A triple is said to be corrupted with re-
spect to its head entity if that head entity is replaced
with any other entity from the KG, and analogously
for a triple corrupted with respect to its tail entity. The
set of corrupted triples can also contain true triples that
exist in the training, validation or test set. Since it is
not a mistake to give these true triples better score than
the actual test triple, they are removed from the set of
corrupted triples and this is referred to as filtered set-

1https://spacy.io/usage

https://spacy.io/usage
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ting [11]. In order to check if the model assigns a better
score to the actual test triple than the corrupted triples
which are obtained by corrupting the test triple, it is
evaluated using the metrics MR (Mean Rank), MRR
(Mean Reciprocal Rank), and Hits@N. First, for every
test triple, all of its corrupted triples with respect to
head are ranked based on their scores which are com-
puted by the model. Then, the rank of the actual (true)
test triples are taken in order to compute the metrics
MR, MRR, and Hits@N. MR is the mean of the ranks
of all test triples - the lower the better and MRR is their
average inverse rank - the higher the better. Hits@N
is the percentage of ranks lower than or equal to N -
the higher the better. The same procedure is repeated
to evaluate the model against the corrupted triples with
respect to tail.

The results of link prediction on FB15K and FB15K-
237 datasets are shown in Table 8 for the models
TransE, DKRL with Bernoulli distribution (DKRLBern),
and DKRL with Uniform distribution (DKRLuni f ). The
Bernoulli distribution for sampling as defined in [14]
is a probability distribution, tph

tph+hpt , where tph is the
average number of tail entities per head entity and hpt
is the average number of head entities per tail entity.
Given a golden triple < h, r, t >, with the aforemen-
tioned probability, the triple is corrupted by replacing
the head, and with probability hpt

tph+hpt , the triple is cor-
rupted by replacing the tail. The results are reported
separately for the head entity and tail entity along with
the overall results obtained by taking the mean of the
head and tail predictions. The best scores are the ones
which are highlighted in bold text. The result of the
TransE model is presented in order to allow a clear
comparison with DKRL because, as shown in Table 2,
DKRL extends TransE. This comparison would help
to further analyse the advantages of using text literals
for KG embedding.

Note that in the original paper, the result of DKRL
on FB15K is slightly better than TransE. However, in
our experiments, as the results in Table 8 indicate, on
the FB15K dataset TransE achieves better result than
both versions of DKRL on all metrics except MRR and
MR. The reason for this is that, as mentioned above,
the set of entity descriptions used in our experiments
are common for both datasets FB15K and FB15K-237,
i.e., there is less entity descriptions in our experiment
than there is in the original paper for FB15K. This in-
dicates that the size of the dataset (the entity descrip-
tion has impact on the performance of the model). On
the other hand, on the dataset FB15K-237 TransE is

outperformed by DKRLUni f with respect to MR and
by DKRLBern with respect to the rest of the metrics.

Furthermore, the result shows that DKRL model
with Bernoulli distribution (DKRLBern) has better per-
formance than the model with Uniform distribution
(DKRLuni f ) for both the datasets. DKRLBern works
best for the prediction of head, relation, and tail with
respect to MRR, Hits@1, and Hits@3 whereas the
DKRLUni f method works better according to MR for
both the datasets. DKRLBern works slightly better than
DKRLUni f for FB15K-237 dataset. It is to be noted
that DKRL has better improvement over TransE on
FB15K-237 as compared to FB15K dataset because
the former one does not contain symmetric relations,
i.e., incorporating textual data to a clean dataset, such
as FB15K-237, allows capturing more semantics.

