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Semantic integration of diverse 
data in materials science: assessing 
Orowan strengthening
Bernd Bayerlein  1 ✉, Markus Schilling1, Philipp von Hartrott2 & Jörg Waitelonis3

this study applies Semantic Web technologies to advance Materials Science and Engineering (MSE) 
through the integration of diverse datasets. Focusing on a 2000 series age-hardenable aluminum 
alloy, we correlate mechanical and microstructural properties derived from tensile tests and dark-
field transmission electron microscopy across varied aging times. An expandable knowledge graph, 
constructed using the tensile test and Precipitate Geometry Ontologies aligned with the PMD 
Core Ontology, facilitates this integration. this approach adheres to FaIR principles and enables 
sophisticated analysis via SPaRQL queries, revealing correlations consistent with the Orowan 
mechanism. The study highlights the potential of semantic data integration in MSE, offering a new 
approach for data-centric research and enhanced analytical capabilities.

Introduction
In Materials Science and Engineering (MSE), material and process data are generated using a variety of different 
techniques. For instance, assessing a component’s degradation behavior at elevated temperatures necessitates 
data from both microstructural and mechanical analyses. The datasets resulting from these varied investigative 
techniques significantly differ in structure and format, posing a challenge for coherent integration and analy-
sis1,2. Despite the increasing reliance on utilizing enhanced material and process data for progress3, much of this 
data remains in heterogeneous and unstructured formats4, leading to a fragmented and underutilized knowl-
edge base, which is considered a loss of valuable resources5,6.

A central goal of digitalization in MSE is thus to achieve interoperability of material and process data from 
diverse sources, aligning with the FAIR principles7. Systematic data integration is expected to unlock valua-
ble insights due to the intrinsic information and knowledge embedded within these data. Semantic Web tech-
nologies, particularly the development and application of ontologies, offer an effective approach to meet this 
challenge8–11. As defined by Gruber, an ontology is a “formal and explicit specification of a shared conceptual-
ization”12. Ontologies facilitate context establishment, clear definition of meanings, formulation of relationships 
and rules, and linkages between data entities13,14. They are ideal for the semantic integration of heterogeneous 
data sources, enhancing their usability and accessibility for both human and machine processing13,15,16.

Ontologies are categorized into abstract, high-level forms such as top-level ontologies and mid-level ontol-
ogies, and specialized application ontologies. Application ontologies extend the concepts of mid-level ontol-
ogies and top-level ontologies to suit specific applications, inheriting their structural systematics crucial for 
interoperability17,18. Such an ontological construct enables the integration of data into a structured, semantic 
exchange format – the Resource Description Framework (RDF)19–21. The more data integrated into this semantic 
network or knowledge graph, the greater the accumulation of knowledge, enhancing the potential for artificial 
intelligence applications. For instance, improving natural language processing interpretability through onto-
logical representations22, and increasing large language models accuracy23. Knowledge representation also pro-
vides a descriptive basis for pattern recognition24 and valuable information for decision making in areas such as 
machine learning and robotics15,25,26.
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Despite the promising emerging applications and documented benefits in the literature27, MSE lacks practical, 
comprehensible examples demonstrating the steps of semantic data integration towards machine-processable 
knowledge representation9,15. Our work addresses this gap by developing a “good practice” Jupyter Notebook 
demonstrator for the MSE community. We employ the Orowan mechanism, a fundamental MSE theory that 
describes material strengthening through dislocations and precipitates28, as our use case. This demonstrator 
serves as a practical example of applying Semantic Web technologies in MSE, showing the use of ontologies and 
illustrating how valuable insights can be gained from heterogeneous data sources.

Our demonstrator addresses the following focal points:

•	 Methodical aggregation and structuring of two distinct, publicly available datasets from mechanical (tensile 
testing) and microstructural (dark-field transmission electron microscopy (DF-TEM)) characterizations of 
radial compressor wheels aged over several intervals.

•	 Development of an ontological framework using the PMD Core Ontology (PMDco) as a unifying mid-level 
ontology29.

