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Abstract. Knowledge Graphs (KGs) comprise of interlinked information in the form of entities and relations between them
in a particular domain and provide the backbone for many applications. However, the KGs are often incomplete as the links
between the entities are missing. Link Prediction is the task of predicting these missing links in a KG based on the existing
links. Recent years have witnessed many studies on link prediction using KG embeddings which is one of the mainstream tasks
in KG completion. To do so, most of the existing methods learn the latent representation of the entities and relations whereas
only a few of them consider contextual information as well as the textual descriptions of the entities. This paper introduces
an attentive encoder-decoder based link prediction approach considering both structural information of the KG and the textual
entity descriptions. Random walk based path selection method is used to encapsulate the contextual information of an entity in
a KG. The model explores a bidirectional Gated Recurrent Unit (GRU) based encoder-decoder to learn the representation of the
paths whereas SBERT is used to generate the representation of the entity descriptions. The proposed approach outperforms most
of the state-of-the-art models and achieves comparable results with the rest when evaluated with FB15K, FB15K-237, WN18,
WN18RR, and YAGO3-10 datasets.

Keywords: Knowledge Graph embedding, encoder-decoder, link prediction, path selection

1. Introduction

Knowledge Graphs (KGs) have recently gained attention for representing structured knowledge about a partic-
ular domain. Since its advent, the Linked Open Data (LOD) cloud1 has constantly been growing containing many
KGs about numerous different domains such as government, scholarly data, biomedical domain, etc. Apart from
facilitating the inter-connectivity and interoperability of datasets in LOD cloud, KGs have been used in a variety of
applications based on Machine Learning and Natural Language Processing (NLP) such as entity linking [18], ques-
tion answering [5], recommender systems [60], etc. Some KGs are automatically generated from heterogeneous
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resources such as text, images, etc., whereas others are manually-curated. These KGs consist of huge amounts of
facts in the form of entities (nodes) and relations (edges) between them. Also, the KGs contain facts in which the en-
tities are connected to literals, i.e., text, numbers, images, etc. However, one of the major challenges is that KGs are
sparse and often incomplete as the links between the entities are missing. To overcome these challenges, predicting
the missing links between the entities is necessary.

Link prediction is a fundamental task that aims to estimate the likelihood of the existence of edges (links) based
on the current observed structure of a graph [63]. To-date many algorithms for generating KG embeddings have been
proposed for the task of link prediction. Most of the state-of-the-art (SOTA) embedding models learn the vectors
of the entities and relations from the triple information [6,19,21,50,55], i.e., only consider one hop information,
whereas a very few of them explicitly take into account the neighbourhood information of an entity in the KG
[14,38]. Also, only a handful of them consider the literal information available in the KGs [8,15,34,51,54].

The textual description of the entities in the KGs contains rich semantic information and the graph structure
provides the contextual information of the entity from the neighboring nodes. The graph given in Fig. 1 contains
information about some entities from DBpedia [1] and the relations between them. The textual entity description
is given by the property dbo:abstract. In this graph, the information that dbr:Leonardo_DiCaprio and
dbr:Kate_Winslet acted in the movie dbr: Titanic is given by the property dbo:starring. How-
ever, the dbo:starring information is missing for the movie dbr:Inception. But this information about
dbo:starring is available in the textual entity description of the movie dbr:Inception given by the re-
lation dbo:abstract which states ‘The film stars Leonardo DiCaprio as a professional thief.’ Therefore, the
information present in the textual entity description plays a vital role in predicting the missing links.

On the other hand, as shown in Fig. 1, the movies dbr:Inception and dbr:The_Whole_Truth
are written by dbr:Christopher_Nolan and dbr:Philip_Mackie respectively, as given by the rela-
tion dbo:writer. Also, both these writers have attended the same university dbr:University _Col-
lege_London. Therefore, the movies dbr: Inception and dbr:The_Whole_Truth are similar in terms
of being written by writers who went to the same university. This information from the graph is obtained by 2-hops

Fig. 1. An excerpt of the graph structure from DBpedia.
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starting from both source entities dbr:Inception and dbr:The_Whole_Truth and is given by

dbr : Inception
dbo:writer−−−−−→ dbr : Christopher_Nolan

dbo:almaMater−−−−−−−−→ dbr : University_College_London, and

dbr : The_Whole_Truth
dbo:writer−−−−−→ dbr : Philip_Mackie

dbo:almaMater−−−−−−−−→ dbr : University_College_London.

Considering the similarity in the given contextual information, the two movies dbr:The_Whole_Truth and
dbr:Inception should be closer to each other in the vector space. Therefore, graph walks is beneficial for mod-
eling the latent representation of the entities and the relations. However, incorporating the contextual information of
an entity from the graph is non trivial as not all relations are equally important to an entity.

Primarily, link prediction is the task of predicting the head or tail entities in a triple in a KG. However, triple
classification, i.e., the task of finding if a given triple is valid or not in a KG is also considered as link prediction
as it determines the validity of links between two entities. This work proposes a novel method, MADLINK, which
improves the task of link prediction by combining the graph walks and textual entity descriptions to better capture
the semantics of entities and relations. The model also incorporates contextual information about the relations in the
triples. MADLINK adapts the seq2seq [45] encoder-decoder architecture with attention layer to obtain a cumulative
representation of the paths extracted for each entity from the KG. On the other hand, SBERT [37] has been used to
extract the latent representations of the entity descriptions provided as natural language text. DistMult [57] is used
as a base model to calculate the score of a triple for head or tail prediction.

The effectiveness of the model is evaluated with the benchmark datasets FB15K [6], FB15K-237 [47], WN18
[6], WN18-RR [12], and YAGO3-10 [12] against different SOTA models with and without entity descriptions. The
results show that MADLINK outperforms most of the SOTA models whereas achieves comparable results with the
rest. The main contributions of this paper are:

– A path selection approach is introduced by exploiting the importance of a relation w.r.t. an entity in the KG.
– The textual entity descriptions is combined with the contextual information of the entities extracted from the

paths for better representation of entities and relations in KGs.
– An end-to-end attention based encoder-decoder framework is proposed to generate better representation of the

paths of entities, relations as well as entity descriptions for the link prediction task.

The rest of the paper is organised as follows. To begin with, a review of the related work is provided in Section 2,
followed by the problem formulation in Section 3. Section 4 accommodates the outline of the proposed approach
followed by experimental results in Section 5. Finally, Section 6 concludes the paper with a brief discussion on
future directions.