6.3. Experiment with Numeric Literals

MT-KGNN, KBLRN, LiteralE, and TransEA are
the KG embedding models which make use of nu-
meric literals (see Section 4.2). KBLN, the submodel
of KBLRN, which excludes the relational information
provided by graph feature methods is used in the ex-
periment instead of the main model KBLRN. This is
the case because KBLN is directly comparable with
the other three models (i.e., MT-KGNN, LiteralE, and
TransEA) whereas KBLRN is not. The code2 for the
TransEA model is the original implementation from
TransEA [19] where as the source codes3 for the mod-
els MT-KGNN, KBLN, and LiteralE are taken from
the implementation in LiteralE [33]. As described in
Section. 4.2, the structure-based embedding compo-
nent of MT-KGNN is based on a neural network and
it is referred to as RelNet. However, in the version im-
plemented in LiteralE [33], they have replaced Rel-
Net with DistMult as a baseline in order to have a di-
rectly comparable MTKGNN-like method to their pro-
posed approach. Thus, in this survey, the MT-KGNN-
like model has been used instead of the original MT-
KGNN model.

Moreover, the model LiteralE has different vari-
eties depending on the baseline model and the trans-
formation function used. As discussed in Section 4,
in LiteralE there are two transformation functions: g
(GRU based function) and lin (a simple linear func-
tion), and there are three baseline models - Dist-
Mult, ConvE and ComplEx. Thus, in this experi-

2https://github.com/kk0spence/TransEA
3https://github.com/SmartDataAnalytics/LiteralE

https://github.com/kk0spence/TransEA
https://github.com/SmartDataAnalytics/LiteralE
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Table 8
Experiment results using DKRL model on FB15K and FB15K-237 datasets.

FB15K
MR MRR Hits@1 Hits@3 Hits@10

Head 142 0.219 0.241 0.447 0.622
Tail 109 0.249 0.339 0.514 0.690

TransE

All 125 0.234 0.290 0.480 0.656
Head 162 0.289 0.179 0.336 0.502
Tail 122 0.356 0.24 0.408 0.577DKRLBern

All 142 0.322 0.209 0.372 0.539

DKRLUni f

Head 96 0.289 0.172 0.335 0.52
Tail 75 0.333 0.211 0.383 0.576
All 85 0.311 0.191 0.359 0.548

FB15K-237
MR MRR Hits@1 Hits@3 Hits@10

Head 468 0.094 0.081 0.163 0.287
Tail 255 0.190 0.233 0.373 0.517

TransE

All 361 0.142 0.157 0.268 0.402

DKRLBern

Head 145 0.294 0.184 0.337 0.507
Tail 98 0.359 0.244 0.410 0.585
All 122 0.327 0.214 0.374 0.546

DKRLUni f

Head 104 0.275 0.166 0.312 0.494
Tail 77 0.322 0.209 0.363 0.552
All 91 0.298 0.187 0.337 0.523

ment, six varieties of the LiteralE model are consid-
ered: DistMult-Literaleg, ComplEx-Literaleg, ConvE-
Literalelin, DistMult-Literalelin, ComplEx-Literalelin,
and ConvE-Literalelin. The datasets, the experimental
setup, and the evaluation results are discussed in the
subsequent sections.

Attributive Triples: In order to conduct the experi-
ments with numeric literals, both the datasets FB15K
and FB15K-237 given in Table 7 are extended with
a set of 23521 attributive triples, containing only nu-
meric literals, with 118 data relations. These triples are
created based on the attributive triples from TransEA
[19]. In TransEA, the authors have provided a set of
attributive triples where the object values are numeric.
However, it is not possible to directly use this data as
the literal values are normalized in the interval [0-1]
as required by the model but the other models in this
experiment, like LiteralE, use the original unnormal-
ized literal values instead. Therefore, it was necessary
to query Freebase to replace the normalized object lit-
eral value for each (subject, data relation) pair from the
TransEA attributive triples data. Moreover, only those
data relations which occur in at least 5 triples are taken
into consideration.

Experimental Setup: For both datasets, the hyperpa-
rameters for TransEA are: epoch 3000, dimension 100,
batches 100, margin 2, and learning rate 0.3 and for
TransE they are described in Section 6.2. For the other
models, same as in LiteralE, the hyperparameters used
for both datasets are: learning rate 0.001, batch size
128, embedding size 100 (for DistMult, ComplEx and
their extensions with literals) and 200 (for KBLN, and
MTKGNN, ConvE, and ConvE’s extensions), embed-
ding dropout probability 0.2, label smoothing 0.1, and
epochs 1000 for ConvE and 100 for the rest. TITAN X
(Pascal) GPU has been used for the models LiteralE,
KBLN, and MTKGNN.