•	 Seamless semantic integration of both datasets using specific application ontologies for tensile testing and 
DF-TEM image analysis data.

•	 Creation of a queryable knowledge graph as a proof-of-concept for semantic interoperability.
•	 Conducting targeted information queries to generate new insights via digital workflows, followed by enrich-

ing the knowledge graph.
•	 Demonstrating the process of indirect knowledge generation by uncovering hidden patterns in datasets 

through the querying of correlatable value pairs leading to the derived Orowan’s law.

Results
In this section, we present the results of our research, which were obtained through information retrieval and 
analysis using the components of our Jupyter Notebook demonstrator, as referenced in30. The methods employed 
for ontological data representation and semantic data integration, within an ontological framework focused on 
the PMDco, are presented in detail in Section Ontological framework and Section Implementation of RDF 
graphs and ABox data instantiation.

By leveraging Semantic Web technologies, we establish meaningful links between two distinct datasets: the 
mechanical properties derived from tensile testing31 and the microstructural characteristics obtained from 
DF-TEM image analysis32 (see Section Tensile testing and DF-TEM imaging, respectively). This integration 
is achieved by embedding these datasets into a unified knowledge graph, where mid-level concepts serve as 
bridges, enhancing both data interoperability and comparability. The incorporation of these datasets into a 
knowledge graph is essential for developing a robust framework, which leverages SPARQL Protocol and RDF 
Query Language (SPARQL) queries for information retrieval and knowledge discovery33. Our approach enables 
exploration of the relationships between the mechanical and the microstructural properties of radial compressor 
wheels, offering deeper insights into their interdependence and aging behavior.

Data retrieval, processing, and knowledge graph integration. This section describes our approach 
for managing and analyzing the data instantiated in Section Implementation of RDF graphs and ABox data 
instantiation, as well as for extending the knowledge graph with the newly derived results. The process involves 
three key steps: selective data retrieval using SPARQL queries (i), data processing through script-based workflows 
(ii), and integrating data outcomes back into the existing knowledge graph (iii), thereby enhancing it. 

 (i) Initially, we extract specific information from the RDF dataset using precisely formulated SPARQL query 
that addresses the local triple store. For instance, Box 1 illustrates a designed query for processing micro-
structural data, retrieving details such as specimen images, material states, X and Y coordinates, and radii 
of precipitates from the DF-TEM image-based analysis dataset. The dataset relies on a conventional image 
processing procedure for analyzing precipitates, which includes several steps such as initially applying 
edge-preserving median filtering to the DF-TEM raw images, followed by manual thresholding for precip-
itate segmentation, as elaborated in Section DF-TEM imaging and referenced in34. Once this information 
is retrieved, the data is structured and prepared for further analysis, exemplifying the use of our locally 
managed RDF environment in drawing relevant insights from the data.

 (ii) Next, the retrieved data is processed using a script-based workflow. Our primary focus is on determining 
the mean distances between precipitates and understanding how these mean distances vary across different 
material states, especially due to aging. For this purpose, we employ the Delaunay triangulation method35 
to calculate precipitate distances for each material state and corresponding sets of images (see Table 1 for 
details). Each image’s precipitates are plotted using their X and Y coordinates. We use Delaunay triangu-
lation to form triangles with precipitates as vertices, calculating the Euclidean distances between these 
vertices (Figure 1(a)). The resulting precipitate distances are then depicted in a cumulative distribution 
function plot (Figure 1(b)).

