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Abstract
While Knowledge Graphs (KGs) have long been
used as valuable sources of structured knowledge,
in recent years, KG embeddings have become a
popular way of deriving numeric vector representa-
tions from them, for instance, to support knowledge
graph completion and similarity search. This study
surveys advances as well as open challenges and
opportunities in this area. For instance, the most
prominent embedding models focus primarily on
structural information. However, there has been
notable progress in incorporating further aspects,
such as semantics, multi-modal, temporal, and mul-

tilingual features. Most embedding techniques are
assessed using human-curated benchmark datasets
for the task of link prediction, neglecting other
important real-world KG applications. Many ap-
proaches assume a static knowledge graph and are
unable to account for dynamic changes. Addition-
ally, KG embeddings may encode data biases and
lack interpretability. Overall, this study provides
an overview of promising research avenues to learn
improved KG embeddings that can address a more
diverse range of use cases.
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1 Introduction30

A Knowledge Graph (KG) is a semantic network that organises knowledge in a graph using31

entities, relations, and attributes. It captures semantic relationships and connections between32

entities, allowing for rapid searching, reasoning, and analysis. KGs are directed labelled graphs33

that can represent a variety of structured knowledge across a wide range of domains including34

e-commerce [96, 130], media [137], and life science [23], to name a few. They enable the integration35

of structured knowledge from diverse sources, laying the groundwork for applications such as36

question-answering systems, recommender systems, semantic search, and information retrieval.37

Google [155], eBay [130], Amazon [96], and Uber [58] are examples of companies that have38

developed in-house enterprise KGs for commercial purposes, which are not publicly available. The39

term “Knowledge Graph” was first used in the literature in 1972 [149] and later revived by Google40

in 2012 with the introduction of the Google KG. Broad-coverage open KGs, such as DBpedia [11],41

Freebase [19], YAGO [158], and Wikidata [173], are either developed using heuristics, manually42

curated, or automatically or semi-automatically extracted from structured data.43

While the structured knowledge in KGs can readily be used in many applications, KG44

embeddings open up new possibilities. A KG embedding encodes semantic information and45

structural relationships by representing entities and relations in a KG as dense, low-dimensional46

numeric vectors. This entails developing a mapping between entities and relations and vector47

representations that accurately capture their characteristics and relationships.48

KG embeddings allow for effective computation, reasoning, and analysis, while maintaining49

semantics and structural patterns. Link prediction and KG completion are perhaps the most50

well-known uses of KG embeddings. Although KGs store vast amounts of data, they are often51

incomplete. For instance, given the KG in Figure 1, which is an excerpt from DBpedia, it will not52

be possible to answer the questions:53

Q1: Where is Berkshire located?, and54

Q2: What is the nationality of Daniel Craig?55

Responding to Q1 requires the prediction of the missing entity in the triple <dbr:Berkshire2,56

dbo:locatedIn, ?>. Similarly, for Q2, one would need to infer the nationality of Daniel Craig57

from the information available in the KG. The effectiveness of KG-based question-answering58

applications may therefore be enhanced by using embeddings to predict the missing links in a KG.59

This is referred to as KG completion.60

Other applications of KG embeddings include similarity search, entity classification, recom-61

mender systems, semantic search, and question answering. Additionally, an embedding converts62

2 For example, we will often shorten the IRIs using prefixes. For example, in dbr:Berkshire, dbr: stands for
http://dbpedia.org/resource/, and hence the identifier is a shorthand for http://dbpedia.org/resource/
Berkshire. Simlarly, dbo: stands for http://dbpedia.org/ontology/.

https://doi.org/10.4230/TGDK.1.1.42
http://dbpedia.org/resource/
http://dbpedia.org/resource/Berkshire
http://dbpedia.org/resource/Berkshire
http://dbpedia.org/ontology/
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Figure 1 Excerpt from DBpedia, with red dashed lines representing possible inferred relations.

symbolic knowledge into numerical representations, making it possible to incorporate structured63

knowledge into machine learning and AI models, enabling reasoning across KGs.64

Although prominent KG embedding models are widely used across diverse applications, there65

is potential to learn improved embeddings addressing an even broader range of input information66

and opening up new opportunities. For instance, one can account for additional signals in the67

KG beyond the structural information, such as multi-modal and hierarchical information, as well68

as external textual data, or information related to a certain domain or context. Some models69

struggle to adequately represent rare or long-tail entities, while others are unable to cope with70

little or no training data. Additionally, there is potential to design models that better account for71

dynamic and temporal information in the KG. Likewise, KGs are often multilingual, which may72

enable improved representations. Some models have trouble capturing asymmetric links as well as73

complex relationships such as hierarchical, compositional, or multi-hop relationships. The bias74

in KGs may also be reflected in the corresponding embeddings. Most models also lack explicit75

interpretability or explainability. This paper focuses on describing the relevant research addressing76

the aforementioned KG embedding models’ inadequacies and then discussing the untapped areas77

for future research.78

The rest of the paper is organised as: Section 2 gives an overview of the definitions and79

notations related to KGs, followed by Section 3 summarising mainstream KG embedding models.80

Next, Section 4 provides an overview of models that exploit additional kinds of information81

often neglected by traditional KG embedding models, along with a discussion of remaining open82

challenges. Section 5 sheds some light on important application areas of KG embeddings. Finally,83

Section 6 concludes the paper with a discussion and an outlook of future work.84

2 Preliminaries85

This section provides formal definitions and relevant notational conventions used in this paper.86

TGDK
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▶ Definition 1 (Knowledge Graph). A KG G is a labelled directed graph, which can be viewed as a87

set of knowledge triples T ⊆ E × R × (E ∪ L), where E is the set of nodes, corresponding to entities88

(or resources), R is the set of relation types (or properties) of the entities, and L is the set of89

literals. An entity represents a real-world object or an abstract concept. Often the labels of entities90

and relations are chosen to be URIs or IRIs (Internationalised Resource Identifiers).91

▶ Definition 2 (Triple). Given a KG G, we call (eh, r, et) ∈ T a triple, where eh ∈ E is the subject,92

r ∈ R is the relation, and et ∈ E ∪ L is the object. The subject is also called the head entity, and93

an object et ∈ E may be referred to as the tail entity. Triples with literals as objects, i.e., et ∈ L94

are known as attributive triples. In this paper, we use the notation <eh,r,et>, with angle brackets,95

to indicate a triple.96

Relations (or Properties): Depending on the nature of the objects in a triple, one may97

distinguish two main kinds of relations:98

Object Relation (or Property), in which an entity is linked to another entity. For instance, in the99

triple <dbr:Daniel_Craig, dbo:birthPlace, dbr:Cheshire>, dbr:Daniel_Craig and dbr:Cheshire100

are head and tail entities, respectively, and dbo:birthPlace is an Object Relation (or Property).101

Data Type Relation (or Property), in which the entity is linked to a literal. For instance, we102

find the date "1868-03-02" in the triple <dbr:Daniel_Craig, dbo:birthDate, "1868-03-02">,103

and therefore the relation dbo:birthDate is a Data Type Relation (or Property).104

Additionally, an entity e can also be linked to classes or semantic types of the entity. For example,105