Runtime: As in the experiments with text literals,
not all the models in the experiments with numeric lit-
erals are implemented in the same environment, i.e.,
for TransEA the code that is released by the authors of
the paper is used and for the other models the code that
is provided by the authors of LiteralE are used. There-
fore, direct comparison of the runtime of TransEA and
the other models would not be possible. However, the
runtime of each of the models is computed on FB15K
dataset so as to give insights into the models compu-
tational complexity. The running time of TransEA is
3.271 ms per a single iteration with batch size of 4831.



22 G. A. Gesese et al. / Survey on Knowledge Graph Embeddings with Literals

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 9
Runtime of models considered in the experiments with numeric liter-
als. The resutls are per single iteration and reported in milliseconds.

Models Time(ms)
DistMult-LiteralEglin 31.575
DistMult-LiteralEg 37.138

ComplEx-LiteralEglin 39.269
ComplEx-LiteralEg 52.346
ConvE-LiteralEglin 43.386
ConvE-LiteralEg 50.439

KBLN 86.825

DistMult 29.679
ComplEx 33.526

ConvE 40.970

For the other models their runtime for a single itera-
tion of batch size 128 is shown in Table 9. Note that
the runtime results reported here are the average over
runtime values of 1000 iterations.

Evaluation Procedure and Results: The same eval-
uation metrics which are discussed in Section 6.2 has
been used to evaluate the performance of the mod-
els with numeric literals on the link prediction task.
As shown in Table 10, according to the overall result,
the model KBLN has considerably better performance
than the other models in all metrics except MR. The re-
sults from the ComplEx-LiteralEg model show that it is
capable to produce a highly competitive performance
having the second best results with respect to the same
metrics. This is the case due to the fact that this model
is able to handle the inverse relations in FB15K by ap-
plying the complex conjugate of an entity embedding
when the entity is used as a tail and its normal embed-
ding when it is the head. Moreover, the model KBLN
also achieves better result when compared to the stan-
dard models without literals presented in Table 11 with
respect to all metrics except MR.

Another possible analysis to make is to compare the
results of the standard models presented in Table 11
with the results of their extensions shown in the ‘both
head and tail Prediction’ part of Table 10. For instance,
ComplEx-LiteralEg achieves better performance than
its base model ComplEx according to all metrics which
indicates that using numeric literals with ComplEx by
applying the approach in LiteralE is beneficial. How-
ever, this is not the case with DistMult and ConvE. One
reason for this can be the fact that the number of at-
tributive triples used in our experiment is not as big
as in the original paper of LiteralE, i.e, increasing the

number of numeric literals may improve the result as
already seen in the original paper of literalE.

On the other hand, referring to the overall result on
FB15K-237 dataset as shown in Table 12, the model
DistMult-LiteralEg outperforms the other models ac-
cording to all metrics. This entails that applying Lit-
eralE to DistMult on FB15K-237 provides better per-
formance than applying it to other baseline models.
Note that the reason for DistMult-LiteralEg model
to achieve the best result on FB15K-237 dataset, as
comapred to FB15K, may be due to the fact that this
dataset does not have any symmetric relation, i.e., Dist-
Mult already has difficulties in modeling asymmetric
relations on FB15k and adding literals might introduce
noise but in case of FB15K-237, incorporating literals
improves DistMult because symmetric relations are re-
moved. Regarding the two transformation functions g
and glin, the function g leads to better results than glin

according to the results on both dataset.

6.4. Experiment with Images

Note that it is not possible to compare the whole
of MKBE [34] with any other model as it is the only
embedding model which utilizes the three types of lit-
erals together: text, numeric, and images. Therefore,
its sub model S+I which uses only images has been
compared with the embedding model IKRL [20]. Since
this comparison has already been done by the authors
of MKBE [34], the result shown in Table 14 is di-
rectly taken from their paper. They have compared the
models DistMult+S+I, ConvE+S+I, and IKRL where
S stands for structure and I for Image. Both Dist-
Mult+S+I and ConvE+S+I are sub models of MKBE
which use only relational triples and Images. The re-
sult indicates that ConvE+S+I outperforms the other
two models in all metrics on the YAGO-10 dataset (re-
fer to MKBE [34] for more details).

