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ABSTRACT: The aromaticity of cyclic π-conjugated organometallic compounds is known as metallaaromaticity. π-Conjugated
metallacycles, such as metallabenzenes and metallapentalenes, have been investigated in order to understand the involvement of the
d electrons from the metal center in the π-conjugated systems of the organic ligands. Here, we report the synthesis of Pd(II) 10-
platinacorrole complexes with cyclooctadiene (COD) and norbornadiene (NBD) ligands. While the Pd(II) 10-platinacorrole COD
complex adopts a distorted structure without showing appreciable antiaromaticity, the corresponding NBD complex exhibits a
distinct antiaromatic character due to its highly planar conformation. Detailed density functional theory (DFT) calculations revealed
that two d orbitals are involved in macrocyclic π-conjugation. We furthermore demonstrated that Craig−Möbius antiaromaticity is
not present in the studied system. The synthesis of 10-platinacorroles enables a systematic comparison of the antiaromaticity and
aromaticity of closely related porphyrin analogues, providing a better understanding of π-conjugation that involves d orbitals.

■ INTRODUCTION
Aromaticity is a fundamental concept in chemistry and is
usually observed in planar cyclic π-conjugated organic
molecules. However, various new types of nonclassical
aromaticity have been proposed and researched intensively.1−7

One such type is metallaaromaticity, which has been defined as
the aromatic properties of organometallacycles that consist of a
σ-bonded transition metal and π-conjugated organic li-
gand.8−11 The discovery of metallabenzenes12−14 and metal-
lapentalenes15−17 has opened up new avenues for the
exploration and understanding of the electronic structure and
the bonding nature of organometallic compounds (Figure 1a).
However, metallaaromaticity has hitherto only been achieved
in relatively small ring systems and examples of macrocyclic
metallaaromatic molecules remain limited.18,19

Owing to the specific shape of the d orbitals, topological
issues arise in the molecular orbitals of π-conjugated
metallacycles. The conjugation of the dzx orbital of the metal
center with the pz orbital of a ligand enables Hückel
aromaticity in planar cyclic π-conjugated systems with 4n +
2 (n = 0, 1, 2, ...) π-electrons (Figure 1b). In contrast,
participation of the dyz orbital in the π-conjugated system

results in a phase inversion of the molecular orbital, thus
inducing Craig−Möbius antiaromaticity with 4n + 2 (n = 0, 1,
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Figure 1. (a) Metallabenzenes and metallapentalenes. (b) Involve-
ment of the dzx and dyz orbitals in π-conjugated systems.
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2, ...) π-electrons.20 Consequently, the aromaticity of metal-
lacycles can be complicated when two d orbitals are involved in
a cyclic π-conjugated system.21

Porphyrins and other related molecules, namely, porphyr-
inoids, are examples of macrocyclic π-conjugated systems. The
aromaticity of various porphyrinoids has been actively
investigated.22−25 Porphyrinoids are excellent scaffolds for
achieving effective macrocyclic π-conjugation, thus enabling
aromaticity in Möbius π-systems,26,27 large macrocycles,28 and
macrocycles that contain metallocene units.29−31 Among
various porphyrinoids, the macrocyclic aromaticity and
antiaromaticity of 10-heterocorroles are sensitive to the
heteroatoms incorporated at the 10-position, thus highlighting
the important role that the heteroatoms play in the cyclic
conjugation (Figure 2).32−34 While a lone pair on either

nitrogen (X = N),35,36 oxygen (X = O),37,38 sulfur (X = S),38,39

phosphorus (X = P),40 or selenium (X = Se)38 in conjunction
with the 16π-conjugation of the bis(dipyrrin) unit leads to
macrocyclic 18π-conjugated aromatic systems, 10-boracorrole
(X = B)41 exhibits a unique form of global antiaromaticity due
to the vacant p orbital on the boron atom, which affords a 16π-
conjugated system. 10-Silacorrole (X = Si)42 shows no global
antiaromaticity because the sp3-hybridized silicon atom
disrupts the macrocyclic π-conjugation. In other words, the
global aromaticity or antiaromaticity of 10-heterocorroles
depends on the degree of π-conjugation that manifests via
the heteroatom linkage.