DBpedia uses rdf:type as r, while Freebase uses isA. A triple of the form <e, rdf:type, Ck> hence106

implies that e ∈ E is an entity, Ck ∈ C is a class, C is the set of semantic types or classes, and e is107

an instance of Ck. Often, the semantic types or the classes in a KG are organised in a hierarchical108

tree structure. An entity may belong to more than one class.109

Literals: A KG can have many types of literal values and examples of common attribute types110

are as follows:111

Text literals: These store information in the form of free natural language text and are often112

used for labels, entity descriptions, comments, titles, and so on.113

Numeric literals: Dates, population sizes, and other data saved as integers, real numbers, etc.114

provide valuable information about an entity in a KG.115

Image literals: These literals can, for example, be used to store a visual representation of the116

entity, but can also contain the outcome of a medical scan, or a chart.117

It is also possible that there is additional information (such as video or audio) stored external118

to the graph. The graph can then contain an IRI or other kind of identifier that references the119

external resource, its location, or both.120

3 Knowledge Graph Embeddings121

KG embedding models represent entities and relationships in a KG in a low-dimensional vector122

space for various downstream applications. A typical KG embedding model is characterised by123

the following aspects, as detailed by Ji et al. [82]: (1) The Representation Space may be a single124

standard Euclidean vector space, separate Euclidean vector spaces for entities and relations, or125

matrices, tensors, multivariate Gaussian distributions, or mixtures of Gaussians. Some methods126

also use complex vectors or hyperbolic space to better account for the properties of relationships.127

(2) A scoring function serves to represent relationships by quantifying the plausibility of triples128

in the KG, with higher scores for true triples and lower scores for false/negative/corrupted129

ones. (3) Encoding models are responsible for learning the representations by capturing relational130
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Table 1 Categorisation of classic Knowledge Graph Embedding Models

Categories Models
Translational Models TransE [20] and its variants, RotatE [160], etc,
Gaussian Embeddings KG2E [66], TransG [192]

Semantic Matching Models RESCAL [124] and its extensions, DistMult [198],
HoIE [123], SME [21]

Neural Network Models NTN [156] , HypER [14], ConvE [37], ConvKB [31]

Graph Neural Networks GCN [92], R-GCN [148], GraphSAGE [60], GAT [172],
KGAT [179], ComplEx-KG [170], SimlE [90]

Path-based Models GAKE [43], PTransE [112], PTransR, RSN,
PConvKB [83], RDF2vec [141]

interactions between entities. This is typically achieved by solving optimisation problems, often131

using factorisation approaches or neural networks. (4) Auxiliary Information in the KG may be132

incorporated, e.g., literals. This leads to enriched entity embeddings and relations, forming an133

ad-hoc scoring function integrated into the general scoring function.134

An overview of different types of KG embedding models is given in Table 1. In the following,135

we explain each of these in more detail.136

Translation-based models use distance-based scoring functions to measure the plausibility of a137

fact as the distance between two entities. There are numerous variants. TransE [21] represents138

entities and relations as vectors in the same space, while TransH [184] introduces relation-139

specific hyperplanes. TransR [114] uses relation-specific spaces but requires a projection matrix140

for each relation. TransD [80] simplifies TransR by using two vectors for each entity-relation pair.141

TranSparse [81] employs two separate models, TranSparse(share) and TranSparse(separate),142

to modify projection vectors or matrices without considering other aspects. TransA [84]143

replaces the traditional Euclidean distance with the Mahalanobis distance, demonstrating144

better adaptability and flexibility as an indicator for performance improvement.145

Gaussian Embeddings: KG2E [66] and TransG [192] are probabilistic embedding models146

that incorporate uncertainty into their representation. KG2E uses multi-Gaussian distributions147

to embed entities and relations, representing the mean and covariance of each entity or relation148

in a semantic feature space. TransG, in contrast, uses a Gaussian mixture model to represent149

relations, addressing multiple relationship semantics and incorporating uncertainty. Both150

models offer unique approaches to representing entities and relations.151

Semantic Matching models rely on the notion of semantic similarity to define their scoring152

function. These include tensor decomposition models such as RESCAL, a tensor factorisation153

model that represents entities and relations as latent factors [124], capturing complex inter-154

actions between them. DistMult [199] simplifies the scoring function of RESCAL by using155

diagonal matrices, leading to more efficient computations. SimplIE [90] is a simpler model156

that uses a rule-based approach to extract relations from sentences. RotatE [161] introduces157

rotational transformations to model complex relationships in KGs. ComplEx [170] extends158

DistMult by introducing complex-valued embeddings, enabling it to capture both symmetric159

and antisymmetric relations. HolE [124] employs circular correlation to capture compositional160

patterns in KGs. TuckER [14] is a linear model based on Tucker decomposition of the binary161

tensor representation of triples.162

Neural network based models draw on the powerful representation learning abilities of163

modern deep learning. Neural Tensor Networks (NTN) [156] allow mediated interaction of164

entity vectors via a tensor. ConvE [37] uses 2D convolutions over embeddings to predict165

missing links in KGs. ConvKB [31] represents each triple as a 3-column matrix and applies166

TGDK
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convolution filters to generate multiple feature maps, which are concatenated into a single167

feature vector. This vector is multiplied with a weight vector to produce a score, used for168

predicting the validity of the triple. HypER [14] generates convolutional filter weights for each169

relation using a hyper-network approach.170

Graph Neural Network models are neural networks that operate directly on the graph171

structure, often with information propagation along edges. GCN [92] and GraphSAGE [60]172

are graph convolutional techniques that combine information from neighbouring nodes in a173

graph to enable efficient learning of node representations in large-scale graphs. R-GCN [148]174

extends GCN to handle different relationships between entities in graph-structured data using175

a CNN model to learn hidden layer representations that encode local network structure and176

node attributes, growing linearly with the number of graph edges. GAT [172] employs an177

attention mechanism to dynamically allocate weights to neighbouring nodes, focusing on salient178

neighbours and capturing expressive representations. KGAT [179] applies the concept of graph179

attention networks to KG embeddings, taking into account entity and relation information, as180

well as capturing complicated semantic linkages and structural patterns. ComplEx-KG [170] is181

a complex-valued embedding-based extension of ComplEx, a bilinear model for KG embeddings.182

SimplE [90] uses a simplified scoring function for large KGs that is scalable and optimised for183

efficiency.184

Path-based models such as PTransE [112] and PTransR [113] represent entities and relations in185

the KG as vectors and learn embeddings based on relation-specific translation operations along186

edge paths. RSN [203] models the KG as a recursive structure, aggregating embeddings of187

connected entities and capturing structural information through recursive path-based reasoning.188

PConvKB [83] extends the ConvKB model and uses an attention mechanism on the paths to189

measure the local importance in relation paths. GAKE [43] is a graph-aware embedding model190

that takes into consideration three forms of graph structure: neighbour context, path context,191

and edge context. RDF2Vec [141] uses random walks over the graph structure to generate192

node and edge sequences, which are then used as input for training word2vec skip-gram models,193

which yield entity and relation embeddings.194

Traditional KG embedding methods primarily take into account the triple information but195

neglect other potentially valuable signals encountered in KGs, such as multimodality, temporality,196

multilinguality, and many more. Additionally, these models often assume KGs are static in nature197

and have cold-start problems when incorporating new entities and relations. Also, real-world KGs198

often exhibit sparsity, noisiness, and bias, which may adversely affect embedding models.199

4 Opportunities and Challenges200

KG embeddings are widely used to capture semantic meaning and enable improved comprehension,201

reasoning, and decision-making across a diverse range of applications. However, the traditional202

KG embedding models described earlier neglect a series of important opportunities and aspects.203

In the following, in Section 4.1, we consider auxiliary information that may be present in KGs204

but is often neglected in KG embeddings, e.g., multimodal, multilingual, and dynamic knowledge.205

Subsequently, in Section 4.2, we discuss further more general issues, such as bias and explainability.206

Recent research has made notable progress in addressing these issues. The remainder of the section207

summarises pertinent recent research along with a discussion of open research challenges.208

4.1 Auxiliary Information209

Prominent KG embedding models such as those enumerated in Section 3 focus primarily on the210

structure of the KG, i.e., on structural information pertaining to entities and their relationships. To211
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improve the latent representations of entities and relations, new lines of research attempt to draw212

on additional forms of information present in the KG. This section offers an overview of existing213

research in this regard, along with discussions of relevant shortcomings and recommendations for214

further research.215

4.1.1 Multimodal KG Embeddings216

Many approaches for representation learning on entities and relations ignore the variety of data217

modalities in KGs. In a Multimodal KG (MKG), entities and attributes of these entities may have218

different modalities, each providing additional information about the entity. An effective learned219

representation captures correspondences between modalities for accurate predictions, as described220

by Gesese et al. [53]. The used modalities depend on the application area, but can include text,221

images, numerical, and categorical values. Inductive approaches are required for modelling MKGs222

that encompass a variety of data modalities, as assuming that all entities have been observed223

during training is impractical. Learning a distinct vector for each entity and using enumeration224

for all possible attribute multimodal values to predict links is usually infeasible.225