 (iii) The calculated average precipitate distances, obtained by determining the mean values, are integrated into 
the existing knowledge graph. This involves creating a new class within the Precipitate Geometry Ontology 
(PGO), named pgo:AveragePrecipitateDistance, as a subclass of pgo:Precipitate-
Distance. The computed data for the material states are then instantiated as instances of this new class, 
thereby enriching and expanding the knowledge graph.
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Exploring Orowan strengthening through semantic data analysis. Building upon the seman-
tic integration of the two distinct datasets outlined in Section Implementation of RDF graphs and ABox data 
instantiation and the newly obtained results from the Delaunay triangulation, we now apply these to explore 
the Orowan mechanism. The yield strength (σys) of alloys can be modeled as the cumulative effect of various 
mechanisms: 

(1)ys i ss p gsσ σ σ σ σ= + + +

Here, σi, σss, σp, and σgs represent the intrinsic crystal, solid solution, precipitate strengthening, and grain size 
contributions, respectively. The precipitate strengthening component σp is typically expressed as the harmonic 
mean of contributions from dislocations shearing through shearable precipitates (particles) σFriedel and bowing 
between non-shearable precipitates σOrowan. The contribution from dislocation bowing can in the idealized case 
be described as: 

Box 1 SPARQL query to retrieve, e.g., the X and Y coordinates of precipitates.

Material State
Aging 
Temperature

Aging 
Time Specimens Images

T61 — — 2 12

190 °C_250h 190 °C 250 h 1 11

190 °C_1000h 190 °C 1,000 h 1 12

190 °C_2500h 190 °C 2,500 h 2 17

190 °C_5000h 190 °C 5,000 h 2 23

190 °C_8760h 190 °C 8,760 h 2 19

190 °C_25000h 190 °C 25,000 h 2 21

Table 1. Summary of DF-TEM image analysis dataset employed in this study.
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σ
λ

∝ ⋅G b
(2)Orowan

In this equation, G, b, and λ are the shear modulus, the Burgers vector, and the edge-to-edge precipitate 
distance, respectively.

For our analysis, the material states exhibit significant variations primarily in the precipitate strengthening 
contribution σp, with other factors in Equation (1) remaining constant. By correlating DF-TEM observed pre-
cipitate distributions, characterized by λmean (represented by pgo:AveragePrecipitateDistance in 
the ontology), with tensile test-derived σys values, we aim to illustrate the contribution of σOrowan to the overall 
yield strength. It should be noted, that the Orowan stress σOrowan is defined for a single dislocation while the yield 
stress determined on a tensile test piece Rp02 (represented by tto:ProofStrengthPlasticExtension) 
is the result of countless dislocation and an evaluation procedure prescribed by a standard. But it is common 
practice in materials science to correlate both.

Adhering to PMDco’s fundamental concepts enables the formulation of a SPARQL query that aggregate 
properties like materials yield strength σys and average precipitate distance λ into a unified dataset (see Box 2). 
This unified dataset can be represented in a tabular format or further processed for visualization, as shown in 
Figure 2.

Discussion
Establishing semantic interoperability. In this research, we have developed a demonstrator and described 
its functionality (Section Results and Section Implementation of RDF graphs and ABox data instantiation).  
The key components of this demonstrator are depicted in Figure 3. We employed an ontological framework that 
integrates the PMD Core Ontology (PMDco) with the Tensile Test Ontology (TTO) and the Precipitate Geometry 
Ontology (PGO) (Section Ontological framework). This setup enabled us to instantiate publicly available datasets 
from two different material characterization techniques sourced from Zenodo (see Data Availability statement).

The data from tensile testing and DF-TEM image analysis, while inherently different, have been transformed 
into interoperable RDF triples through the application of the PMDco, TTO and PGO. This transformation is 
facilitated by the interconnected concepts within the PMDco, which serve as bridges between the TTO and PGO 
entities. Consequently, a knowledge graph is established, allowing for SPARQL queries to retrieve instances 
across both TTO and PGO, filtered by material state (see Box 2). This demonstrates the principle of semantic 
interoperability and highlights the effectiveness of query filters in correlating diverse data sources.

Expanding upon this foundation, the creation of new classes and instances via SPARQL-driven data analysis 
systematically enriches our knowledge graph. This illustrates the scalable nature of our approach. However, in 
ontology-centric data management, any changes to the ontology structure must be managed carefully to avoid 
impacting its functionality. Developing a consistent mid-level ontology, aligned with a standard top-level ontol-
ogy like the BFO36, can significantly enhance the interoperability of semantic data, extending well beyond the 
domain of MSE.