In this context, 10-metallacorroles should offer an ideal
molecular scaffold for the systematic evaluation of the
macrocyclic π-conjugation that occurs through metal−carbon
bonds via the d orbitals. If π-electrons can be delocalized
through the transition metal at the 10-position, the molecule
should show either metallaaromaticity or metallaantiaroma-
ticity. Here, we report the synthesis of two Pd(II) 10-
platinacorrole complexes and their ligand-dependent antiar-
omaticity. 10-Platinacorrole is a molecular entity that
significantly expands the scope of metallaaromaticity because
this molecule demonstrates that metallaaromaticity can
manifest in macrocyclic π-conjugated systems such as
porphyrinoids.

■ RESULTS AND DISCUSSION
Synthesis, Structure, and Aromaticity of a Pd(II) 10-

Platinacorrole COD Complex. The synthesis of the Pd(II)
10-platinacorrole complex started from dibromobis(dipyrrin) 1
(Scheme 1a). The palladium-catalyzed Miyaura−Ishiyama
borylation of 1 afforded the corresponding diborylated
bis(dipyrrin) 2 in 63% yield.43 Subsequently, 2 was metalated
with a Pd(II) ion to fix the conformation of the two boryl
groups on the same side. Transmetalation of Pd(II) bis-
(dipyrrin) 3 with dichloro(1,5-cyclooctadiene)platinum(II)

furnished Pd(II) 10-platinacorrole cyclooctadiene (COD)
complex 4 in 49% yield.44 Platinacorrole 4 was structurally
characterized by 1H, 13C, and 195Pt NMR spectroscopy, as well
as high-resolution mass spectrometry. Notably, metalation with
palladium is essential for the successful isolation of 4 (Scheme
1b). A similar transmetalation of Ni(II) bis(dipyrrin) 6 with
the same platinum salt used in the synthesis of 4 resulted in the
formation of Ni(II) norcorrole 7. This probably occurs via the
reductive elimination of platinacorrole 8, which is most likely
due to the fact that the ionic radius of Ni(II) (0.49 Å) is
smaller than that of Pd(II) (0.64 Å).45

The 1H NMR spectrum of 10-platinacorrole COD complex
4 contains resonances for the pyrrole protons between 6.2 and
5.9 ppm, which are slightly upfield shifted compared to those
of Pd(II) bis(dipyrrin) complex 5, which does not exhibit any
macrocyclic π-conjugation (Figure 3a,b). The molecular
structure of 4 was unambiguously determined via single-crystal
X-ray diffraction analysis (Figure 4a,b). The molecular skeleton
of 4 is significantly distorted, and the Pt(II) center protrudes
from the tetrapyrrole moiety. The Pt(II) center is displaced by
1.09 Å from the mean plane, which is defined by the 24 core
atoms consisting of the four pyrrole units, the meso-carbon
atoms, the palladium atom, and the platinum atom. The
distance between the Pt(II) and Pd(II) centers of 4 is 3.738 Å.

We then evaluated the aromatic nature of platinacorrole
COD complex 4 by using density functional theory (DFT)
calculations. The optimized structure of 4 by the DFT
calculation using the B3LYP functional46 and def2-TZVP
basis set47 reproduced nicely its experimental structure
(Figures 4c and S30). The aromaticity of 4 was examined in
terms of its magnetic criteria using nucleus independent
chemical shift (NICS) analysis.48 Judging from the marginally

Figure 2. Structures of 10-heterocorroles and 10-platinacorrole.

Scheme 1. Synthesis of Pd(II) 10-Platinacorrole COD
Complex 4
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positive NICS(1) values of about +3 ppm, we concluded that
COD complex 4 is nonaromatic (Figure S34). Clearly, the
nonplanar structure of 4 interrupts the effective electronic
conjugation through the C−Pt−C linkage, resulting in it being
nonaromatic. Current-density calculations using the GIMIC
program49−55 support this conclusion (vide infra).
Synthesis, Structure, and Aromaticity of Pd(II) 10-

Platinacorrole Norbornadiene (NBD) Complex 9. The
deformed structure of 4 most likely arises from steric repulsion
between the COD ligand and adjacent pyrrole subunits. We
therefore expected that exchange of the COD ligand to a
sterically less demanding NBD ligand would allow planariza-
tion of the core skeleton. Treatment of 4 with a large excess of
NBD in acetone resulted in the precipitation of the 10-
platinacorrole NBD complex 9 in 58% yield (Scheme 2).