6.5. Experiment with Multi-modal Literals

As discussed in Section 4, the existing multi-modal
embeddings are categorized into two types: i) mod-
els with text literal, numeric literal and image literals
and ii) models with text and numeric literals. However,
since MKBE is the only model in the first category
only its submodel S + I could be compared with IKRL
(see Section 6.4). Regarding the models with text and
numeric literals, i.e., LiteralE with blocking and EAK-
GAE, they are not included in the experiment as well.
The issue with EAKGAE is the same as that of KD-
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Table 10
Link prediction results on FB15K dataset using filtered setting.

Head Prediction
Models MR MRR Hits@1 Hits@3 Hits@10

DistMult-LiteralEglin 121 0.495 0.383 0.559 0.697
ComplEx-LiteralEglin 71 0.76 0.697 0.801 0.876
ConvE-LiteralEglin 52 0.612 0.51 0.678 0.795
DistMult-LiteralEg 72 0.581 0.479 0.642 0.762
ComplEx-LiteralEg 63 0.768 0.707 0.809 0.878
ConvE-LiteralEg 49 0.72 0.65 0.762 0.849
KBLN 77 0.775 0.705 0.827 0.892
MTKGNN 73 0.702 0.617 0.758 0.855
TransEA 103 0.285 0.367 0.609 0.728

Tail Prediction
Models MR MRR Hits@1 Hits@3 Hits@10

DistMult-LiteralEglin 145 0.447 0.337 0.507 0.645
ComplEx-LiteralEglin 101 0.704 0.64 0.743 0.821
ConvE-LiteralEglin 74 0.567 0.465 0.63 0.746
DistMult-LiteralEg 94 0.528 0.425 0.589 0.712
ComplEx-LiteralEg 93 0.711 0.65 0.746 0.821
ConvE-LiteralEg 79 0.657 0.586 0.698 0.783
KBLN 90 0.727 0.656 0.776 0.848
MTKGNN 91 0.65 0.562 0.708 0.806
TransEA 75 0.314 0.417 0.671 0.805

Both Head and Tail Prediction
Models MR MRR Hits@1 Hits@3 Hits@10

DistMult-LiteralEglin 133 0.471 0.36 0.533 0.671
ComplEx-LiteralEglin 86 0.732 0.668 0.772 0.848
ConvE-LiteralEglin 63 0.589 0.487 0.654 0.77
DistMult-LiteralEg 83 0.554 0.452 0.615 0.737
ComplEx-LiteralEg 78 0.739 0.678 0.777 0.849
ConvE-LiteralEg 64 0.688 0.618 0.73 0.816
KBLN 83 0.751 0.68 0.801 0.87
MTKGNN 82 0.676 0.589 0.733 0.83
TransEA 74 0.299 0.392 0.64 0.766

Table 11
Link prediction results with models without literals on FB15K using filtered setting.

FB15K
Models MR MRR Hits@1 Hits@3 Hits@10

DistMult 119 0.67 0.589 0.723 0.817
ComplEx 127 0.692 0.614 0.742 0.833
ConvE 50 0.689 0.593 0.757 0.852
TransE 125 0.234 0.290 0.480 0.656

CoE, i.e., it is trained on entity alignment task where
as the reason for not having LiteralE with blocking
is that its code is not publicly available. On the con-
trary, LiteralE (a model with numerics) has also been
adopted to incorporate text literals in the experiments
conducted by the authors. Similarly, in our experiment,
the LiteralE approach has been tried out with the com-
bination of text and numeric literals, i.e., the model

DistMult-LiteralEg-text in Table 15. Then, the result
has been compared with LiteralE with just numeric lit-
erals (DistMult-LiteralEg) and DKRL (a model using
only text literals) so as to investigate the benefits of
utilizing information represented by different types of
literals.