2. Related work

A large variety of KG embedding approaches have been proposed for the task of link prediction, such as (1)

translational models such as TransE [6] and its variants, RotatE [44], etc., (2) semantic matching models such as
SME [7], DistMult [57], RESCAL [32] and its extensions, ComplEx [48], HolE [30], etc., (3) neural network based
models such as NTN [42], ConvE [12], ConvKB [28], HypER [2], R-GCN [41], etc., (4) path based methods,
e.g., GAKE [14], PTransE [24], RDF2Vec [38], PConvKB [20], etc., (5) entity type based like SSE [17], TKRL
[54], HAKE [62], and (6) literal-based models, such as methods making use of (i) textual literals: DKRL [54],
Jointly(ALSTM) [56], SSP [52], KG-BERT [59], Multi-task learning KG-BERT [22], BLP [11], (ii) numeric liter-
als: KBLRN [15], LiteralE [23], TransEA [51], MT-KGNN [46], and (iii) multi-modal literals: MKBE [34], IKRL
[53], etc. The proposed approach MADLINK exploits both the path information and the textual entity descriptions
of the entities to predict the missing links in the KG. Therefore, this section focuses mainly on the state-of-the-art
(SOTA) models considering path information and the textual entity descriptions along with the other KG embedding
models.
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Translation-based models In TransE, given a triple 〈eh, r, et 〉 in a KG G, the relation r is considered as a transla-
tion operation between the head (eh) and tail (et ) entities on a low dimensional space defined by eh + r ≈ et, where
eh, r, et are the embeddings of the head, relation and the tail entity respectively. TransH [50] extends TransE by
projecting the entity vectors to relation specific hyperplanes. TransR [25] models entities and relations into distinct
semantic spaces and projects entities from the entity space to the relation spaces. The scoring function of RotatE
models the relation as a rotation in a complex plane to preserve the symmetric/anti-symmetric, inverse, and compo-
sition relations in a KG. For a triple 〈eh, r, et 〉, the relation among them can be represented as et = eh ◦ r , where
|r| = 1, i.e., restricting it to the unit circle and ◦ represents element wise product.

Semantic Matching Models (SME) SME is based on semantic matching using neural network architectures. Given
a triple 〈eh, r, et 〉 in a KG G, it projects entities and relations to their vector embeddings in the input layer. The
relation vector r is then combined with the head entity vector eh and tail entity vector et to get gu(eh, r), and
gv(et, r) respectively in the hidden layer. The final score is given by matching gu and gv via their dot product. In
DistMult, each entity is mapped to a d-dimensional dense vector and each relation is mapped to a diagonal matrix,
and the score of a triple is computed with the help of matrix multiplication between the entity vectors and the relation
matrix. RESCAL models the triple 〈eh, r, et 〉 into a three-way tensor, X. In X, two modes hold the concatenated
entities (eh, et ), and the third mode holds relation r . The model explains triples via pairwise interaction of latent
features. The score of the triple is calculated using the weighted sum of all the pairwise interactions between the
latent features of the entities (eh, et ). ComplEx extends DistMult by introducing complex-valued embeddings so
as to better model asymmetric relations. It allows joint learning of head and tail entities by using Hermitian dot
product. In this model, the entity and relation embeddings lie in a complex space. Holographic Embedding (HolE)
intend to overcome the curse of dimensionality of tensor product used in RESCAL by using circular correlation.
Furthermore, this circular Correlation is not commutative allowing HolE to model asymmetric relations.

Neural Network Based Models (NTN) NTN represents an entity using the average of the word embeddings in the
entity name. ConvE uses 2D convolutional layers to learn the embeddings of the entities and relations in which the
head entity and the relation embeddings are reshaped and concatenated which serves as an input to the convolutional
layer. The resulting feature map tensor is then vectorized and projected into a k-dimensional space and matched
with the tail embeddings using logistic sigmoid function minimizing the cross-entropy loss. In ConvKB, each triple
〈eh, r, et 〉 is represented as a 3-column matrix which is then fed to a convolution layer. Multiple filters are operated
on the matrix in the convolutional layer to generate different feature maps. Next, these feature maps are concatenated
into a single feature vector representing the input triple. The feature vector is multiplied with a weight vector via
a dot product to return a score which is used to predict whether the triple is valid or not. HypER model uses
a hypernetwork approach to generate convolutional filter weights for each relation. It is a method by which one
network generates weights for another network enabling weight-sharing across layers. A hypernetwork projects a
relation embedding via a fully connected layer, the result of which is reshaped to give a set of convolutional filter
weight vectors for each relation. Relational Graph Convolutional Network (R-GCN) extends Graph Convolutional
Network (GCN) to handle different relationships between entities in a KG. In R-GCN, different edge types use
different weights and only edges of the same relation type r are associated with the same projection weight. For
each node, an R-GCN layer operates in two steps. First, it computes the outgoing message using node representation
and weight matrix associated with the edge type. Then the incoming messages are aggregated to generate new node
representations. A 2-D matrix is used to define the initial node features and 3-D tensor describes the node hidden
features. This tensor is able to encode different relations by stacking r batches of matrices, where each of these
batches encodes a single typed relation.

Path based models PTransE extends TransE by introducing a path based translation model. GAKE considers
the contextual information in the graph by considering the path information starting from an entity. RDF2Vec
uses random walks to consider the graph structure and applies word embedding model on the paths to learn the
embeddings of the entities and the relations. However, the prediction of head or tail entities with RDF2Vec is
non trivial because it is based on language modeling approach. PConvKB model extends the ConvKB model by
exploiting the path information of the KGs. Additionally, it uses an attention mechanism to measure the local
importance in relation paths.
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Literal based models Another set of algorithms improve KG embeddings by taking into account different kinds of
literals such as numeric, text or image literals and a detailed analysis of the methods is provided in [16].

Text based models DKRL extends TransE [6] by incorporating the textual entity descriptions in the model. The
textual entity descriptions are encoded using a continuous bag-of-words approach as well as a deep convolutional
neural network based approach. The energy function of the model is defined by E = ES +ED , where ES represents
the energy function of the structure based representation and ED represents the energy function of the description
based representation. The structure based representation is learned by TransE model. Jointly (ALSTM) is another
entity description based embedding model which extends the DKRL model with a gate strategy and uses attentive
LSTM to encode the textual entity descriptions. KG-BERT is a contextual language model based model which fine
tunes the BERT model on the KGs. Each triple 〈eh, r, et 〉 is considered as a sentence and is provided as an input
sentence of the BERT model for fine-tuning. For the entities, KG-BERT has been trained with either the entity
names or their textual entity descriptions and for relations, the relation names are used. The first token of every
input sequence is always [CLS], whereas the separator token [SEP] separates the head entity, relation and the tail
entity. Multi-task learning KG-BERT model intends to improve the BERT model in which the authors introduce
an effective multi-task learning by combining relation prediction and relevance ranking tasks together with the link
prediction. This model is trained to learn relational properties in KGs and perform even when lexical similarity
occurs. BLP framework on the other hand, uses BERT based entity representations from textual entity descriptions
for link prediction on top of various base KG embedding models namely TransE, DistMult, ComplEx, SimplE.

Other methods such as TransEA [51] and KBLRN [15] incorporate numeric literals into their embedding spaces.
Also, MKBE is a multi-modal KG embedding model which includes the numeric, text and image literals present
in KGs into their embedding spaces. However, in the aforementioned models the neighborhood node structure is
not considered together with the textual entity descriptions to learn the embedding models. Therefore, this study
proposes a novel model, MADLINK, which includes the contextual structural information as well as the entity
descriptions into the embedding space for the task of Knowledge Graph Completion (KGC) using link prediction.

3. Problem formulation

Given a KG G = (E,R), where E is the set of entities, R is the set of relations. 〈eh, r, et 〉 ∈ T , represents a triple
belonging to the set of triples T in the KG, where (eh, et ) ∈ E are the head and tail entities, and r ∈ R represents
relation between them. Besides, facts in the form of literals such as text, images, numbers, etc. are also connected to
the entities in a KG. But in this work we focus on predicting the missing links between entities. Furthermore, most
of the KGs comprise of textual descriptions for each entity providing semantic information about it. MADLINK
aims to learn the latent representation of the entities and relations to a lower dimensional embedding space, Rd ,
where d is the dimension of the embedding space for the task of link prediction. This section discusses the research
questions to address the challenges.