The planar structure of NBD complex 9 was confirmed by
single-crystal X-ray diffraction analysis and DFT calculations.
Figure 4d,e shows the crystal structure of 9, of which the
crystal was obtained from octane/chlorobenzene. The mean
plane deviation of 9 is 0.098 Å, which is substantially smaller
than that of 4 (0.229 Å), and the Pt(II) atom protrudes by
merely 0.482 Å from the mean plane. The supplementary
crystal structure of 9 obtained from octane/chloroform adopts
a more planar conformation (Figure S28). The slightly
distorted structure of 9 is likely due to crystal packing forces
induced by its dimeric packing arrangement (Figure S27). The
optimized structure of 9 at the B3LYP/def2-TZVP level
starting from the nonplanar geometry without any restriction
resulted in a perfectly planar conformation belonging to the C2v
point group (Figures 4f and S31). We also simulated the
conformation of 10-platinacorrole with ethylene, 1,3-buta-
diene, and acetonitrile ligands, none of which afforded a planar
structure (Figure S33). This result suggests that a bidentate
and less-hindered ligand is essential to planarizing the structure
of 9.

The planar conformation of NBD complex 9 allows for
overlap between the d orbitals on the Pt center and the p
orbitals on the adjacent carbon atoms, thus enabling effective

macrocyclic π-conjugation through the platinum center. In the
1H NMR spectrum of 9, the pyrrole protons (4.5−5.0 ppm)
were substantially upfield shifted relative to those of 4,
suggesting the presence of a paratropic ring-current effect
(Figure 3c). The 1H NMR spectra of 9 at low temperatures
exhibited further upfield shifts of pyrrole protons, suggesting its
planar and dynamic conformation (Figure S18). The unique
antiaromaticity of 9 was confirmed based on its magnetic
properties using NICS(1) calculations at the BHLYP/def2-
TZVP level. The calculated NICS(1) values range from 8.4 to
11.5 ppm (Figure S35). A substantial paratropic ring current
was confirmed using the GIMIC method (vide infra).49−55 The
ring current effect of 9 was compared with that of other Pd(II)
10-heterocorroles. NICS(1) calculations clarify the aromatic-
ity, nonaromaticity, and antiaromaticity of 10-thia-, 10-sila-,
and 10-boracorroles, respectively, according to magnetic
criteria (Figures S36−S38). Compared with distinctly
antiaromatic Pd(II) boracorrole, of which NICS(1) values
range from 16.6 to 21.0 ppm, the paratropicity of 9 is
attenuated. The effect of the central metal was also
investigated. Ni(II) and Zn(II) 10-platinacorrole NBD
complexes exhibit comparable antiaromaticity judging from
their NICS(1) values (Figures S39 and S40).
Optical and Electrochemical Properties of Pd(II) 10-

Platinacorroles 4 and 9. The conformational difference
between platinacorroles 4 and 9 significantly influences the gap
between their highest occupied (HOMOs) and lowest
unoccupied molecular orbitals (LUMOs), thus resulting in
substantial differences in their optical and electrochemical
properties. The UV/vis/NIR absorption spectra of COD
complex 4 exhibits a broad absorption band from 700 to 1000
nm (Figure 5). The spectral shape is similar to that of the
corresponding 10-silacorrole, which also lacks macrocyclic π-
conjugation.42 In contrast, broad and weak absorption bands
tailing to 1500 nm were observed for NBD complex 9. This
feature arises from the forbidden HOMO → LUMO
transition, which is typical for antiaromatic porphyrinoids.56

Time-dependent DFT (TD-DFT) calculations57 at the CAM-

Figure 3. 1H NMR spectra of (a) bis(dipyrrin) 5, (b) the COD complex 4, and (c) the NBD complex 9 in CDCl3.
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B3LYP58/def2-TZVP level for 4 and 9 were able to reproduce
their experimental absorption spectra, in which the NIR
absorption bands were assigned as HOMO → LUMO
transitions (Figure S42; Table S2).

The electrochemistry of platinacorroles 4 and 9 was
investigated by using cyclic voltammetry (Figure S29). NBD
complex 9 exhibited two reversible oxidation waves at −0.04
and 0.54 V as well as two reversible reduction waves at −1.35
and −1.87 V. Notably, the electrochemical HOMO−LUMO
gap of 9 (1.31 V) is substantially narrower than that of COD
complex 4 (1.68 V). This observation is consistent with the

results of the DFT calculations. A small HOMO−LUMO gap
is also typical for antiaromatic porphyrinoids.
Ring-Current Analysis and Origin of the Antiaroma-