Future perspectives in MSE knowledge representation. As already described in more detail in 
Section Introduction, the potential for ontology-based knowledge representation in MSE is substantial. Our 
research has established a sound basis for creating and expanding explicit knowledge representations in this field.

Looking ahead, the scope of MSE knowledge representation is expected to evolve beyond the current explicit 
modeling techniques. It will increasingly incorporate logical and computational methods to derive new insights 
and refine data curation practices. Central to this evolution is the role of reasoning. Our work has already 

Fig. 1 Analysis of precipitate distances using Delaunay triangulation.(a) Application of Delaunay triangulation 
to a DF-TEM image from the T61 + 2,500 h @ 190 °C, S1 dataset, illustrating the measured distances between 
segmented precipitates. (b) Displayed as a cumulative distribution function plot, this illustrates the range 
of precipitate distances within different material states, with labels S1 and S2 denoting the specific samples 
examined (refer to Table 1).
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provided a glimpse into the potential of reasoning (see Figure 4). In this context, for instance, the object prop-
erty wasInfluencedBy denotes the inclusion of a specific and well-known strain rate in the dataset. As every 
process output is semantically connected to its inputs and characteristics, the ontology-based logic exposes the 
connection between yield stress (output of the process) and strain rate (characteristic of the process). 
This relationship is inherently semantic, which still has to be interpreted from a materials science perspective. 
As a result of our linked data processing in Protégé, the reasoning procedure successfully generated about 58,000 
new triples. In general, reasoning, through the application of logical rules of ontologies, opens up new avenues 
for insight. Particularly intriguing is the automatic identification of inconsistencies, ensuring the relevance and 
accuracy of instantiated data. By integrating reasoning as a core method, we can develop more comprehensive 
and adaptable knowledge graphs, enhancing the MSE field’s capacity to manage and interpret complex data 
relationships.

Additionally, the use of languages and tools such as the Semantic Web Rule Language (SWRL)37 and Drools38 
will provide further possibilities for optimizing knowledge representations. SWRL, which integrates the Web 
Ontology Language (OWL) with the Rule Interchange Format (RIF), lays a solid basis for complex inference 
and deduction processes crucial for understanding MSE data in depth39. This rule-based inference can signifi-
cantly enhance the semantic richness of our approach. Furthermore, the integration of Drools as a rule engine 
marks a step forward in decision support and process automation, aligning with the specific data and contextual 
requirements of MSE.

Limitations and outlook. In ontology-based data management, the reliance on SPARQL for query activ-
ities is a notable challenge. SPARQL’s complexity necessitates specific technical skills, posing a barrier to users 
unfamiliar with its syntax and the structure of RDF data40,41. To enhance user accessibility, future tools should 
focus on natural language processing capabilities, fostering an environment where queries are based more on 
intuitive human communication.

Interoperability of workflows and the adaptability of ontologies to diverse datasets also present critical areas 
for development in MSE. Current approaches are often tailored to specific datasets and limit broader applica-
tion. Future efforts should aim at developing ontologies that are both robust and flexible, capable of handling 
varied data types and evolving information. Enhancing workflow interoperability is essential for managing the 

Box 2 SPARQL query for retrieving the correlatable proof strength plastic extension and their mean precipitate 
distance values.
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Fig. 2 Impact of aging on material properties. (a) Displays examples of DF-TEM images for different material 
states: the upper image shows the T61 initial state, and the lower image depicts the state after aging at 190 °C for 
25,000 h. Notably, aging leads to coarsening, with precipitates becoming fewer and larger, thereby increasing 
the average precipitate distance. (b) Presents a plot derived from SPARQL query results, illustrating the dataset’s 
alignment with the expected trend of σys ∝ 1/λ, as per Equation (2). It is important to note that tensile test data 
were available for only four material states, and the SPARQL query was employed to filter and identify six data 
point pairs for correlation across both mechanical and microstructural datasets.