Text: One of the early approaches for text extends TransE by incorporating word2vec226

SkipGram and training a probabilistic version in the same embedding space, anchoring227

via Freebase entities and the word embedding model vocabulary [183]. This enables link228

prediction for previously unknown entities. Relations are treated without differentiation229

of types. A combination of DistMult and CNN [169] tackles this issue by modelling the230

textual relations via dependency paths extracted from the text. Other models such as231

DKRL [194] and Jointly (BOW) [196] use the word2vec Continuous Bag-Of-Words (CBOW)232

approach to encode keywords extracted from textual entity descriptions, while Text Literals233

in KGloVe [30] uses these in combination with the graph context to train a GloVe model.234

However, the alignment between KG and word model is achieved using string matching and235

therefore struggles with ambiguous entity names. Veira et al. [171] use Wikipedia articles236

to construct relation-specific weighted word vectors (WWV). Convolutional models, such as237

DKRL (CNN) [194] and RTKRL [65], use word order to represent relations, considering implicit238

relationships between entities. Multi-source Knowledge Representation Learning (MKRL) [164]239

uses position embedding and attention in CNNs to find the most important textual relations240

among entity pairs. STKRL [188] extracts reference sentences for each entity and treats the241

entity representation as a multi-instance learning model. Recurrent neural models such as Entity242

Descriptions-Guided Embedding (EDGE) [178] and Jointly (ALSTM) [196] use attention-based243

LSTMs with a gating mechanism to encode entity descriptions, capturing long-term relational244

dependencies. The LLM encoder BERT is used in Pretrain-KGE [212] to generate initial245

entity embeddings from entity descriptions and relations, and subsequently feed them into KG246

embedding models for final embeddings. Other research uses LLMs [16, 181, 120, 3] to produce247

representations at word, sentence, and document levels, merging them with graph structure248

embeddings. KG-BERT [?] optimises the BERT model on KGs, followed by KG-GPT2 [17]249

fine-tuning the GPT-2 model. MTL-KGC [91] enhances the effectiveness of KG-BERT by250

combining prediction and relevance ranking tasks. Saxena et al. [147] similarly transform the251

link prediction task into a sequence-to-sequence problem by verbalizing triplets into questions252

and answers, overcoming the scalability issues of KG-BERT. Masked Language Modeling253

(MLM) has been introduced to encode KG text, with MEMKGC [28] predicting masked entities254

using the MEM classification model. StAR [174] uses bi-encoder-style textual encoders for text255

along with a scoring module, while SimKGC leverages bi-encoding for the textual encoder.256

LP-BERT [104] is a hybrid method that combines MLM Encoding for pre-training with LLM257

and Separated Encoding for fine-tuning.258

TGDK
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Numeric literals are addressed by several prominent models. MT-KGNN [166] trains a259

relational network for triple classification and an attribute network for attribute value regression,260

focusing on data properties with non-discrete literal values. KBLRN [50] combines relational,261

latent, and numerical features using a probabilistic PoE method. LiteralE [97] incorporates262

literals into existing latent feature models for link prediction, modifying the scoring function263

and using a learnable transformation function. TransEA [190] has two component models: a264

new attribute embedding model and a translation-based structure embedding model, TransE.265

These embedding approaches, however, fail to fully comprehend the semantics behind literal266

and unit data types. Additionally, most models lack proper mechanisms to handle multi-valued267

literals.268

Image and Video models account for multimedia content. There is a large body of work269

on visual relationship detection, i.e., identifying triples portrayed in visual content, using270

datasets such as VisualGenome [95] and methods such as VTransE [207]. IKLR [193] enriches271

KG embeddings by retrieving images for each entity from ImageNet. The respective set of272

pre-trained image embeddings is subsequently combined by an attention-based multi-instance273

learning method into a joint representation space of entities and relations. This additionally274

enables identifying the most relevant images for each entity.275

General multi-modal KG embedding models may be used both for better link prediction276

between existing entities and to impute missing values. One approach [128] combines different277

neural encoders to learn embeddings of entities and multimodal evidence types used to predict278

links. Then, DistMult or ConvE is employed to produce a score reflecting the probability279

that a triple is correct. In addition, neural decoders are applied over the learned embeddings280

to generate missing multimodal attributes, such as numerical values, text and images, from281

the information in the KG. Moreover, decoders can be invoked to generate entity names,282

descriptions, and images for previously unknown entities. A blueprint for multimodal learning283

from KGs is introduced by Ektefaie et al. [40]. Graph methods are employed to combine284

different datasets and modalities while leveraging cross-modal dependencies through geometric285

relationships. Graph Neural Networks (GNN) are used to capture interactions in multimodal286

graphs and learn a representation of the nodes, edges, subgraphs, or entity graph, based on287

message-passing strategies. Multimodal graphs find increasing application not only in computer288

vision and language modelling but also in natural sciences and biomedical networks [105], as well289

as in physics-informed GNNs that integrate multimodal data with mathematical models [154].290

Limitations: Some of the key challenges reported in the literature that require further attention291

include: (1) Utilising multimodal information and multimodal fusion (from two or more modalities)292

to perform a prediction (e.g, classification, regression, or link prediction), even in the presence293

of missing modalities [128, 100, 40, 33]. (2) Modality collapse, that is when only a subset of the294

most helpful modalities dominates the training process. The model may overly rely on that subset295

of modalities and disregard information from the others that may be informative. This can be296

due to an imbalance in the learning process or insufficient data for one or more modalities and297

it can lead to sub-optimal representations [40]. (3) Generalisation across domains, modalities,298

and transfer learning of embeddings across different downstream tasks. In general, there is a299

high variance in the performance of multimodal methods [128, 109]. (4) Developing multimodal300

imputation models that are capable of generating missing multimodal values. While research in301

MKGs has predominantly focused on language (text) and vision (images) modalities, there is a302

need to explore multimodal research in other modalities and domains as well [128]. (5) Robustness303

to noise and controlling the flow of information within MKGs from more accurate predictions.304

While multimodal triples provide more information, not all parts of this additional data are305

necessarily informative for all prediction downstream tasks [100, 70, 128]. (6) Efficient and scalable306



Russa Biswas et al. 42:9

frameworks that can handle the complexity during training and inference [33, 109]. Large KGs307

are challenging for all embedding-based link prediction techniques, and multimodal embeddings308

are not significantly worse because they can be viewed as having additional triples. However,309

multimodal encoder/decoders are more expensive to train [128] and techniques for batching and310

sampling are usually required for training. By addressing these challenges, we can unlock the full311

potential of MKGs and advance our understanding in various domains.312

4.1.2 Schema/Ontology Insertion in KG Embeddings313

While many real-world KGs come with schemas and ontologies, which may be rich and expressive,314

this does not hold for many of the benchmark datasets used in the evaluation of KG embeddings,315

in particular in the link prediction field. Therefore, the use of ontological knowledge for improving316

embeddings has drawn comparatively little attention.317

In a very recent survey [208], the authors have reviewed approaches that combine ontological318

knowledge with KG embeddings. The authors distinguish between pre methods (methods applied319

before training the embedding), joint (during training of the embedding), and post (after training320

the embedding) methods. In their survey, joint methods are the most common approaches, usually321

incorporating the ontological knowledge in the loss function [10, 25, 39, 38, 51, 56, 98, 113, 143,322