– RQ1: Does the contextual information of entities and relations in a KG help in the task of link prediction?
– RQ2: What is the impact of incorporating textual entity descriptions in a KG for the task of link prediction?

4. MADLINK model

This section comprises a detailed step-wise description of the proposed model and the training approach. The
model consists of two parts: (i) structural and (ii) textual representation. Path selection forms the primary step of the
structural representation whereas textual representation is the encoding of the textual entity descriptions.

4.1. Path selection

A directed path in a directed labelled graph is a sequence of edges connecting a sequence of distinct vertices.

Given a KG G, a path can be defined as {e1
r1−→ e2

r2−→ · · · rm−→ en}, where (ei, rj ), i ∈ {1, 2, . . . , n} and
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j ∈ {1, 2, . . . , m} are the entities and relations, respectively. Starting from a certain entity, the paths capture the
contextual information of an entity in a KG. However, huge amount of information is stored in the KG and not all
triples are equally important for an entity. Some of the triples explain the characteristics of an entity better than oth-
ers. For example, in Fig. 1, for the entity dbr:Christopher_Nolan the relation dbo:almaMater provides
more specific information as compared to dbr:birthPlace as most of the persons in DBpedia certainly have a
birth place. Also as explained in Section 1, the path containing the relation dbo:almaMater provides more con-
textual information for the entities dbr:Inception and dbr:The_Whole_Truth. Therefore, it is essential to
know the general importance of the relations for each entity. Eventually the paths containing these relations would
provide more valuable information compared to the paths without these relations. To tackle this challenge, Predicate
Frequency Inverse Triple Frequency (PF-ITF) is used to identify the important relations for each entity [35].

4.1.1. Predicate Frequency – Inverse Triple Frequency (PF-ITF)
In order to extract the contextual information related to an entity, paths consisting of l-hops are generated for

each node. The properties are selected at each hop of the path using PF-ITF. Also, the cycles present in the KGs
are straightened and considered as a flat path. Given a KG G, the predicate frequency of outgoing edges is given
by pf e

o(r,G), the inverse triple frequency is given by itf (r,G) and PF-ITF pf − itf e(r,G) is computed based on
Equation (1).

pf e
o(r,G) = |εo(e)|π(r)

|εo(e)| ,

itf (r,G) = log
|ε|

|ε|π(r)

,

pf − itf e(r,G) = pf e × itf ,

(1)

where π(r) is the set of relations, |εo(e)|π(r) represents the number of outgoing edges from the entity e w.r.t. to the
relation r , |εo(e)| is the total number of outgoing edges for the entity e, |ε| is the total number of triples, and |ε|π(r)

is the total number of triples containing the relation r . In this work, the paths are generated starting from a certain
entity, so PF-ITF is calculated using the outgoing edges, i.e., Eq. (1).

Next, the relations per entity are ranked based on the PF-ITF score. The PF-ITF value increases proportionally
with the number of outgoing edges of an entity w.r.t. a relation and is offset by the total number of triples containing
the relation which helps to adjust the relations which appear more frequently in general. The highest PF-ITF score of
a relation w.r.t. an entity indicates that the triples containing this relation have more information content compared
to the rest. Based on the ranks, top-n relations are selected for each entity. Thereafter, paths are generated for the
entities in the KG and crawled iteratively until l − hops. For computational simplicity, top-m important properties
are considered for each entity based on the PF-ITF score.

4.2. Textual representation

The textual descriptions of an entity provide semantic information. These descriptions are of variable length
and are often short, i.e., less than or equal to 3 words. The textual entity descriptions are encoded into a vector
representation. Also, an enormous amount of text data is available outside the KGs which can be leveraged for
better representation of the entities. The static pre-trained language models such as Word2Vec [26], GloVe [33],
etc. as well as the contextual embedding model such as BERT [13] have been extensively used to generate latent
representations of Natural Language Text. BERT applies transformers which is an attention-based mechanism to
learn contextual relations between the words and/or sub-words in a text. The transformer encoder reads the entire
sequence of words at once which allows the model to learn the context of a word based on its surroundings.

Sentence-BERT (SBERT) [37] is a modification of BERT which provides more semantically meaningful sentence
embeddings using Siamese and triplet networks. As mentioned in [37], independent sentence embeddings are not
computed in BERT. The semantically similar sentences cannot be compared using cosine similarity. Therefore,
sentence embeddings are obtained by averaging the outputs to derive a fixed-size vector [36,58]. This is similar to
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average word embeddings generated by static models such as GloVe. However, it is also observed by the authors in
[37] that the average BERT embeddings perform worse than average GloVe embeddings for various tasks, such as
textual similarity, Wikipedia Sections Distinction, etc. SBERT model tackles all the above mentioned problems.

SBERT fine-tunes the BERT model using the siamese and triplet networks to update the weights such that the
resulting sentence embeddings are semantically meaningful and semantically similar sentences appear closer to each
other in the embedding space. It is fine-tuned with a 3-way softmax classifier objective function for one epoch. The
two input sentences (say u and v) to the SBERT model are passed through the BERT model followed by a pooling
layer namely, CLS-token, MEAN-strategy, and MAX-strategy are appended on top of it. This pooling layer enables
the generation of a fixed-size representation for the input sentences. It is then concatenated with the element-wise
difference and multiplied with a trainable weight, W , and is optimized using cross-entropy loss. In order to encode
the semantics, the twin network is fine-tuned on Semantic Textual Similarity data. SBERT model is first trained
on Wikipedia via BERT and then fine-tuned on Natural Language Inference (NLI) data. NLI is a collection of
1,000,000 sentence pairs created by combining The Stanford Natural Language Inference (SNLI)2 and Multi-Genre
NLI (MG.NLI) datasets.

Also, [37] shows that the sentence embeddings generated by SBERT outperform BERT for SentEval toolkit,
which is popularly used to evaluate the quality of sentence embeddings. In this work, the sentence embeddings from
the pre-trained SBERT model which are fine-tuned with SNLI and STS datasets, are extracted. It follows the same
approach as followed in [37] for SentEval. Therefore, two sentences are not required as input to obtain the sentence
embeddings. In this work, the input to the SBERT model is only the entity descriptions. The similar entities in
the KG should have similar textual entity descriptions and hence the embedding obtained for the entity descriptions
should exhibit similar characteristics. SBERT is designed to minimize the distance between two semantically similar
sentences in the embedding space. Therefore, SBERT is leveraged in this work, to obtain similar encoding of the
entity descriptions for similar entities. Also, the authors of [37] fine-tune Roberta with the same approach as SBERT
and the result shows that the performance of SRoberta and SBERT are almost similar for different tasks and they
outperform their respective base models. Furthermore, SBERT outperforms SRoberta in some of the tasks [37].
Also, the model used in this work is SBERT-SNLI-STS-base model which outperforms SRoberta-SNLI-STS-base
model as shown in [37].

The sentence embeddings obtained from SBERT model lose the domain-specific knowledge as it is trained and
fine-tuned with two different datasets. Therefore, these sentence embeddings generated by SBERT perform better
for a wide variety of tasks. In this work, to encode the textual description of the entities in a KG, the default pooling
method of SBERT model, i.e., the MEAN pooling has been used and the entire entity description is considered as one
sentence. The fine-tuning of the original BERT model with the textual entity descriptions from both the datasets has
not been performed because the original BERT model is trained with Wikipedia and these textual entity descriptions
are the abstracts of the Wikipedia articles. Therefore, further fine-tuning would have resulted in overfitting. Since
SBERT is already fine-tuned with SNLI data, we opted for this model.