Fig. 3 Key components of the demonstrator.This diagram outlines the key components and workflow of an 
ontology-centric data analysis framework within MSE. It encompasses the creation of RDF graphs, ontology 
alignment, data serialization, interactions with the local triple store, and the utilization of various libraries 
within the Jupyter Notebook environment. Our framework also involves analytical and visualization libraries 
for data processing, with a feedback loop for continuous development, and data sharing through Zenodo.
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increasing volumes of data efficiently, thereby unlocking the full potential of semantic technologies in MSE for 
multidisciplinary research and insights.

Summary. As a key outcome of our work, a demonstrator is provided that facilitates the interoperable linking 
of two publicly available datasets. These datasets, derived from distinct mechanical and structural characteriza-
tion techniques of an aluminum alloy, are cohesively integrated using ontologies. The utilization of the PMDco 
enhances data usability and exemplifies practical effectiveness of semantic interoperability.

We have demonstrated the ability to query the constructed knowledge graph for specific information using 
SPARQL queries. This capability of generating new data from these queries, which then enriches the knowledge 
graph, underscores the dynamic and evolving nature of knowledge graphs. The continuous enrichment and 
expansion of the graph are key features of our approach.

Our work serves as a systematic and reproducible example of how data management and analysis in MSE 
can be aligned with FAIR principles, paving the way for future advancements. We also highlight key building 
blocks for semantic interoperability and create a basis which can be adapted and extended for different MSE 
applications.

In addition, our approach has shown the potential of Semantic Web technologies in uncovering hidden pat-
terns across distinct datasets, making them potentially accessible and interpretable by machines. This opens new 
avenues for in-depth data analysis and insight generation, with machines playing a pivotal role in identifying 
trends and relationships that may not be immediately apparent to human researchers.

In summary, our study makes an important contribution to the field of MSE by providing tools and methods 
for semantic data integration, management, and analysis. These advancements enhance the field’s capacity to 
leverage data for advanced research and applications, marking a notable step forward in data-driven materials 
science exploration.

Methods
Sample material and states. Our study builds upon the prior research by Rockenhäuser et al.34,42, which 
focused on the coarsening processes of the S-phase in the aluminum alloy EN AW-2618A under elevated temper-
ature conditions. In their experiments, the specimens underwent aging at 190 °C, extending up to 25,000 h. This 
process was followed by a detailed characterization of the evolved microstructure. The specimens were initially 
prepared in the T61 condition, a procedure that included solution annealing at 530 °C for 8 h, followed by rapid 
quenching in boiling water. Subsequent aging was conducted at 195 °C for a period of 28 h.

tensile testing. The tensile test dataset, accessible on Zenodo31, was compiled from tensile tests performed 
in accordance with the ISO 6892-1 standard43. These tests were conducted at a constant strain rate of 10−4 1/s, 
utilizing B6 x 30 tensile test specimens, as specified by DIN 5012544.

DF-TEM imaging. In our work, we utilized an image analysis dataset (see Table 1) from the aforemen-
tioned previous investigation by Rockenhäuser et al., accessible on Zenodo32. The dataset includes analysis data 
of dark-field transmission electron microscopy (DF-TEM) images focusing on S-phase precipitates within the 

Fig. 4 Exploring implicit MSE knowledge through reasoning.This screenshot demonstrates the implicit 
knowledge discovered by reasoning with Pellet in Protégé. It illustrates, for example, the inferred semantic 
connection between yield stress (the output of the process) and strain rate (a characteristic of the process) as 
applied in the experimental setup.
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aluminum matrix. The original DF-TEM images were captured with a JEM-2200FS TEM, operating at 200 kV, 
with specimens aligned along the [001] crystallographic direction. The DF-TEM images were provided in the 
dm3 format, a 16-bit raster format specifically designed for electron microscopy. This format includes vital meta-
data about the TEM procedure, such as details on the CCD camera, exposure time, and more.