194, 205]. In such approaches, loss functions of existing KGE models are typically altered in a323

way such that ontologically non-compliant predictions are penalised. This is in line with a recent324

proposal of evaluation functions that not only take into account the ranking of correct triples325

but also the ontological compliance of predictions [74]. Some approaches also foresee the parallel326

training of class encoders [194] or class embeddings [64] to optimise the entity embeddings.327

Pre methods observed in the literature come in two flavours. The first family of approaches328

exploit ontologies by inferring implicit knowledge in a preprocessing step and embedding the329

resulting graph enriched with inferred knowledge [75, 143]. The second family of approaches exploits330

ontologies in the process of sampling negative triples, implementing a sampling strategy that has331

a higher tendency to create ontologically compliant (and thus harder) negative examples [10, 57,332

77, 98, 194], or builds upon adversarial training setups [116].333

The post methods in the aforementioned survey are actually modifications of the downstream334

task, not the embedding method, and thus do not affect the embedding method per se.335

The fact that most approaches fall into the joint category also limits them by being bound336

to one single embedding model, instead of being universally applicable. At the same time, most337

approaches have a very limited set of schema or ontology constraints they support (e.g., only338

domains and ranges of relations), while general approaches that are able to deal with the full339

spectrum of ontological definitions, or even more complex expressions such as SHACL constraints,340

remain very rare.341

4.1.3 Relation Prediction Models342

Relation prediction in KGs is a fundamental task that involves predicting missing or unobserved343

relations (properties) between entities in a KG. For instance, in Figure 1, relation prediction aims344

to predict the relation dbo:starring between entities dbr:Daniel_Craig and dbr:Skyfall.345

Some of the classical KG embedding models such as translational models, and semantic346

matching models are often also used to predict missing relations. However, one of the pioneer347

models that focused on improving the relation prediction task is ProjE [153]. The model projected348

entity candidates onto a target vector representing input data, using a learnable combination349

operator to avoid transformation matrices followed by an optimised ranking loss of candidate350

entities. CNN-based models, in contrast, are argued to obtain richer and more expressive feature351
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embeddings compared to traditional approaches. Attention-based embeddings enhance this352

approach further by capturing both entity and relation features in any given context or multihop353

neighbourhood [118]. Prior research on relation prediction, which was restricted to encyclopaedic354

KGs alone, disregarded the rich semantic information offered by lexical KGs, which resulted in the355

issue of shallow understanding and coarse-grained analysis for knowledge acquisition. HARP [182]356

extends earlier work by proposing a hierarchical attention module that integrates multiple semantic357

signals, combining structured semantics from encyclopaedic KGs and concept semantics from358

lexical KGs to improve relation prediction accuracy.359

Self-supervised training objectives for multi-relational graph representation have as well given360

promising results. This may be achieved using a simplistic approach by incorporating relation361

prediction into the commonly used 1-vs-All objective [27]. The previously mentioned path-based362

embedding models may also be used, but often overlook sequential information or limited-length363

entity paths, leading to the potential loss of crucial information. GGAE [106] is a novel global364

graph attention embedding network model that incorporates long-distance information from365

multi-hop paths and sequential path information for relation prediction. The effectiveness of KG366

embedding models for relation prediction is typically assessed using rank-based metrics, which367

evaluate the ability of models to give high scores to ground-truth entities.368

Limitations: Although embedding-based models for relation prediction in KGs have advanced369

significantly, they have several shortcomings. (1) Most of the models struggle to capture transitivity,370

which is essential for understanding relations that change over time or apply in different contexts.371

(2) They also struggle to handle rare relations, which can result in biased predictions. (3) Although372

embedding techniques are intended to accommodate multi-relational data, capturing complex373

interactions between numerous relations remains challenging. (4) KGs can contain relations with374

different semantic heterogeneity. For example, imagine a KG with a relation called hasPartner that375

represents any type of close partnership, such as business partners or friends. This relationship is376

semantically different from hasSpouse. Relation prediction models are often unable to distinguish377

between such relations with related but different meanings. (5) Relation prediction models provide378

limited support for temporal and contextual information. Temporal information, however, is379

handled by the temporal KG embedding models presented in Section 4.1.5.380

4.1.4 Hierarchical and N-to-M Modeling in KG Embeddings381

Crucial to the success of using KG embeddings for link prediction is their ability to model relation382

connectivity patterns, such as symmetry, inversion, and composition. However, many existing383

models make deterministic predictions for a given entity and relation and hence struggle to384

adequately model N -to-M relationships, where a given entity can stand in the same relationship385

to many other entities, as for instance for the hasFriend relationship [121].386

A particular important case is that of hierarchical patterns, which, albeit ubiquitous, still387

pose significant challenges. Indeed, modelling them with knowledge embeddings often requires388

additional information regarding the hierarchical typing structure of the data [194] or custom389

techniques [211, 210], as discussed next.390

Various approaches have been proposed for modelling hierarchical structures. Li et al. [107]391

proposes a joint embedding of entities and categories into a semantic space, by integrating392

structured knowledge and taxonomy hierarchies from large-scale knowledge bases, as well as393

a Hierarchical Category Embedding (HCE) model for hierarchical classification. This model394

additionally incorporates the ancestor categories of the target entity when predicting context395

entities, to capture the semantics of hierarchical concept category structures.396

Another method used for hierarchical modelling centres around the usage of clustering al-397

gorithms [211]. The authors define a three-layer hierarchical relation structure (HRS) for KG398
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relation clusters, relations, and subrelations. Based on this, they extend classic translational399

embedding models to learn better knowledge representations. Their model defines the embedding400

of a knowledge triple based on the sum of the embedding vectors for each of the HRS layers.401

The Type-embodied Knowledge Representation Learning (TKRL) [194] model uses entity-type402

information in KG embeddings to model hierarchical relations. Following the TransE approach,403

relations are translated between head and tail KG entities in the embedding space. For each404

entity type, type-specific projection matrices are built using custom hierarchical type encoders,405

projecting the heads and tails of entities into their type spaces.406

Limitations: Although they intend to better represent the structure of a KG, the limitations of407

such KG embeddings include: (1) It is challenging to model interactions that transcend numerous408

hierarchy levels, resulting in a limited ability to capture cross-hierarchy linkages. For instance,409

Arnold Schwarzenegger is an actor, a film director as well as a politician, leading to the entity410

belonging to different branches of the class hierarchy in the KG. (2) The depth of the hierarchy or411

branching factor of an n-to-m relationship can affect how effective the embeddings are, e.g., in412

very fine-grained or coarse-grained hierarchies, performance may suffer. (3) Training and inference413

with hierarchical embeddings can be computationally intensive, particularly in ultrafine-grained414

hierarchies.415

4.1.5 Temporal KG Embeddings416

Most KG completion methods assume KGs to be static, which can lead to inaccurate prediction417

results due to the constant change of facts over time. For instance, neglecting the fact that <Barack418

Obama, presidentOf, USA> only holds from 2009 to 2017 can become crucial for KG completion.419

Emerging approaches for Temporal Knowledge Graph Completion (TKGC) incorporate timestamps420

into facts to improve the result prediction. These methods consider the dynamic evolution of KGs421

by adding timestamps to convert triples into quadruples using several strategies [22]:422

Tensor Decomposition based models in KG completion transform a KG into a 3-dimensional423

binary tensor, with three modes representing head, relation, and tail entities to learn their424

corresponding representations by tensor decomposition. The addition of timestamps as an425

additional mode of tensor (4-way tensor) for TKGC allows for low-dimensional representations426

of timestamps for scoring functions. For TKGC, Canonical Polyadic (CP) decomposition427

is used on quadruple facts [111]. The authors employ an imaginary timestamp for static428

facts, while complex-valued representation vectors may be used for asymmetric relations429

[99]. Temporal smoothness penalties are used to ensure that neighbouring timestamps obtain430

similar representations. Multivector representations [195] are learned using CP decomposition,431

allowing the model to adjust to both point timestamps and intervals. A temporal smoothness432

penalty for timestamps is created and expanded to a more generic autoregressive model.433