4.3. Encoder – decoder framework

In this work, a sequence-to-sequence (seq2seq) learning-based encoder-decoder model [45] is adapted to learn
the representation of the path vectors in the KGs, the description vectors as well as the relation vectors. Figure 2
depicts the encoder-decoder architecture to generate the path embeddings.

Encoder The encoder aims at encoding the entire input sequence into a fixed length vector called a context vector.
A path pi ∈ P , where pi is a path which is a sequence of entities and the relations between them and is given

by, {e1
r1−→ e2

r2−→ · · · rm−→ en} is considered as a sentence and the entities ei and relations rj are the words. The
input to the encoder is the randomly initialized vectors of entities and relations that appear in the paths. These
embeddings are passed through a Bi-directional GRU [9] which encapsulate the information for all input elements

2https://nlp.stanford.edu/projects/snli/

https://nlp.stanford.edu/projects/snli/
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Fig. 2. Encoder – decoder framework for paths.

and compresses them into a context vector along with the representation of the final hidden states A = a1a2 · · · an

where at is given by,

at = GRU
(
a(t−1), embed(xt )

)
, (2)

where embed(xt ) is the embedding of entities and relations. In a multi-gated GRU, for each element in the input
sequence, the following equations are calculated for each layer.

rt = σ(Wirxt + bir + Wara(t−1) + bar), (3)

zt = σ(Wiaxt + bia + Whaa(t−1) + bha), (4)

nt = tanh
(
Winxt + bin + rt ∗ (Wana(t−1) + ban)

)
, (5)

at = (1 − zt ) ∗ nt + zt ∗ a(t−1), (6)

where Wir, War , Win, and Wan are the weight matrices, xt is the input at time t , rt , zt , nt are the reset, update and
new gates, respectively, and σ , ∗ are the sigmoid and Hadamard product, respectively. The context vector and the
final hidden state of the encoder model is then passed through an attention layer to learn the weights. Similarly, for
relation encoding, instead of the paths the triples containing the relation are considered.

Self-attention An attention mechanism allows a neural network to focus on a subset of its inputs or features and is
given by,

attn = fφ(x),

g = attn 	 z,
(7)
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Fig. 3. Illustration of the attention for a path in predicting the ‘dbo:musicComposer’ for the movie Inception.

where x ∈ R
d is an input vector, z ∈ R

k is a feature vector, attn ∈ [0, 1]k is an attention vector, and fφ(x) is an

attention network with parameters φ.3 As explained in [14], given an input path sequence {e1
r1−→ e2

r2−→ · · · rm−→
en}, not all the relations are equally important to model a specific fact. Some of them might be important for a
certain entity but not for others and vice-versa. PF-ITF helps in identifying the important relations with respect
to an entity in the KG. Now, the attention mechanism allows to identify the important relations and other entities
in the paths w.r.t. a certain entity eh or et . Therefore, it is used to generate the contextual path encoding. For
example, in Fig. 3, to predict the tail entity of the triple <dbr:Inception, dbo:musicComposer, t>, the
nodes marked in green would have greater attentions than the ones marked in yellow. Therefore, the paths starting
from the node dbr:Inception which contain the nodes marked in green are impactful in predicting the dbo:
musicComposer for Inception. Also, for the relation encoding, not all triples are equally important for a certain
relation. Similarly, for textual encoding not all the words and phrases in the entity descriptions are equally important
to represent a certain entity. Hence, an attention mechanism is also used here to generate the contextual description
encoding depending on different words in the text.

As the attention mechanism, the scaled dot product self attention [49] is used because it is much faster and is
more space-efficient. Queries and keys of dimension dk , and values of dimension dv are given as input. Then the dot
product of the query is computed with all keys. Each of them is then divided by

√
dk . A softmax function gives the

weights on the values as an output. Practically, the attention function is computed on a set of queries simultaneously,
packed together into a matrix Q. The keys and values are also packed together into matrices K and V . In this work,
the final hidden layer of the encoder is taken as the query as well as the key while value is the output, i.e., the context
vector. The scaled dot product self-attention is given as,

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V. (8)

In terms of the MADLINK model, for a given word or relation x the above equation can be rewritten as,

α(x) = softmax

(
ata

T
t√

dim(ht )

)
X, (9)

where at is the hidden layer, dim(at ) is the dimension of the hidden layer, and X is the context vector. The attention
weights of an excerpt from FB15k is illustrated in Fig. 4. The nodes in yellow have the maximum attention which
is required to predict the entity /m/04353.

3http://akosiorek.github.io/ml/2017/10/14/visual-attention.html

http://akosiorek.github.io/ml/2017/10/14/visual-attention.html
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Fig. 4. Illustration of the attention weights for an excerpt from FB15k.

Fig. 5. Overall architecture of the MADLINK model.

Decoder The attention layer forms a bridge between the path embeddings and the input path sequences. The
decoder network is initialized with the attention weights and the context vector which is then fed to a layer of GRU
to obtain the final Path Vector for each entity. Therefore, this Path Vector gives a representation of the entity. Figure 2
illustrates the encoder-decoder architecture used in the paper.

The main advantage of using this seq2seq based encoder-decoder in the MADLINK architecture is that it can gen-
erate output sequence after seeing the entire input. The attention mechanism allows focusing on specific parts of the
input automatically to help generate a useful encoding, even for longer input. Therefore, the proposed MADLINK
model looks into all the input paths for a certain entity, focuses on the specific parts of the input, and then generates
an encoding for the entity.

4.4. Overall training

Given a triple 〈eh, r, et 〉, the encoding of the head and tail entities are generated by the respective path vectors as
discussed in Section 4.3. Similarly, for a relation r , all the triples in the KG containing that relation are considered
to generate the relation encoding. The textual representation of the entities are obtained from the embeddings of the
entity descriptions. The overall architecture of the MADLINK model is depicted in Fig. 5. Therefore, the parameters
of the model are as follows: θ = {Dh, Dt, Ph, Pt, R, GRU1, GRU2}, where Dh, Dt are the description embedding
of the head and tail entities, respectively obtained from SBERT model, Ph, Pt are the path embeddings of the head
and tail entities, respectively, R is the relation embeddings, GRU1 and GRU2 represent the parameters from the
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Bi-directional GRU and the decoder GRU, respectively. Finally, the path (Ph, Pt), relation (R) and the description
embeddings (Dh, Dt) are passed through one fully connected layer with the same weights. The dimension of the
SBERT embeddings of textual entity descriptions is 1024 which is reduced to a dimension of 100 or 150 based on
the size of input embedding vector to the DistMult model for different datasets.

In this work, DistMult is used as the final scoring function of the model. The model uses a simplification of
bilinear interaction between the entities and the relations. DistMult model uses the trilinear dot product as a scoring
function

fDistMult = 〈rp, eh, et 〉, (10)

where eh, et , rp are the embeddings of the head, tail, and relation, respectively. In MADLINK, the Dh and Ph are
concatenated and initialized as the head embedding to the scoring function. A similar operation is done with the tail
entity as well.

5. Experiments and results

This section discusses the benchmark datasets and the experiments conducted for showing the feasibility of
MADLINK and its empirical evaluation on two KGC tasks, namely, link prediction, i.e., head or tail prediction
and triple classification.