DistMult-LiteralEg-text is a model which applies the
LiteralE approach to DistMult by using both numeric
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Table 12
Link prediction results on FB15K-237 dataset using filtered setting.

Head Prediction
Models MR MRR Hits@1 Hits@3 Hits@10

DistMult-LiteralEglin 245 0.377 0.279 0.422 0.568
ComplEx-LiteralEglin 371 0.36 0.271 0.4 0.538
ConvE-LiteralEglin 208 0.388 0.296 0.427 0.572
DistMult-LiteralEg 209 0.413 0.320 0.456 0.591
ComplEx-LiteralEg 315 0.366 0.277 0.404 0.543
ConvE-LiteralEg 236 0.317 0.229 0.345 0.501
KBLN 381 0.386 0.295 0.426 0.564
MTKGNN 437 0.383 0.295 0.423 0.559
TransEA 389 0.111 0.094 0.197 0.342

Tail Prediction
Models MR MRR Hits@1 Hits@3 Hits@10

DistMult-LiteralEglin 426 0.195 0.119 0.214 0.349
ComplEx-LiteralEglin 575 0.17 0.104 0.185 0.306
ConvE-LiteralEglin 362 0.187 0.112 0.204 0.338
DistMult-LiteralEg 359 0.215 0.137 0.234 0.371
ComplEx-LiteralEg 493 0.175 0.106 0.19 0.312
ConvE-LiteralEg 459 0.131 0.07 0.137 0.256
KBLN 501 0.207 0.128 0.23 0.362
MTKGNN 580 0.191 0.12 0.208 0.338
TransEA 203 0.206 0.25 0.409 0.57

Both Head and Tail Prediction
Models MR MRR Hits@1 Hits@3 Hits@10

DistMult-LiteralEglin 335 0.286 0.199 0.318 0.458
ComplEx-LiteralEglin 473 0.265 0.187 0.292 0.422
ConvE-LiteralEglin 285 0.287 0.204 0.315 0.455
DistMult-LiteralEg 284 0.314 0.228 0.345 0.481
ComplEx-LiteralEg 404 0.27 0.191 0.297 0.427
ConvE-LiteralEg 347 0.224 0.149 0.241 0.378
KBLN 441 0.296 0.211 0.328 0.463
MTKGNN 508 0.287 0.207 0.315 0.448
TransEA 296 0.158 0.172 0.303 0.456

Table 13
Link prediction results with models without literals on FB15K-237 dataset using filtered setting.

Models MR MRR Hits@1 Hits@3 Hits@10

DistMult 630 0.280 0.201 0.309 0.438
ComplEx 623 0.288 0.207 0.318 0.448
ConvE 273 0.310 0.222 0.343 0.484
TransE 361 0.142 0.157 0.268 0.402

Table 14
MRR results on link prediction task on YAGO-10 taken from MKBE [34].

YAGO-10
Models MRR Hits@1 Hits@3 Hits@10

DistMult+S+I 0.342 0.235 0.352 0.618
ConvE+S+I 0.566 0.471 0.597 0.72

IKRL 0.509 0.423 0.556 0.663
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and text literals. Note that DistMult is chosen here as a
baseline due to the reason that the best result in the ex-
periments with numerics on the FB15K-237 dataset is
achieved using this model as discussed in Section 6.3.
The datasets listed in Table 7 are also used for this ex-
periment along with additional text attributive triples
which are descriptions of entities. DistMult-LiteralEg-
text has also been compared with its numeric only
equivalent DistMult-LiteralEg and DKRLBern.

The experimental results obtained on the datasets
FB15K and FB15K-237 are shown in Table 15. As
the result indicates, combining text and numeric lit-
erals on FB15K dataset with DistMult-LiteralEg-text
approach does not produce better results as compared
to the other models DistMult-LiteralEg and DKRLBern.
As mentioned before, this dataset contains a set of in-
verse relations which may lead to having a triple whose
inverse has a different label. Given the fact that Dist-
Mult fails to model such asymmetric relations, incor-
porating more literals with DistMult may introduce
much noise than improving the performance. On the
other hand, for FB15K-237 dataset, according to all the
measures except MR, DistMult-LiteralEg-text model
works better for the head entity prediction compared
to the other two models. For tail entity prediction,
DKRLBern works better with respect to all measures
for the same dataset.