Tucker decomposition can be used for TKGC [151], treating KGs as 4-way tensors and scoring434

functions that consider interactions among entities, relations, and timestamps, relaxing the435

requirement for identical embedding dimensions of entities, relations, and timestamps.436

Timestamp-based Transformation models involve generating synthetic time-dependent437

relations by concatenating relations with timestamps (e.g., presidentOf:2009-2017 ), converting438

<Barack Obama, presidentOf, USA> to <Barack Obama, presidentOf:2009-2017, USA> [101].439

This however may lead to more synthetic relations than necessary. An improvement is to440

derive optimal timestamps for concatenating relations by splitting or merging existing time441

intervals [135]. The concatenation of relation and timestamp as a sequence of tokens is also442

provided as an input making the synthetic relation adaptive to different formats like points,443

intervals, or modifiers [49]. Others [177] argue that different relations rely on different time444

resolutions, such as a life span in years or a birth date in days. Multi-head self-attention is445
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adopted on the timestamp-relation sequence to achieve adaptive time resolution. In the TKGC446

model, timestamps are often considered linear transformations that map entities/relations to447

corresponding representations. The timestamps are also treated as hyperplanes, dividing time448

into discrete time zones [32]. An additional relational matrix is included to map entities to be449

relation-specific to improve expressiveness for multi-relational facts [185]. To capture dynamics450

between hyperplanes, a GRU may be applied to the sequence of hyperplanes [163]. Another451

approach [102] encodes timestamps into a one-hot vector representing various time resolutions,452

such as centuries or days to achieve time precision.453

KG Snapshots can be considered as a series of snapshots/subgraphs taken from a KG,454

with each subgraph holding facts labelled with a timestamp. Therefore, a temporal subgraph455

evolves with changing relation connections. The link prediction problem can be solved456

by utilising Markov models [197] to infer the multi-relational interactions among entities457

and relations over time and can be trained using a recursive model. Probabilistic entity458

representations based on variational Bayesian inference can be adopted to model entity features459

and uncertainty jointly [110]. The dynamic evolution of facts can be modelled using an460

autoregressive approach [85], incorporating local multi-hop neighbouring information and a461

multi-relational graph aggregator. Alternatively, a multilayer GCN can capture dependencies462

between concurrent facts with gated components to learn long-term temporal patterns [108].463

Continuous-time embeddings can encode temporal and structural data from historical KG464

snapshots [63].465

Historical Context based models focus on the chronological order of facts in a KG, determined466

by the availability of timestamps, which enable predicting missing links by reasoning with the467

historical context of the query. An attention-based reasoning process has been proposed [62] as468

the expansion of a query-dependent inference subgraph, which iteratively expands by sampling469

neighbouring historical facts. Another approach uses path-based multi-hop reasoning by470

propagating attention using a two-stage GNN through the edges of the KG, using the inferred471

attention distribution [86]. The model captures displacements at two different granularities,472

i.e., past, present, and future and the magnitude of the displacement. Two heuristic-based473

tendency scores Goodness and Closeness [12] have been introduced to organise historical facts474

for link prediction. Historical facts are aggregated based on these scores, followed by a GRU475

for dynamic reasoning. It is observed that history often repeats itself in KGs [213], leading to476

the proposal of two modes of inference: Copy and Generation.477

Limitations: Although recently many TKGC models have been proposed that resolve the issues478

of classical KG embedding models with timestamps, some intriguing possibilities for future studies479

on TKGC include: (1) External knowledge such as relational domain knowledge, entity types, and480

semantics of entities and relationships can be added to the limited structural/temporal information481

during model learning to enhance prediction accuracy. (2) Due to the time dimension and intricate482

relationships between facts and timestamps, time-aware negative sampling should be investigated483

in TKGC. (3) Most methods assume timestamps are available, while in some cases only relative484

time information is known. For example, we would know that a person lived in a city after they485

were born, but neither when the person was born, nor when they started living there. (4) With486

the constant evolution of the real-world KGs, TKGC should be regarded as an incremental or487

continual learning problem.488

4.1.6 Dynamic KG Embeddings489

As discussed in the previous section, incorporating timestamps is one way to handle changes;490

however, facts may be added, altered, or deleted over time, are not foreseen [94], and would491

typically require a complete re-computation of the embedding model. Such an approach might still492
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be feasible for KGs like DBpedia, which have release cycles of weeks or months [69], but not for493

continuously updated KGs such as Wikidata, let alone examples of even more highly dynamic KGs,494

e.g., digital twins, which may continuously change every second. Moreover, naïvely recomputing495

embeddings for an only slightly changed KG may lead to drastic shifts in the embeddings of496

existing entities, e.g., due to stochastic training behaviour. This would require a recalibration of497

downstream models consuming those embeddings, as they would not be stable [187, 93].498

While a few approaches for embedding dynamic graphs (not necessarily KGs) have been499

proposed [89], many of them focus on embedding a series of snapshots of KGs, rather than500

developing mechanisms for embedding a dynamic KG. Thus, they do not support online learning,501

i.e., continuously adjusting the KG embedding model whenever changes occur.502

Approaches capable of online learning are much scarcer. One of the first was puTransE [165],503

which continuously learns new embedding spaces. Similarly, Wewer et al. [187] investigate updating504

the link prediction model by incorporating change-specific epochs forcing the model to update the505

embeddings related to added or removed entities and/or relations.506

Embeddings based on random walks can be adapted to changes in the graph by extracting507

new walks around the changed areas [115], or by applying local changes to the corpus of random508

walks [146]. The latter approach also supports the deletion of nodes and edges. DKGE [189] learns509

embeddings using gated graph neural networks and requires retraining only vectors of affected510

entities in the online learning part. Similarly, OUKE first learns static embeddings and computes511

dynamic representations only locally using graph neural networks. The two representations are512

then combined into a dynamic embedding vector. The idea of only updating embeddings of affected513

entities is also pursued by RotatH [186]. A different strategy is considered by Navi [93], which514

learns a surrogate model to reconstruct the entity embeddings based on those of neighbouring515

existing entities. This surrogate model is then used to recompute the embedding vectors for new516

entities or entities with changed contexts.517

Limitations: The main limitations in the existing approaches so far are threefold: (1) In most518

models, only addition to KGs is studied, while deletion is not the focus, an exception is the519

work by Wewer et al. [187].3 (2) The stability of the resulting embeddings, which is crucial for520

downstream applications, has rarely been analysed systematically. (3) The applicability in a true521

real-time scenario, as it would be required, e.g., for digital twins, is unclear for most approaches,522

which are evaluated on snapshots.523

4.1.7 Inductive KG Embedding524

In the inductive setting, graph representation learning involves training and inference of partially525

or completely disjoint sets of nodes, edges, and possibly even relationships types. In practice, from526

the specific set of known structures, it tries to generalise knowledge that enables reasoning with527

unseen graph objects by exploiting information on the structures involving them and the data528

attached to them [46]. The case of link prediction involves being able to predict the existence of a529

link between two previously unseen nodes (head and tail) by reasoning about their connections to530

other known nodes (i.e., nodes observed during training) or by reasoning about their attributes531

(e.g., features similar to those of nodes seen during training).532

Therefore, in the most common setting, relationship types do not change, but training involves533

a given KG and inference involves a completely or partially different graph. Overall, the crucial534

point is that there must be some form of shared information that allows for inferring a description535