5.1. Datasets

The statistics of the datasets FB15K, FB15K-237, WN18, WN18RR, and YAGO3-10 used for the purpose of the
evaluation are provided in Table 1. FB15K is a dataset extracted from large scale cross-domain KG, Freebase [4]. As
mentioned in [12,47], FB15K has 80.9% test leakage, i.e., a large number of test triples are obtained by inverting the
triples of the test set. For example, <Republic, /government/form_of_government/countries, Paraguay> is a triple
from the training set of FB15K and its inverse <Paraguay, /location/country/form_of _government, Republic>
is a triple in the test set, where Republic and Paraguay are the entities in Freebase and /government/form_of _
government/countries is the relation between them. The triple from the test set is the inverse of the triple from the
training set. As mentioned by the authors, this might lead to the models for learning relations and their corresponding
inverse relations for the link prediction task instead of modelling the actual KG. Therefore, FB15K-237 dataset has
been introduced by [47], which is a subset of FB15K without the inverse relations. Similarly, WN18 is extracted
from WordNet [27] which contains word concepts and lexical relations between the concepts. WN18RR is a subset
of WN18 without inverse relations.

YAGO3-10 [12] is extracted from the large scale cross-domain KG, YAGO [43]. It consists of those entities
having at least 10 relations in YAGO. The authors state that the majority of triples in YAGO are the properties
of people such as citizenship or gender. The poor performance of the inverse model ConvE [12] on YAGO3-10
implies that it is free from test leakage [39]. Therefore, it is observed, that most of the recent KG embedding models
designed for the task of link prediction are evaluated on the FB15k-237 and WN18RR instead of FB15k and WN18.
However, the proposed model MADLINK has been evaluated on all the aforementioned 5 benchmark datasets.
Besides, MADLINK model uses textual entity descriptions along with the structural information of entities.

Table 1

Statistics of the benchmark datasets

Datasets FB15K FB15K-237 WN18 WN18RR YAGO3-10

#Entities 14,951 14,541 40,943 40,943 123,182

#Relations 1,345 237 18 11 37

#Entities with Description 14,515 14,541 40,943 40,943 107,326

Train set 483,142 272,115 141,441 86,834 1,079,040

Test Set 59,071 20,466 5,000 3,134 5,000

Valid Set 50,000 17,535 5,000 3,034 5,000
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5.2. Experimental setup

In the path selection process, the following parameters are used: number of hops 4, and number of paths per
entity 1000. The hyper-parameters used in the MADLINK model are as follows: the dimension of SBERT vectors
1024, a learning rate of the encoder – decoder framework 0.001, batch size 100, loss margin 1, dropout 0.5. In
the pre-processing step of the textual entity description, only punctuation removal is done. The experiments with
MADLINK have been performed on an Ubuntu 16.04.5 LTS system with 503GiB RAM. The training with DistMult,
SBERT, and the encoder-decoder framework is performed with TITAN X (Pascal) GPU.

5.3. Hyper-parameter optimization

The hyper-parameter optimization is performed using grid search as provided in [10] and the hyper-parameters
are selected with the best performance on the validation dataset. For all the benchmark datasets, the search space
provided in Table 2 and the hyper-parameters used are provided in Table 3. Adam optimizer is used for the base
model.

5.4. Link prediction

Formally, link Prediction is a sub-task of KGC which aims at predicting the missing head (eh) or tail entity
(et ) given (eh, r) or (r, et ) respectively [7]. Given a KG G = (E,R), where E and R are the set of entities
and relations, link prediction can be defined by a mapping function that assigns a score to every possible triple
(ei, r, ej ) ∈ E × R × E. A high score of a triple indicates it to be true [16]. However, instead of considering the
best score triple, a set of candidates is considered based on the ranking of the scores.

Table 2

Hyper-parameter search space for MADLINK

Hyper-parameters Range

Batches {32, 64, 100}
Epochs {500, 1000}
Embedding Size {50, 100, 150, 200}
Eta (η) {1, 5, 10}
Loss Multiclass NLL

Regularizer Type {L1, L2, L3}
Regularizer (λr ) {1e−3, 1e−4}
Optimizer param (lr) {0.1, 0.01, 0.001}
Optimizer param (λo) {1e−5, 1e−4, 1e−3, 1e−2}

Table 3

Optimized hyper-parameters used in the training of MADLINK

Parameters FB15K FB15K-237 WN18 WN18RR YAGO3-10

Batches 64 64 64 64 100

Embedding Size 150 150 150 150 150

Epochs 1000 1000 1000 1000 1000

Learning Rate (lr) 0.001 0.001 0.001 0.001 0.001

Regularizer L3 L3 L3 L3 L3

Regularizer (λr ) 1e–4 1e–4 1e–5 1e–5 1e–4

Optimizer param (lr) 0.001 0.001 0.01 0.01 0.001

Optimizer param (λo) 1e–3 1e–3 1e–3 1e–3 1e–3

Loss Multiclass NLL Multiclass NLL Multiclass NLL Multiclass NLL Multiclass NLL
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Evaluation metrics Following the model in [6] the evaluation metrics used are as follows: (1) Mean Reciprocal
Rank (MRR) is the average of the reciprocal ranks of the correct entities, and (2) Hits@k is the proportion of
the correct entities in top-k predictions. To evaluate most of the embedding models, negative sampling is used to
generate corrupted triples by removing either the head or the tail entity. In doing so, some of the generated corrupted
triples might actually occur in the KG and should be considered as a valid triple. Therefore, all the triples which are
true and are present in the training, test, and validation set are removed from the corrupted triples set and is termed
as ‘filtered’ setting in the evaluation. Also, the triples containing unseen entities are removed from the test and the
validation sets.

Baselines The effectiveness of the proposed model, MADLINK, is illustrated by comparing with the following
baseline models. These baselines are selected based on the diversity of the nature of the embedding models such as
translation-based, neural network-based, textual entity description-based, rotational-based, etc.

– TransE [6] is a translation-based embedding model.
– DistMult [57] is bilinear diagonal model.
– ConvE [12] is a CNN-based embedding model.
– ConvKB [29] is also a CNN-based embedding model in which each triple is represented by a 3-column ma-

trix which is then fed to a convolution layer to generate different feature maps. These feature maps are then
concatenated into a single feature vector representing the input triple.

– DKRL [54] and Jointly (ALSTM) [56] are textual entity description-based embedding models. The former
uses a CNN approach, whereas the latter uses an LSTM.

– RotatE [44] is a model which defines each relation as a rotation from the source to the target entity in the
complex vector space. The authors propose a self adversarial negative sampling technique for the model.

– HypER [2] uses a hyper network to generate 1D relation specific vectors convolutional filter weights for each
relation which is then used by another network to enable weight sharing across layers.

– R-GCN [41] is a relation aware Graph Convolutional Network, in which the encoder learns the latent repre-
sentation of the entities and the decoder is a tensor factorization model exploiting these representations for the
task of link prediction.

– QuatE [61]. In Quaternion embeddings, hyper complex-valued embeddings with three imaginary components,
are utilized to represent entities. Relations are modelled as rotations in the quaternion space.

– MDE [40] (Multiple Distance Embedding model) is a framework to collaboratively combine variant latent
distance-based terms by using a limit-based loss and by learning independent embedding vectors. It uses a
neural network model that allows the mapping of nonlinear relations between the embedding vectors and the
expected output of the score function.

– TuckER [3] model is based on Tucker decomposition of the third-order binary tensor of triples. Tucker decom-
position factorizes a tensor into a core tensor multiplied by a matrix along with each mode.

– KG-BERT [59] and Multi-task BERT [22] are the two models which exploit the working principle of the
contextual language model BERT to predict missing links in a KG.