7. Discussion and Conclusion

Given the recent massive attention towards the use
of KGs in various applications, different KG embed-
ding techniques have been proposed to enable efficient
use of KGs. In some of these techniques, an attempt
has been made to utilize the information represented in
literals present in KGs for a better quality embedding
of the elements of the KGs, i.e., entities and relations.
In this paper, a comprehensive survey of those KG em-
bedding models with literals has been presented. The
survey provides a detailed analysis and categorization
of these models based on the proposed methodology
along with their application scenarios and limitations.
Moreover, various experiments on link prediction task
on these models have been conducted so as to com-
pare the models’ performances. [84] is a very recent
work, not included in this survey, which re-evaluates
KG completion models.

In this paper, two major research questions are for-
mulated and presented in Section 3. The answers to
these questions are given as follows:

– RQ1 – How can structured (triples with object re-
lations) and unstructured information (attributive
triples) in the KGs be combined into the represen-
tation learning?
In order to use both data sources, i.e., triples with
object relations and triples with data relations (at-
tributive triples) together for representation learn-
ing, in broader terms, the following two tech-
niques are considered in the models discussed in
this paper:

∗ Handling literals separately: defining one
task per data source like in TransEA or
using a separate encoder for literals as in
DKRL. The two tasks are trained simultane-
ously to make sure that for every entity the
information available in both data sources
are used to learn its embedding. The em-
beddings of the entities learned based on
each data source can be unified in the vector
space or not depending on how the model
works. For instance, Jointly(Disp) learns
unified representation for entities where as
DKRL generates two representations per
entity and do not force them to be unified.
∗ Incorporating literals directly into entity

embeddings: as in LiteralE, one way is to
extend a certain latent feature method by di-
rectly enriching the embeddings with infor-
mation from literals via a learnable parame-
ter and use the same scoring function from
the latent feature method.

– RQ2 – How can the heterogeneity of the types of
literals present in the KGs be captured and com-
bined into representation learning?
The following are some possible ways to combine
different kind of literals, i.e., text, numeric, etc.
together for representation learning.

∗ Encoding each type of literal separately: in
order to capture the semantics of literals,
different encoders can be used for different
types of literals, for example, CNN for tex-
tual descriptions. Then, as shown in MKBE,
each attributive triple can be treated same
as structured triples and use a single scoring
function for training.
∗ Incorporating information present in every

kind of literal directly into the entity embed-
ding: as in LiteralE, for a given entity, first
the literals associated with it are encoded as
vectors - using one vector per type of literal.
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Table 15
Link prediction results on FB15K and FB15K-237 datasets using filtered set.

FB15K
Models MR MRR Hits@1 Hits@3 Hits@10

Head
DistMult-LiteralEg 72 0.581 0.479 0.642 0.762

DKRLBern 162 0.289 0.179 0.336 0.502
DistMult-LiteralEg-text 93 0.516 0.405 0.582 0.711

Tail
DistMult-LiteralEg 94 0.528 0.425 0.589 0.712

DKRLBern 122 0.356 0.24 0.408 0.577
DistMult-LiteralEg-text 119 0.463 0.351 0.532 0.66

All
DistMult-LiteralEg 83 0.554 0.452 0.615 0.737

DKRLBern 142 0.322 0.209 0.372 0.539
DistMult-LiteralEg-text 106 0.489 0.378 0.557 0.685

FB15K-237
Models MR MRR Hits@1 Hits@3 Hits@10

Head
DistMult-LiteralEg 209 0.413 0.320 0.456 0.591

DKRLBern 145 0.294 0.184 0.337 0.507
DistMult-LiteralEg-text 207 0.416 0.323 0.462 0.594

Tail
DistMult-LiteralEg 359 0.215 0.137 0.234 0.371

DKRLBern 98 0.359 0.244 0.410 0.585
DistMult-LiteralEg-text 354 0.223 0.142 0.246 0.385

All
DistMult-LiteralEg 284 0.314 0.228 0.345 0.481

DKRLBern 122 0.327 0.214 0.374 0.546
DistMult-LiteralEg-text 280 0.319 0.232 0.354 0.489

Then, a mapping function is used to map all
these vectors (including the structure-based
vector representation of the entity) into a
single vector.