3 Even for papers using different versions of public KGs e.g., DBpedia or YAGO, the majority of changes are
additions, and most benchmarks used in the evaluation of the papers mentioned above, usually have much
more additions than deletions.
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of an unknown entity or edge from a small set of known attributes. For example, a common536

approach allows for predictions involving previously unseen, or out-of-sample, entities that attach537

to a known KG with a few edges adopting known relationship types [47]. In this case, a few nodes538

in the KG seen during training are used as anchors and called NodePieces. A full NodePiece539

vocabulary is then constructed from anchor nodes and relation types. Given a new node, an540

embedding representation is obtained using elements of the constructed NodePiece vocabulary541

extracting a hash code for it given by the sequence of k closest anchors, combined with discrete542

anchor distances, and a relational context connecting relations. Other approaches extract a local543

subgraph of one or more nodes and consider the structures within such a subgraph trying to learn544

an inductive bias able to infer entity-independent relational semantics [167]. This approach is then545

also adopted to predict missing facts in KGs, i.e., to predict a missing relation between two entities.546

Similarly, NBFNet [214] instead encodes the representation of a pair of nodes using the generalised547

sum of all path representations between the two nodes and with each path representation as548

the generalised product of the edge representations in the path. In this case, the operation is549

modelled along the line of a generalised Bellman-Ford algorithm that computes the shortest paths550

from a single source vertex to all of the other vertices by taking into account edge weights. Here,551

operators to compute the length of the shortest path are learned for a specific downstream task.552

The aforementioned methods are designed for the case where the only information available are553

triples connecting entities and do not take into account node or edge properties. Conversely, when554

properties are taken into account, e.g., textual data describing entities, this information can be555

exploited as node or edge features. A typical case is that of networks that adopt an auto-encoder556

architecture to encode node representations and decode edges as a function over the representation557

of node pairs. Among those, GraphSAGE [60] was the first inductive GNN able to efficiently558

generate embeddings for unseen nodes by leveraging node features, e.g., textual attributes. Later559

methods, including BLP [35] create embeddings for entities by encoding the description with a560

language model fine-tuned on a link prediction objective. This model can then be used inductively,561

as long as nodes have a description.562

Limitations: All these approaches have only scratched the surface of the need for KG embeddings.563

In particular, challenges persist in terms of (1) scalability, e.g., the possibility of learning inductive564

biases from small representative samples of the graph; (2) exploiting well-known feature extraction565

from graphs and KGs, as existing methods tend to disregard the possibility of using structural566

features, e.g., betweenness, page rank, relational neighbourhood and characteristic sets [122];567

(3) moreover, while GNNs seem the most promising and expressive architecture, their ability568

to produce inductive relation aware KG representations are limited in their treatment of rich569

vocabularies of relation types (typically limited to fewer than a hundred), their ability to exploit570

information at more than 3 hops of distance, and the possibility to generate a representation571

for very sparse feature sets. Finally, known challenges that apply to transductive methods, e.g.,572

distribution shift and how to update the model or decide to train it from scratch, still apply. Finally,573

the ability to work in an inductive fashion might increase the risk of data leakages, which already574

exist in non-inductive settings [41]. The use of GNNs that learn how to aggregate information575

from node and edge attributes raises more concerns when the training data involves private data;576

how to ensure that private data is not leaked through the model, e.g., via differentially private577

KG embedding [61], is still an open question.578

4.1.8 Multilingual KG Embeddings579

Providing multilingual information in a KG is crucial to ensure wide adoption across different580

language communities [87]. Languages in KGs can have different representations; e.g., in Wikidata,581

each entity has a language-independent identifier, and labels in different languages are indicated582
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with the rdfs:label property [88]. Therefore, in Wikidata, entities do not need alignment across583

languages. In DBpedia, there is one entity per language, derived from the respective language584

Wikipedia [103]. Therefore, different language entities on the same concept can have different facts585

stated about them. Here, an alignment using the owl:sameAs property is necessary to ensure the586

different entities are connected across languages and enable seamless access to information for all587

language communities. The different representations of languages in the different KGs can heavily588

influence which way the KG can be embedded. For example, if provided with a KG per language589

as in DBpedia, different language KGs might be embedded separately and then aligned or can be590

fused for usage in downstream applications [73].591

One of the downstream tasks of multilingual KG embeddings is KG completion. Finding new592

facts given machine-readable data such as a KG is a tedious task for human annotators, even593

more so when the graph covers a wide range of languages. Addressing these challenges, recent594

work has employed KG embeddings across languages to predict new facts in a KG.595

One of the large challenges of multilingual KG embeddings is the knowledge inconsistency across596

languages, i.e., the vastly different number of facts per language. Fusing different languages to597

overcome such knowledge inconsistencies for multilingual KG completion can improve performance598

across languages, especially for lower-resourced languages [73]. To fuse different languages, KGs599

need to be aligned across languages. Such alignment can be done jointly with the task of600

multilingual KG completion [24, 168, 26].601

Another approach for multilingual KG completion is leveraging large language models’ (LLM)602

knowledge about the world to add new facts to a KG. As LLMs are not trained towards KG603

completion and are biased towards English, Song et al. [157] introduce global and local knowledge604

constraints to constrain the reasoning of answer entities and to enhance the representation of605

query context. Hence, the LLMs are better adapted for the task of multilingual KG completion.606

Limitations: Although most of the existing multilingual KG embedding models focus on having607

a unified embedding space across different language versions of the KGs, these embeddings608

have several shortcomings. (1) The potential of the model to learn and generalise relations609

between entities in different languages is often restricted by sparse cross-lingual links, resulting in610

less accurate cross-lingual representations of entities. (2) Polysemy, which occurs when a word611

has numerous meanings, can be difficult to address across languages, resulting in ambiguity in612

cross-lingual representations. (3) Entities and relations can have very context-dependent and613

language-specific meanings, which is a challenging task for multilingual embeddings to capture614

the nuances of the context. (4) Resource imbalances may result in low-resource languages having615

inadequate training data and linguistic resources, impacting the entity and relation embeddings.616

4.2 General Challenges617

In addition to the goal of accounting for a broader spectrum of available information, there are618

more general challenges and opportunities for KG embedding models: (1) KG embedding models619

can inherit biases from training data, thereby reinforcing societal preconceptions. (2) Scalable620

embedding approaches are required for large-scale KGs with millions or billions of elements and621

relations. (3) Improving the interpretability and explainability of embeddings remains a challenge.622

4.2.1 Bias in KG Embeddings623

KGs, which serve as the foundation for KG embeddings, are regarded as crucial tools for organizing624

and presenting information, enabling us to comprehend the vast quantities of available data. Once625

constructed, KGs are commonly regarded as “gold standard” data sources that uphold the accuracy626

of other systems, thus making the objectivity and neutrality of the information they convey vital627
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concerns. Biases inherent to KGs may become magnified and spread through KG-based systems628

[150]. Traditionally, bias can be defined as “a disproportionate weight in favour of or against an629

idea or thing, usually in a way that is closed-minded, prejudicial, or unfair"4. Taking into account630

the bias networking effect for KGs, it is crucial that various types of bias are already acknowledged631

and addressed during KG construction [78].632

Biases within KGs, as well as the approaches to address them, differ from those found in633

linguistic models or image classification. KGs are sparse by nature, i.e., only a small number634

of triples are available per entity. In contrast, linguistic models acquire the meaning of a term635

through its contextual usage in extensive corpora, while image classification leverages millions636

of labelled images to learn classes. Biases in KGs can arise from various sources, including the637

design of the KG itself, the (semi-)automated generation of the source data, and the algorithms638

employed to sample, aggregate, and process the data. These source biases typically manifest in639

expressions, utterances, and textual sources, which can then permeate downstream representations640

and in particular KG embeddings. Additionally, we must also account for a wide range of human641

biases, such as reporting bias, selection bias, confirmation bias, overgeneralisation, and more.642

Biases in KGs as the source of KG embeddings can arise from multiple sources. Data bias643

occurs already in the data collection process or simply from the available source data. Schema644

bias depends on the chosen ontology for the KG or simply is already embedded within the used645

ontologies [78]. Inferential bias might result from drawing inferences on the represented knowledge.646

Ontologies are typically defined by a group of knowledge engineers in collaboration with domain647

experts and consequently (implicitly) reflect the world views and biases of the development team.648