– BLP-TransE is one of the models proposed in Inductive Entity Representations from Text via link prediction
[11], in which entity representations are generated from their textual entity descriptions using BERT and differ-
ent KG embedding models such as TransE, DistMult, etc., are used on top of it for the task of link prediction.

– LiteralE [23] is a literal embedding model which uses DistMult, ConvE, and ComplEx as the base model. The
main model is based on numeric literal which is easily extendable with text and image literal.

– SSP [52], the Semantic Space Projection (SSP) model jointly learns from the symbolic triples and textual de-
scriptions which uses TransE as the base model. It follows the principle that triple embedding is considered
always as the main procedure and textual descriptions must interact with triples in order to learn better rep-
resentation. Therefore, triple embedding is projected onto a semantic subspace such as a hyperplane to allow
strong correlation by adopting quadratic constraint.

5.4.1. Results
The proposed model MADLINK is compared against the aforementioned baseline models on the 5 benchmark

datasets FB15k, FB15K-237, WN18, WN18RR, and YAGO3-10 as depicted in Tables 4, 5, and 6. In these tables,
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Table 4

Comparison of MADLINK results with the textual entity description-based baseline models on the 4 benchmark datasets1

Models MRR Hits@1 Hits@3 Hits@10

FB15K-237

DKRL 0.19 0.11 0.167 0.215

Jointly(ALSTM) 0.21 0.19 0.21 0.258

KG-BERT 0.237 0.144 0.26 0.427

Multitask-BERT 0.267 0.172 0.298 0.458

BLP-TransE 0.195 0.113 0.213 0.363

MADLINK1 0.347 0.252 0.38 0.529

MADLINK2 0.341 0.249 0.377 0.52

WN18RR

DKRL 0.112 0.05 0.146 0.288

Jointly(ALSTM) 0.21 0.112 0.156 0.31

KG-BERT 0.219 0.095 0.243 0.497

Multitask-BERT 0.331 0.203 0.383 0.597

BLP-TransE 0.285 0.135 0.361 0.580

MADLINK1 0.477 0.438 0.479 0.549

MADLINK2 0.471 0.43 0.469 0.535

FB15K

DKRL 0.311 0.192 0.359 0.548

Jointly(ALSTM) 0.345 0.21 0.412 0.65

SSP – – – 0.771

MADLINK1 0.712 0.722 0.788 0.81

MADLINK2 0.69 0.714 0.78 0.798

WN18

DKRL 0.51 0.31 0.542 0.61

Jointly(ALSTM) 0.588 0.388 0.596 0.77

SSP – – – 0.932

MADLINK1 0.95 0.898 0.911 0.96

MADLINK2 0.944 0.88 0.9 0.9

YAGO3-10

DKRL 0.19 0.119 0.234 0.321

Jointly(ALSTM) 0.22 0.296 0.331 0.41

MADLINK1 0.538 0.457 0.580 0.68

MADLINK2 0.528 0.447 0.573 0.67
1The results marked in bold are the best results and the underlined ones are the second best.’-’ is provided if the corresponding results are not
available in the respective papers.

MADLINK1 represents the results of the experiments in which the entities without textual entity descriptions are
removed, whereas MADLINK2 represents the results of the experiments containing all the entities in the datasets.

5.4.2. Comparison with textual entity description-based baseline models
It is to be noted that, out of the above-mentioned baselines, DKRL, Jointly(ALSTM), KG-BERT, Multitask-

BERT, and BLP-TransE use textual entity descriptions as to their features for link prediction. Therefore, these
models form the primary baseline for our proposed model MADLINK as shown in Table 4. For FB15K-237 dataset,
MADLINK1 outperforms the SOTA models for all the metrics with an improvement of 8% for MRR and Hits@1,
8.2% for Hits@3, and 7.1% for Hits@10 better than the best baseline model Multitask-BERT. Both DKRL and
Jointly(ALSTM) models have the same experimental setup as MADLINK2 variant, in which the models are trained
on datasets that contain entities without text descriptions. MADLINK2 variant outperforms DKRL with an increase
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Table 5

Comparison of MADLINK results with the structure-based baseline models on FB15k-237 and WN18RR datasets

Models MRR Hits@1 Hits@3 Hits@10

FB15K-237

TransE 0.31 0.22 0.35 0.5

DistMult 0.247 0.161 0.27 0.426

ConvE 0.26 0.19 0.28 0.38

ConvKB 0.23 0.15 0.25 0.40

RotatE 0.298 0.205 0.328 0.480

HypER 0.341 0.252 0.376 0.520

R-GCN 0.228 0.128 0.25 0.419

QuatE 0.311 0.221 0.342 0.495

MDE 0.344 – – 0.531

TuckER 0.358 0.266 0.394 0.544

MADLINK1 0.347 0.252 0.38 0.529

MADLINK2 0.341 0.249 0.377 0.52

WN18RR

TransE 0.22 0.03 0.37 0.54

DistMult 0.438 0.424 0.442 0.478

ConvE 0.45 0.42 0.47 0.520

ConvKB 0.39 0.33 0.42 0.48

RotatE 0.476 – – 0.571

HypER 0.465 0.436 0.477 0.465

R-GCN 0.39 0.338 0.431 0.49

QuatE 0.481 0.436 0.5 0.564

MDE 0.458 – – 0.56

TuckER 0.47 0.443 0.482 0.526

MADLINK1 0.477 0.438 0.479 0.549

MADLINK2 0.471 0.43 0.469 0.535

of 15.1% on MRR, 13.1% on Hits@1, 21% on Hits@3, and 30.5% on Hits@10. Also, the proposed model out-
performs the Jointly(ALSTM) model by 13.1% increase on MRR, 5.9%, 16.7%, and 26.2% on Hits@1, Hits@3,
and Hits@10 respectively. For WN18RR, MADLINK outperforms the baseline models with considerable improve-
ment with all the metrics except for Hits@10. Multi-task BERT model performs best for the WN18RR dataset for
Hits@10, whereas for other metrics MADLINK outperforms the same model with an improvement of 14.6% on
MRR, 23.5% on Hits@1, and 9.6% on Hits@3. Furthermore, both the variants of MADLINK considerably outper-
form all the baseline models DKRL, Jointly(ALSTM), KG-BERT, and BLP-TransE.

The models KG-BERT, Multitask-BERT, and BLP-TransE have not been evaluated on FB15k, WN18 due to test
leakage problem in the original papers [59]. Therefore, MADLINK is compared against the DKRL and Jointly(AL-
STM) models. It is noted that both the MADLINK variants significantly outperform both the text-based baseline
models for all the metrics. Similarly, for YAGO3-10 dataset, both the MADLINK variants show major improvement
from both the baselines.