As mentioned in Section 4 or seen from the result of
the experiments in Section 6, these embedding models
have different drawbacks such as:

– The effect that data types/units have on the se-
mantics of literals has not been considered by any
of the models.

– Most of the embedding models which make use
of numerical literals, such as LiteralE, TransEA,
MT-KGNN, and KBLN consider only the year
part of date typed literals and ignore the month
and day values. This hinders the ability to prop-
erly capture the information represented in such
kind of literals. For example, given the following
three date typed literal values:

"1999-10-29"^^xsd:date,
"1999-04-14"^^xsd:date,
"1999-10-30"^^xsd:date,

a model which utilizes only the year part of these
values considers all of them to be exactly the

same despite the fact that the first date value is
more close to the third value than it is to the sec-
ond value.

– Most of the models also do not have a proper
mechanism to handle multi-valued literals.

– The performance of most of the models is depen-
dent on the dataset used for training and testing
which shows that these models are not robust. For
example, referring to Table 15, the results of the
model DistMult-LiteralEg-text indicate that com-
bining text and numeric literals yields better per-
formance on FB15K-237 but not on FB15K due
to the technique used in the model and the nature
of the datasets (see Section 6.5).

– Not all the models are effective in combining dif-
ferent types of literals. For example, the perfor-
mance of DistMult-LiteralEg-text (numeric + text
literals), which combines text and numeric liter-
als, on the dataset FB15K is lower as compared
to DistMult-LiteralEg (only numeric literals).

– Only few approaches have been proposed for
multi-modal KG embeddings and none of them
take into consideration literals with URIs con-
nected to items such as audio, video, or pdf files.

The above described shortcomings of the existing
models clearly indicate that thorough investigation is
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needed on how to address different types of literals
that obtain different inherent semantics. For instance,
a possible perspective that arises by this detailed anal-
ysis is that there is a need to properly handle the data
typed literals such as the values of the data relation
weight given in kilogram and pound. One possible so-
lution to target this issue could be to normalize these
literal values to a standardized measures and to treat
different measures like weights and lengths separately
in the representation learning process.

One cannot expect that by leaving out available in-
formation present in the original KG, its latent repre-
sentation as being only an approximation of the orig-
inal KG, will perform equally well on tasks that de-
pend on its semantic information content. Overall, the
inclusion of datatyped literals with a proper represen-
tation of their semantics into the representation learn-
ing process will increase the model’s semantic content
and might thereby lead to quality improvement.
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Appendix A. Summary of Applications

Table 16: Summary of different applications on which the KG embedding techniques with literals, in their original papers, have been trained and/or
evaluated

Link
Prediction

Triple
Classification

Entity
Classification

Entity
Alignment

Attribute
value
prediction

Nearest
neighbour
analysis

Data
linking

Document
classification

Relational
Fact
Extraction

Extended RESCAL X X

LiteralE X X

TransEA X

KBLRN X

DKRL X X

KDCoE X X

KGlove with literals X

IKRL X X

EAKGE X X

MKBE X X

MT-KGNN X X

LiteralE with blocking X

Jointly(Desp) X X X

Jointly X X

SSP X X

MTKGRL X X


	Introduction
	Related Work
	Problem Formulation
	Preliminaries
	Types of Literals
	Research Questions

	Knowledge Graph Embeddings with Literals
	Models with Text Literals
	Models with Numeric Literals
	Models with Image Literals
	Models with Multi-modal Literals
	Models with Numeric and Text Literals
	Models with Numeric, Text, and Image Literals


	Applications
	Experiments on Link Prediction
	Datasets
	Experiments with Text Literals
	Experiment with Numeric Literals
	Experiment with Images
	Experiment with Multi-modal Literals

	Discussion and Conclusion
	References
	Appendix A. Summary of Applications