Ontologies are also prone to encoding bias depending on the chosen representation language649

and modeling framework. Moreover, biases in KG embeddings may in particular arise from the650

chosen embedding method as for instance induced by application-specific loss functions. Inferential651

biases, which may arise at the inferencing level, such as reasoning, querying, or rule learning, are652

mostly limited to KGs themselves and rarely propagate to KG embeddings. A simple example of653

inferencing bias might be the different SPARQL entailment regimes, which in consequence, might654

be responsible for different results that different SPARQL endpoints deliver despite containing the655

same KG [2, 54].656

Collaboratively built KGs, such as DBpedia or GeoNames, also exhibit social bias, often arising657

from the western-centric world view of their main contributors [36]. In addition, some “truths"658

represented in such KGs may be considered controversial or opinionated, which underlines the659

importance of provenance information.660

For KG embeddings that represent a vector space-based approximation of the structural and661

semantic information contained in a KG, one of the main sources of bias lies in the sparsity and662

incompleteness of most KGs. KG embeddings trained on incomplete KGs might favour entities663

for which more information is available [136]. Moreover, if the underlying KG is biased, then664

KG embeddings trained on this base data will as well be, and in fact bias may even be amplified.665

De-biasing of KG embeddings requires methods for detecting as well as removing bias in KG666

embeddings. Depending on the underlying embedding model, this task might become complex667

and requires finetuning of embeddings with respect to certain sensitive relations [44, 45, 9].668

4.2.2 Reliability and Scalability of KG Embeddings669

KG embedding methods suffer from many issues in terms of scalability. For example, many studies670

experiment mainly on (poorly constructed) subsets of Freebase and Wordnet, the infamous FB15k671

4 Wikipedia article on bias. https://en.wikipedia.org/wiki/Bias, retrieved 2023-11-28.

https://en.wikipedia.org/wiki/Bias
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and WN18 [1], which are known to suffer from information leakage. These datasets contain in the672

order of a few million triples and rarely go beyond 1,000 relationship types, usually focusing on673

subgraphs with 200 or fewer. Recently, more realistic datasets have been proposed in terms of the674

quality of the data involved and of the link prediction task adopted [145]. Nonetheless, even these675

are far from being representative of typical real-world KG applications. Consider that DBpedia676

contains 52M distinct triples involving 28M distinct literals and as many distinct entities, with677

1.3K distinct relationship types. Indeed, a recent Wikidata snapshot contains 1.926 billion triples,678

involving more than 600M entities and 904M distinct literals across 9K relationship types [134].679

The size of real-world KGs is far beyond the capabilities of current methods, and the current680

results on small controlled benchmarks cannot be seen as representative of their scalability and681

reliability on real-world deployment. This perhaps also suggests the need for methods designed682

end-to-end to consider cases where different models can be learned for different subgraphs and683

then combined in a modular fashion. Last but not least, as KG embedding methods are adopted684

for tasks that go beyond link prediction, e.g., KG alignment [159], we refer to the well-known685

issues of scale in terms of dataset size (number of triples) and in terms of heterogeneity (scale of686

the vocabulary of relationships and attributes), as well as to new important issues based on the687

number of KGs to align, i.e., scale in terms of the number of distinct KG sources [15].688

4.2.3 Explainability of KG Embeddings689

One of the persistent difficulties is the development of KG embedding methods to enhance690

interpretability and explainability. This includes comprehending the reasoning and decision-691

making processes of KG embedding models as well as providing explanations for their predictions.692

KG embeddings have several advantages over conventional representations produced by deep693

learning algorithms, including their absence of ambiguity and the ability to justify and explain694

decisions [125]. Additionally, they can offer a semantic layer to help applications such as question-695

answering, which are normally handled by text-based brute force techniques. CRIAGE [129]696

is one such tool that can be used to understand the impact of adding and removing facts.697

GNNExplainer [202] is proposed for the explainability of the predictions done by GNNs. Deep698

Knowledge-Aware Networks [176] and Knowledge-aware Path Recurrent Networks [180] have699

witnessed a surge in attention to recommendation systems. They model sequential dependencies700

that link users and items. OpenDialKG [117] is a corpus that aligns KGs with dialogues and701

presents an attention-based model that learns pathways from dialogue contexts and predicts702

relevant novel entities. These models offer a semantic and explicable layer for conversational703

agents and recommendations, aiding in the completion and interpretation of the predictions.704

Limitations: However, there are still a number of limitations: (1) The lack of standardised705

evaluation standards makes it difficult to compare different approaches and assess performance706

consistently. (2) Improving interpretability often comes at the expense of performance and707

striking a balance between interpretability and performance still remains a challenge. (3) User-708

centric evaluation is necessary to understand the practical utility of explainable KG embeddings.709

(4) Current research on KG embedding explainability often focuses on global or model-level710

explanations, ignoring the importance of contextual and domain-specific explanations.711

4.2.4 Complex Logical Query Answering and Approximate Answering of712

Graph Queries713

The link prediction task is often seen as a graph completion task. However, it can equivalently be714

cast as a query-answering task for a very simple query. For example, if we predict the tail of the715

triple <h,r,?>, the task is equivalent to answering the corresponding query as if the graph had all716
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the missing information. Recently, researchers started investigating how we could answer such717

queries if they are more complex, a task known as complex logical query answering5. The goal is,718

given a graph with missing information and a graph query, to produce the answers to the query719

as if the graph were complete (or more commonly, produce a ranking of possible answers).720

One might naïvely assume that this can be solved by first completing the graph and then721

performing a traditional graph query on the completed graph. The issue is, however, that a very722

large KG can never be complete. This is because link prediction models do not yield a set of723

missing edges, but rather a ranking of possible completions for an incomplete triple.724

We can distinguish three main lines of work in this area. The reader is referred to relevant725

surveys [138, 29] for more details. The first group of approaches are those that make use of a link726

predictor, like the ones introduced above. These methods decompose the query into triples and727

then use the link prediction model to make predictions for the triples. The first approach of this728

type was CQD [7], which uses fuzzy logic to combine the outputs of the link predictor. Further729

developments for this type of model include QTO [13], which materialises all intermediate scores730

for the link predictors and makes sure that edges existing in the graph are always regarded as more731

certain than those predicted by the link predictor. Another newer approach is Adaptive CQD [8],732

which improves CQD by calibrating the scores of the link predictor across different relation types.733

A second group of approaches are referred to as projection approaches, and the earliest734

approaches in this domain are of this type. These methods are characterised by the restriction735

that they can only answer DAG-shaped graph queries. They are inspired by translation-based link736

predictors. Starting from the entities in the query (in this context called the anchors), they project737

them with a relation-specific model to a representation for the tail entity. This representation738

then replaces the other occurrences as a subject of the variable in the query. If a variable occurs739

in more than one object position, a model is invoked to combine the computed projections into740

a single representation (called the intersection). The first approach of this type was Graph741

Query Embedding (GQE) [59], which did the above using vectors as representations, simple linear742

projections, and an MLP with element-wise mean for the intersection. Later examples include743

Query2Box [139], which uses axis-aligned hyperplanes to represent the outcomes of projections744

and intersections, and BetaE [140], which instead uses the beta distribution.745

A final group of approaches is message-passing-based. These are very flexible and can deal746

with more query shapes than the above. This method regards the query as a small graph and747

embeds that complete query into a single embedding. Then, answers to the query are found simply748

by retrieving the entities of which the embedding is close to that query in the embedded space. A749

notable example is MPQE [34], which uses a relational graph convolutional network (R-GCN)750

to embed the query. The flexibility of these models is illustrated by StarQE [4], which can even751

answer hyper-relational queries (very similar to RDF-star).752

Limitations: As indicated in the survey by Ren et al. [138], there are still very many open753

questions in this domain. (1) One aspect is that current approaches only support small subsets754

of all possible graph queries. For example, hardly any work attempts to answer cyclic queries,755

queries with variables on the relation position, or only variables in the whole query. (2) Also, the756

graph formalism currently used is limited; only very few approaches can deal with literal data,757

and there is no word yet on temporal KGs or the use of background semantics.758

5 also sometimes approximate query answering, multi-hop reasoning, or query embedding
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5 Applications759