It is to be noted that all the aforementioned text-based KG embedding models, such as DKRL, and Jointly (AL-
STM), exploit the structural information of the KG in form of triples explicitly together with the textual entity
descriptions. However, KG-BERT and Multitask-BERT use the triple information implicitly as the triples are con-
sidered as input sentences to the BERT model. On the other hand, in BLP-TransE, the textual entity and relation
representations are provided as input to the TransE model in form of triple inputs. Therefore, the results infer that the
textual entity descriptions together with the structural information captured via the paths in the MADLINK model
capture better semantics of the KG for the task of link prediction.
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Table 6

Comparison of MADLINK results with the structure-based baseline models on FB15k, WN18, and YAGO3-10 datasets

Models MRR Hits@1 Hits@3 Hits@10

FB15K

TransE 0.63 0.5 0.73 0.85

DistMult 0.432 0.302 0.498 0.68

ConvE 0.5 0.42 0.52 0.66

ConvKB 0.65 0.55 0.71 0.82

RotatE 0.797 – – 0.884

HypER 0.790 0.734 0.829 0.885

R-GCN 0.69 0.6 0.72 0.8

QuatE 0.77 0.7 0.821 0.878

MDE 0.652 – – 0.857

TuckER 0.795 0.741 0.833 0.892

MADLINK1 0.712 0.722 0.788 0.81

MADLINK2 0.69 0.714 0.78 0.798

WN18

TransE 0.66 0.44 0.88 0.95

DistMult 0.755 0.615 0.891 0.94

ConvE 0.93 0.91 0.94 0.95

RotatE 0.949 – – 0.959

HypER 0.951 0.947 0.955 0.958

R-GCN 0.71 0.61 0.88 0.932

QuatE 0.949 0.941 0.954 0.96

MDE 0.871 – – 0.956

TuckER 0.953 0.949 0.955 0.958

MADLINK1 0.95 0.898 0.911 0.96

MADLINK2 0.944 0.88 0.9 0.9

YAGO3-10

TransE 0.51 0.41 0.57 0.67

DistMult 0.354 0.262 0.4 0.537

ConvE 0.4 0.33 0.42 0.53

ConvKB 0.3 0.21 0.34 0.5

HypER 0.533 0.455 0.58 0.678

R-GCN 0.12 0.06 0.113 0.211

TuckER 0.427 0.331 0.476 0.609

MADLINK1 0.538 0.457 0.58 0.68

MADLINK2 0.528 0.447 0.573 0.67

5.4.3. Comparison with structure-based baseline models
The proposed model MADLINK is compared with the baseline KG embedding models such as TransE, DistMult,

ConvE, ConvKB, RotatE, HypER, R-GCN, QuatE, MDE, and TuckER, that consider the triple information to gen-
erate the latent representation of the entities for the task of link prediction in KGs. The results are shown in Table 5
on FB15k-237 and WN18RR and Table 6 on FB15k, WN18, and YAGO3-10 datasets.

MADLINK achieves the second best results after TuckER for FB15k-237 on MRR, Hits@1, and Hits@3 metrics,
whereas for Hits@10, TuckER performs slightly better with an improvement of 1.5% over MADLINK. On the other
hand, for WN18RR, MADLINK achieves the second best result for MRR, Hits@1, and Hits@3 after TuckER. The
latter performs marginally better than MADLINK with an improvement of 0.7% on MRR, 0.5% on Hits@1, 0.3%
on Hits@3. However, MADLINK performs better than TuckER for Hits@10 by 2.3%. RotatE performs the best for
Hits@10 amongst the mentioned baseline models and its performance is 2.2% better than MADLINK.
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TuckER model outperforms all the baseline models as well as MADLINK for FB15k. However, for the YAGO3-
10 dataset, MADLINK outperforms the TuckER model with an improvement of 11.1% on MRR, 12.6% on Hits@1,
10.4% on Hits@3, and 7.1% on Hits@10. Additionally, MADLINK outperforms all the other baseline models and
achieves SOTA results for the YAGO3-10 dataset over all the metrics. For WN18, TuckER performs better than all
the baseline models and MADLINK for all the metrics except for Hits@10.

Additionally, MADLINK outperforms its base model DistMult for all the metrics in all the datasets. For FB15K-
237, there is an improvement of 10% in MRR, 9.1%, 11%, and 10.3% in Hits@1, Hit@3, and Hits@10 respectively.
Similarly, for FB15K, a considerable increase of 28% in MRR, 42% in Hits@1, 29% in Hits@3, and 13% in
Hits@10 have been achieved. On the other hand, for WN18, MADLINK shows a rise of 19.5% in MRR, 28.3%
in Hits@1, and 2% for both Hits@3 and Hits@10. Also, for WN18RR similar increment of the results has been
achieved with an increment of 3.9% in MRR, 1.4% in Hits@1, 3.7% in Hits@3, and 4.5% in Hits@10. Identical
improvement has also been obtained for the YAGO3-10 dataset with an improvement of an average of 17.55%
overall the evaluation metrics with an increase of 18.4% in MRR, 19.5% in Hits@1, 18%, and 14.3% in Hits@3,
and Hits@10 respectively.

Also, from the results of Hits@k, for all the datasets it can be inferred that MADLINK correctly ranks many true
triples in top-k as it achieves SOTA results for FB15K-237, WN18RR, WN18, and YAGO3-10 whereas comparable
results for FB15K. Furthermore, MADLINK works better for the datasets without the reverse relations such as
FB15K-237 and WN18RR as compared to FB15K and WN18 because in this work directed paths are considered
and not undirected edges. However, in this work, the evaluation metric Mean Rank (MR) has not been used because
it is sensitive to outliers as mentioned in other related work [31].

MADLINK has also been compared with LiteralE [23], which uses numerical literal to predict the missing links.
The results shown in Table 7 illustrate that MADLINK performs better than LiteralE. Additionally for FB15k-237,
MADLINK performs better than LiteralE variant with both numeric and text data. It is to be mentioned that, the
results of DistMult variant of LiteralE is considered in Table 7 for a fair comparison with MADLINK as both of
them use DistMult.

The main advantage of MADLINK over the structure-based baseline models is that link prediction can be per-
formed for unpopular entities in a KG, i.e., the entities without any relations or less number of relations associ-
ated with them. This is because MADLINK considers the textual entity descriptions of the entities apart from the
structural information. Similarly, since it considers the structural information of the entities in the forms of paths,
therefore, missing links can be predicted for entities having triple information but without textual entity descrip-
tions.

Therefore, it can be concluded that the path information of the entities when coupled with the textual entity
descriptions in KGs provide better results in link prediction which is further analysed in Section 5.6.

Table 7

Comparison of MADLINK with LiteralE on FB15k-237, FB15k, and YAGO3-10

Models MRR Hits@1 Hits@3 Hits@10

FB15K-237

LiteralE (Numeric+Text) 0.32 0.234 – 0.488

LiteralE (Numeric) 0.317 0.232 0.348 0.483

MADLINK 0.347 0.252 0.38 0.529

FB15k

LiteralE (Numeric) 0.676 0.589 0.733 0.825

MADLINK 0.712 0.722 0.788 0.81

YAGO3-10

LiteralE (Numeric) 0.479 0.4 0.525 0.627

MADLINK 0.538 0.457 0.580 0.68
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Table 8

Triple classification (accuracy in %)

Models FB15K FB15K-237 WN18 WN18RR

TransE 82.9 75.6 87.6 74

DistMult – 73.9 – 80.4

ConvE 87.3 78.2 95.4 78.3

ConvKB 87.9 80.1 96.4 79.1

Jointly(ALSTM) 91.5 – 97.8 –

PConvKB 89.5 82.1 97.6 80.3

MADLINK 92.1 82.8 98 81.2

5.5. Triple classification

Triple Classification is the task of determining if a given triple is correct or not. It is a binary classification task,
where a given triple (eh, r, et ) is to be classified into either 0 (false) or 1 (true) as proposed by [42]. Since all the
triples in the training set are true, negative triples are generated for this task, by replacing the head and the tail
entities. Also, using this negative sampling method, some of the triples would be generated which would be true.
Therefore, all the generated negative triples which are present in the training, test, and validation set are removed.
As mentioned by the authors, a threshold ρr is set for triple classification maximizing the classification accuracy on
the validation set. A triple is considered as positive if the conditional probability, P(et |eh, r) � ρr [42] holds.