To facilitate analysis, primarily the rod axis of the rod-shaped S-phase precipitates perpendicular to the 
image plane was imaged (The S-phase precipitates appear bright against a dark background). In addition, the 
precipitates were assumed to be cylindrical. The image-based evaluation was conducted on processed DF-TEM 
images using ImageJ software45. This process began with edge-preserving median filtering of the raw images, 
followed by manual thresholding for binarization. Such procedures enabled the exclusion of microstructural 
artifacts and horizontal rod-shaped precipitates from the analysis. The binarized image data facilitated the dif-
ferentiation of the precipitates from the background. The dataset covers extensive evaluations of these images, 
with at least 300 precipitates analyzed for each material state. For an in-depth understanding of the materials, 
methodologies, and the software-based image analysis that yielded critical precipitate parameters like count, 
coordinates, area, and radius, readers are referred to the publications by Rockenhäuser et al.34,42.

Software tools and libraries. The scripts for this work were developed within a Jupyter Notebook environ-
ment46. We utilized various Python47 -based libraries, including: 

•	 The rdflib48 and Owlready249 packages, crucial for semantic data processing and graph-based representations, 
facilitating semantic data integration.

•	 SPARQLWrapper for simplifying remote SPARQL query execution and results conversion50.
•	 NumPy51 and pandas52 for numerical operations.
•	 matplotlib for data visualizations53.
•	 SciPy for advanced data manipulation and visualization tasks, including Delaunay triangulation54.
•	 The Protégé ontology editor55, supporting OWL 2 Web Ontology Language56, for ontology design and Pellet 

for reasoning57.

Ontologies and GitHub integration. The PMD Core Ontology (PMDco), Version 2.0.7, serves as the 
upper-level ontology, providing bridging mid-level concepts crucial for achieving semantic interoperability29,58.

For the representation of tensile tests of metals at room temperature, aligned with ISO 6892-1:2019-1143, we 
employed the Tensile Test Ontology (TTO)59,60.

The Precipitate Geometry Ontology (PGO)61 is used for representing microstructural data derived from 
DF-TEM image analysis.

QUDT entities were incorporated for units of measure62.
GitHub is used for publishing, maintaining, and developing these ontologies along the associated scripts63.

Ontological framework. This work utilizes an ontological framework structured around PMDco, a 
mid-level ontology specifically developed for MSE. PMDco is a foundational reference for semantically bridging 
more specialized MSE application ontologies, namely in our work, the TTO and the PGO. The TTO facilitates 
the systematic representation of tensile test data, while the PGO enables representation of microstructural data. 
Together these interconnected ontologies establish a semantic network that standardizes the representation, que-
rying, and analysis of distinct datasets.

Achieving semantic interoperability with the PMDco. The PMDco plays a pivotal role in semantically inter-
linking the TTO and the PGO. While each application ontology addresses specific domain-related classes, 
the PMDco offers broader MSE concepts, ensuring the application ontologies are embedded in a structured, 

Fig. 5 Class hierarchy in the Precipitate Geometry Ontology (PGO).This figure illustrates PGO’s application-
specific subclasses, such as pgo:PrecipitateArea and pgo:PrecipitateDistance, extending 
from PMDco’s general pmdco:ValueObject class via pmdco:Area and pmdco:Distance, 
respectively.
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extendable system. This framework allows for the addition of application-specific classes, crucial for represent-
ing diverse data sources coherently, thereby enhancing semantic interoperability.

Standardizing tensile test data with the TTO. Based on the PMDco, the Tensile Test Ontology (TTO) was 
designed to provide a structured vocabulary for tensile test data. Thereby, the test standard-compliant ontologi-
cal representation ensures this data to be interoperable, transparent, reliable, and reproducible. Hence, the TTO 
is crucial in the semantic integration of tensile test data, particularly in this work concerning radial compressor 
wheel samples. Aligned with ISO 6892-1:2019-1 standard for tensile testing of metals at room temperature (see 
Section Ontologies and GitHub integration), the terminological box (TBox) of the TTO ensures a standardized 
approach for data integration. Therein, a comprehensive number of classes is included to specifically annotate 
data on characteristic values obtained from a tensile test, such as, e.g., yield strength (Rm), proof strength, plastic 
extension (Rp), and strain rate ėLe

. Furthermore, semantic relationships are also implemented that enable logical 
reasoning and thus, lead to improved data interpretation capabilities (see Section Future perspectives in MSE 
knowledge representation). Overall, the TTO harmonizes tensile test data, which often varies in structure and 
format, into uniform RDF triples, thus improving data comparability and method reproducibility by incorporat-
ing essential contextual information, such as metadata and provenance59.