ticity in Platinacorrole Complexes. The ring current in
platinacorrole complexes 4 and 9 was visualized and quantified
via current-density studies using the GIMIC method.49−55 The
calculations were performed on simplified models 4′ and 9′,
where the mesityl groups are replaced by hydrogen atoms. The
current-density calculations demonstrate that 9′ features global
antiaromaticity with many current-density pathways (Figure
6a). While a very weak paratropic ring current of −1.7 nA T−1

passes though the Pt−C bond of the COD complex 4′ (Figure
S43), NBD complex 9′ exhibits a substantial paratropic ring
current of −18.2 nA T−1 at the Pt−C bond, highlighting its
antiaromaticity. A paratropic ring current of −22.4 nA T−1

flows through the Cα−Cα linkage and mainly circulates along
the inner pathway at each pyrrole ring. This feature is typical
for antiaromatic porphyrinoids.25 Part of the paratropic ring
current (9−10 nA T−1) is diverted via the Pd atom. In
addition, a weak diatropic edge current of approximately 2 nA

Figure 4. (a) Top and (b) side views of the X-ray crystal structure of
4. (c) Side view of the optimized structure of 4 at the B3LYP/def2-
TZVP level. (d) Top and (e) side views of the X-ray crystal structure
of 9. (f) Side view of the optimized structure of 9 at the B3LYP/def2-
TZVP level. Hydrogen atoms and mesityl substituents except in parts
(a,d) are omitted for clarity.

Scheme 2. Synthesis of Pd(II) 10-Platinacorrole NBD
Complex 9

Figure 5. UV/vis/NIR absorption spectra of 4 and 9 in dichloro-
methane.

Figure 6. (a) GIMIC analysis of NBD complex 9′ calculated at the
B3LYP/def2-TZVP level. The integrated ring-current strength
susceptibilities across the selected bonds are shown in nA T−1. (b)
Side view of the current density. (c) The diatropic current-density
contribution. (d) The paratropic current-density contribution.
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T−1 flows through the Cβ−Cβ bonds. The diatropic and
paratropic contributions to the ring current are shown in
Figure 6c,d, respectively. Importantly, the current-density flow
stays on the same side of the molecular plane (Figure 6b). If
Craig−Möbius antiaromaticity applies to the present system, a
ring-current associated with a phase inversion of the molecular
orbitals (MOs) would be expected. The visualization of the
ring current indicates that Craig−Möbius antiaromaticity is not
applicable to the platinacorrole complexes studied here.

Thus, to understand the origin of the antiaromatic nature of
10-platinacorrole NBD complex 9, we examined the molecular
orbitals of simplified model 9′ (Figure S41). In several MOs,
the d orbitals on the Pt center are effectively overlapped with
the π orbitals of the tetrapyrrole unit (Figure 7a). The natural

bond orbital (NBO) analysis of these MOs reveals large
contribution from NBOs 109 and 108, which correspond to
the dzx and dyz orbitals of the Pt center (Figure 7b).59 The
Pt(II) center adopts a square-planar geometry with a formal d8

electronic configuration. Of the four occupied d orbitals, only
the dyz and dzx orbitals participate in the π-conjugation because
the π MOs should be antisymmetric relative to the molecular
plane (Figure 8). Consequently, four d electrons from the
Pt(II) center of NBD complex 9 are involved in the π-

conjugation along the inner pathway, thus formally creating a
cyclic 20π-conjugated system.

■ CONCLUSIONS
We synthesized Pd(II) 10-platinacorrole COD and NBD
complexes 4 and 9, respectively. Single-crystal X-ray diffraction
analyses and density functional theory (DFT) calculations
confirmed nonplanar and planar structures for the COD
complex 4 and NBD complex 9, respectively. The planar
conformation of 9 induces an effective overlap of the 5dyz and
5dzx orbitals of the platinum center with the 2pz orbitals of the
adjacent carbon atoms. The effective π-conjugation through
the Pt center results in the distinct antiaromatic character of 9.
This notion was supported by an examination of the magnetic
properties of 9 using spectroscopic analyses and DFT
calculations, which revealed a distinct paratropic ring-current
effect and a narrow HOMO−LUMO gap. A detailed
evaluation of the ring currents in 9 using the GIMIC method
demonstrated that Craig−Möbius antiaromaticity is not
present in this system. Thus, 10-platinacorrole complex 9
showcases that metallaantiaromaticity is possible in macro-
cyclic π-conjugated systems, thus offering a better under-
standing of π-conjugation through d orbitals and expanding the
research field of metallaaromaticity.
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