Recent research on KG embeddings has shown broad potential across diverse application do-760

mains such as search engines [42], recommendation systems [48], question-answering systems [72],761

biomedical and healthcare informatics [5], e-commerce [209], social network analysis [152], educa-762

tion [200], and scientific research [119]. However, in this study, we highlight two such domains:763

recommendation and biomedical/therapeutic use cases.764

5.1 KG Embedding for Recommendation765

Recommender systems (RSs) are an integral part of many online services and applications to766

provide relevant content and products tailored to their users. Many RSs identify user preference767

patterns assuming that users with similar past behaviour have similar preferences, e.g., people768

that watch the same movies are likely to do so also in the future, an approach commonly referred769

to as collaborative filtering [68, 67]. Yet, many existing methods only work in a warm-start770

setting, where it is assumed that all users and items have been seen during training [60, 204].771

Moreover, methods that try to deal with cold-start settings, where for some users or items only772

user–item interactions are known and only at inference time [201, 204], making them unable to773

handle situations where this type of data is sparse, e.g., long-tail users and items. Therefore,774

we can see this problem as a link prediction problem, and we can also distinguish between a775

transductive setting and an inductive setting. In the transductive setting, some approaches try776

to exploit other contextual information from KGs, e.g., semantic annotations, taxonomies, item777

descriptions, or categories, to overcome these problems. In particular, a large body of methods778

exploits both domain-specific and open-domain KGs integrated with user and item information.779

In practice, users and items are nodes connected by special domain-specific relation types, e.g.,780

a rating or a purchase, and item nodes are represented with additional connections to other781

entities describing their categories, features, producers, and provenance. This information, in the782

form of a Collaborative KG, is adopted as additional side information in the recommendation783

process [179, 175, 126]. These methods can be grouped into three categories:784

1. path-based methods, which capture information from distant nodes but tend to dismiss much785

of the structural information in KG and are very dependent on the paths selected during786

training [?, 191, 162];787

2. embedding-based methods, which use existing transductive graph embedding approaches to788

capture the semantic relations of the graph structure, such as TransR [205] or Node2Vec [55],789

further applying them in recommendation scenarios [126, 206]; and790

3. structural-based methods, which use GNNs to aggregate structural information of each node’s791

neighborhood [175, 179].792

Among these, GNNs have recently shown promising results thanks to their ability to model793

relations and capture high-order connectivity information by combining KGs and collaborative794

data (user–item interactions) [179]. Nonetheless, these approaches often rely on transductive795

methods, making them unable to handle frequent changes in the graph. Moreover, their user–item796

representation often is limited to a single relation type and still cannot fully exploit the contextual797

knowledge offered by open-domain KGs, due to only very few relation types being considered.798

Furthermore, these approaches need to be able to exploit both the structure of the graph and the799

attributes describing the items.800
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5.2 Multimodal KG Embeddings for Biomedical and Therapeutic Use801

In the biomedical domain, KGs are a natural way to model and represent complex biomedical802

structured data, such as molecular interactions, signalling pathways and disease co-morbidities803

[105]. Information from a single source usually does not provide sufficient data, and various804

state-of-the-art studies have shown that incorporating multiple heterogeneous knowledge sources805

and modalities yields better predictions [100, 52, 70]. Learning an effective representation that806

leverages the topology of these multimodal and heterogeneous KGs to create optimised embedding807

representations is key to applying AI models. These optimised embeddings can then be fed into808

link prediction models, such as for interactions between proteins [79], drugs [52], drug-targets809

[52, 100], or drug indication/contraindications for diseases [70].810

For instance, Otter-Knowledge [100] uses MKGs built from diverse sources, where each node811

has a modality assigned, such as textual (e.g., protein function), numerical (e.g., molecule mass),812

categorical entities (e.g., protein family), and modalities for representing protein and molecules.813

For each modality in the graph, a model is assigned to compute initial embeddings, e.g., pre-trained814

language models such as ESM [142] and MolFormer [144] are used for protein sequences and815

molecules’ SMILES, respectively. A GNN is then invoked to enrich the initial representations816

and train a model to produce knowledge-enhanced representations for drug molecules and protein817

entities. These representations can improve drug-target binding affinity prediction tasks [71], even818

in the presence of entities not encountered during training or having missing modalities.819

During training, attribute modalities are treated as relational triples of structured knowledge820

instead of predetermined features, making them first-class citizens of the MKG [128, 100]. The821

advantage of this approach is that entity nodes are not required to carry all multimodal properties822

or project large property vectors with missing values. Instead, the projection is done per modality823

and only when such a modality exists for the entity.824

6 Discussion and Conclusion825

Currently, the vast majority of evaluations of knowledge graph embeddings are conducted on the826

task of link prediction. At the same time, embeddings created with such techniques are used827

across a wide range of diverse downstream tasks, such as recommender systems, text annotation828

and retrieval, fact validation, data interpretation and integration, to name just a few. This raises829

the question: How suitable is the effectiveness of a link prediction task as a predictor of the830

applicability of a particular KGE method for a particular downstream task?831

While the evaluation of link prediction is quite standardised with respect to benchmark832

datasets and evaluation metrics, the field of downstream applications is much more diverse and833

less standardised. Some frameworks, such as GEval [127] and kgbench [18], offer a greater variety834

of tasks and evaluations, including evaluation metrics and dataset splits.835

Some studies have looked into characterizing the representation capabilities of different KGE836

methods. They, for instance, analyse whether different classes are separated in the embedding837

space [6, 76, 215]. More recently, the DLLC benchmark [132] has been proposed, which allows for838

analysing which types of classification problems embeddings produced by a particular method can839

address. Other studies analyse the distance function in the resulting embedding spaces, finding840

that while most approaches create embedding spaces that encode entity similarity, others focus on841

entity relatedness [131], and that some methods can actually be altered to focus more on similarity842

and relatedness [133].843

In addition, link prediction, entity categorisation, KG completion, and KG embeddings are844

crucial for a number of downstream activities, such as entity recommendation, relation extraction,845

question-answering, recommender systems, semantic search, and information retrieval. Models that846
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leverage user profiles, historical interactions, and KGs can deliver personalised recommendations,847

capture similarity and relevance, and increase accuracy and relevance. KG embeddings also848

improve the accuracy of relation extraction by adding structured knowledge. The majority of849

existing KG embedding models are generalised, that is, they are trained and evaluated on open850

KGs for KG completion. However, task-specific KG embeddings would be quite advantageous in851

various kinds of applications, which still remains an open research task. They can be optimised for852

creating representations for specific tasks, improving performance, focusing on relevant information853

extraction, resolving data scarcity, and thereby improving interpretability and explainability. With854

the use of domain-specific data or constraints, these embeddings can be trained to grasp and855

reason about the relationships and semantics unique to that domain.856

Recent ongoing research also reveals that when KG embeddings and LLMs are combined, a857

symbiotic relationship results, maximising the benefits of each methodology. While LLMs help858

to integrate textual knowledge, improve entity and relation linking, promote cross-modal fusion,859

and increase the explainability of KG embeddings, KG embeddings provide structured knowledge860

representations that improve the contextual comprehension and reasoning of LLMs. Therefore,861

future research may focus on building more robust and comprehensive models for knowledge862

representation, reasoning, and language understanding as a result of these interrelated effects.863

KG embeddings will continue to evolve and serve an important role in enabling effective864

knowledge representation, reasoning, and decision-making as KGs grow in scale and complexity.865

Advances in KG embeddings offer the ability to make it easier to convert unstructured data into866

structured knowledge, reveal deeper insights, and enhance intelligent applications, as highlighted867

in this study.868
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