Integrating microstructural data with the PGO. Integration of microstructural data from DF-TEM image 
analysis is accomplished using the Precipitate Geometry Ontology (PGO). Designed to extend PMDco’s class 
structure, the PGO introduces specific subclasses for a more detailed representation of precipitate data. These 
subclasses, such as pgo:PrecipitateArea and pgo:PrecipitateDistance, enhance the granular-
ity of the data representation, facilitating the construction of an informative KG. Figure 5 illustrates an exem-
plary subclass hierarchy of the PGO in relation to the broader PMDco structure.

Implementation of RDF graphs and ABox data instantiation. In a Jupyter Notebook environ-
ment, we initiate the process by importing ontologies (i), constructing RDF graphs (ii), and instantiating ABox 
(Assertion Box) data (iii). These steps are supported by specific Python libraries, as detailed in Section Software 
tools and libraries.

 (i) Initially, the PMDco and the application ontologies, including the TTO and PGO TBoxes, in Turtle format 
(ttl), are imported into the Notebook environment.

 (ii) We then proceed to construct distinct RDF graphs for integrating the datasets: “g” for tensile test data and 
“h” for DF-TEM image analysis data. Both graphs are aligned with the PMDco, providing an ontological 
framework for semantic interoperability (see Figure 6). Graph “g” encompasses tensile test entities such 
as measurement values, as well as the initial test pieces (input) and the resulting fractured halves (output) 
(see Figure 7(a)). It comprehensively details mechanical properties like yield and proof strength, environ-
mental conditions during testing, and descriptions of the material states. Graph “h” focuses on microstruc-
tural data, representing precipitate characteristics such as the coordinates, areas, and distances. The RDF 
representations bridge mechanical and microstructural data, enabling flexible correlations within a unified 
semantic network.

 (iii) Subsequently, the tensile test and DF-TEM datasets are instantiated within these graphs. ABox instances 
are created based on the TBox classes and properties, utilizing RDF triples (subject, predicate, object) for 
data serialization. This process establishes the relationships between entities, with each assigned a unique 
Internationalized Resource Identifier (IRI) for identification (refer to Figure 7), thereby enabling advanced 
data querying and analysis64.

Data availability
The tensile test dataset31 and the TEM microstructural analysis dataset32, both hosted on Zenodo, are integral 
to our study. The tensile test dataset delivers comprehensive results from tests conducted on EN AW-2618A 
aluminium alloy. The TEM dataset provides detailed quantitative analysis of the microstructure of the same alloy, 
with a particular emphasis on examining the S-phase Al2CuMg parameters. The RDF graph data, resulting from 

Fig. 6 Facilitating semantic integration via the PMDco.This diagram schematically depicts the semantic 
connections between two application ontologies, graphs “g” and “h”. The PMDco is a mid-level ontology, 
providing general MSE concepts crucial for bridging these ontologies.
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the semantic integration of these two datasets, is available on GitHub. Access to the Tensile test RDF graph data, 
the DF-TEM RDF graph data, the DF-TEM RDF graph data addition, and the demo-orowan RDF graph:

• Tensile test RDF graph data
• DF-TEM RDF graph data
• DF-TEM RDF graph data addition
• demo-orowan RDF graph data

Code availability
The script and the ontologies utilized in this study are openly accessible and can be obtained from the following 
GitHub repositories:

• demo-orowan
• PMD Core Ontology (PMDco)
• Tensile Test Ontology (TTO)
• Precipitate Geometry Ontology (PGO)
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