However, for MADLINK a Convolutional Neural Network (CNN) binary classifier has been used on top of the
embeddings of entities and relations obtained from the model. The classifier is trained with positive triples from the
training set and negative triples obtained from the negative sampling model. The test set is also complemented with
negative examples for proper evaluation. Triple Classification for all 4 datasets has also been compared against all
the above mentioned SOTA models along with PConvKB [20]. PConvKB is an embedding model that incorporates
relation paths locally and globally which are then passed through a convolutional neural model. The results are
depicted in Table 8. The proposed model achieves the SOTA results with an improvement of 0.2% to 0.8% over the
SOTA models for all the benchmark datasets. Furthermore, the accuracy of triple classification for the YAGO3-10
dataset is 80.1% but it has not been provided in Table 8 because of the lack of results from the SOTA models.

5.6. Ablation study

This section discusses the analysis of different features considered in the MADLINK model for the task of link
prediction.

5.6.1. Impact of only textual entity description
The impact of only the textual entity description without the structural information for the task of link prediction

has been evaluated along with the triples. The latent representation of the textual entity descriptions is obtained
using SBERT vectors. The results as depicted in Table 9 show that it outperforms the base model DistMult for
all the datasets. It is observed that the improvement for WN18 and WN18RR is very small compared to the other
datasets. This is due to the fact that both the datasets contain 5780 entities for which the length of the textual entity
description is less than or equal to five providing much less information. However, Table 4 shows textual entity
descriptions together with path information exhibits considerable improvement in link prediction.

5.6.2. Impact of only structural information
The results depicted in Table 10 illustrate the impact of using only the structural information of the KGs in form

of paths. The number of paths increases exponentially with the number of hops, for e.g., in FB15k, the average
neighbour for each node is 30, therefore, the total number of possible paths of 4 hops would be 810,000. PF-ITF
is used to filter out the uncommon relations which in turn reduces the number of paths. As mentioned earlier, 1000
paths with 4 hops are selected for each entity because the relevant contextual information w.r.t. the starting node
decreases with more hops. Also, when the walk reaches a dead end, i.e., a node without any outgoing edges, the
walk ends in that dead-end node, even if the maximum hops is not reached. However, there could be more than 1000
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Table 9

Impact of textual entity descriptions in MADLINK (without path information)

Datasets Models MRR Hits@1 Hits@3 Hits@10

FB15K DistMult 0.432 0.302 0.498 0.68

MADLINK 0.481 0.348 0.512 0.692

FB15K-237 DistMult 0.2471 0.161 0.271 0.426

MADLINK 0.249 0.179 0.279 0.431

WN18 DistMult 0.755 0.615 0.891 0.94

MADLINK 0.758 0.618 0.895 0.943

WN18RR DistMult 0.438 0.424 0.442 0.478

MADLINK 0.439 0.425 0.448 0.48

YAGO3-10 DistMult 0.354 0.262 0.4 0.537

MADLINK 0.361 0.267 0.411 0.54

Table 10

Impact of structural information in MADLINK (without textual entity description)

Datasets Models MRR Hits@1 Hits@3 Hits@10

FB15K DistMult 0.432 0.302 0.498 0.68

MADLINK 0.477 0.328 0.498 0.682

FB15K-237 DistMult 0.2471 0.161 0.271 0.426

MADLINK 0.249 0.169 0.273 0.426

WN18 DistMult 0.755 0.615 0.891 0.94

MADLINK 0.758 0.63 0.898 0.947

WN18RR DistMult 0.438 0.424 0.442 0.478

MADLINK 0.44 0.426 0.45 0.482

YAGO3-10 DistMult 0.354 0.262 0.4 0.537

MADLINK 0.365 0.262 0.42 0.542

paths starting from a certain node in which the first 3 hops consist of the same entities and relations. But this does
not provide any meaningful insight into the source code. Therefore, amongst the paths, we restrict the paths with

the same sequence to a maximum of 30. For example, any path starting with this e1
r1−→ e2

r2−→ e3
r2−→ e4 can occur

maximum of 30 times amongst the 1000 paths generated from node e1. If the number of paths is less than 1000 for
any entity, then all paths for that entity are considered.

The results in Table 10 show that the MADLINK model with only the structural information outperforms the
base model DistMult for all the metrics across all the 5 benchmark datasets. Additionally, MADLINK with only
structural information works slightly better than MADLINK with only textual entity descriptions for WN18 and
WN18RR datasets. Therefore, it can be inferred that the neighbourhood information is well captured for these two
datasets in the paths.

5.6.3. Influence of attention in the network
To analyse the impact of the attention mechanism in encoding the path vectors, experiments have been conducted

without the attention layer as depicted in Table 11. The result depicts that there is an improvement in all the evalua-
tion metrics for all the datasets if MADLINK is used with the attention mechanism. Therefore, with an improvement
of an average of 5% over Hits@10 for FB15K, WN18, and YAGO3-10 as well as 3.1% for FB15K-237 and 1.4%
for WN18RR, it can be seen that the attention mechanism helps in identifying the important entities and relations in
a path for the task of link prediction.
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Table 11

Impact of attention mechanism in MADLINK

Datasets Models MRR Hits@1 Hits@3 Hits@10

FB15K MADLINK (w/o Attn.) 0.48 0.388 0.502 0.701

MADLINK (with Attn.) 0.51 0.412 0.591 0.758

FB15K-237 MADLINK (w/o Attn.) 0.331 0.211 0.35 0.498

MADLINK (with Attn.) 0.347 0.252 0.38 0.529

WN18 MADLINK (w/o Attn.) 0.92 0.822 0.85 0.91

MADLINK (with Attn.) 0.95 0.898 0.911 0.96

WN18RR MADLINK (w/o Attn.) 0.412 0.401 0.411 0.509

MADLINK (with Attn.) 0.477 0.438 0.479 0.549

YAGO3-10 MADLINK (w/o Attn.) 0.411 0.331 0.524 0.623

MADLINK (with Attn.) 0.461 0.372 0.580 0.68

6. Conclusion and future work

In this paper, a novel approach has been proposed for combining the contextual structural information of an entity
from the KGs as well as textual entity descriptions in the embedding space to address the problem of KG completion
using link prediction and triple classification. Moreover, an attention-based encoder-decoder approach is introduced
to measure the importance of paths. Experimental results show that MADLINK achieves the SOTA results for the
textual entity description-based embedding models for the link prediction task on all the 5 benchmark datasets.
Furthermore, MADLINK outperforms most of the baseline models whereas it achieves comparable results with the
rest. In this paper, two major research questions are formulated and presented in Section 3. The answers to these
questions are given as follows:

– RQ1: Does the contextual information of entities and relations in a KG help in the task of link prediction?

∗ The contextual information of the entities and the relations in a KG are captured by generating paths us-
ing random walks. Also, the attention mechanism on the encoder-decoder model helps in identifying the
important entities within a path. Handling the path information separately (as shown in Table 10) in the
MADLINK model yields better results than the base model DistMult which uses only the triple information.

– RQ2: What is the impact of incorporating textual entity descriptions in a KG for the task of link prediction?

∗ The latent representations of the textual entity descriptions are generated using the SBERT model. The
impact of the textual entity descriptions in the link prediction task is dependent on the length of textual
information available for the corresponding entities. It can be observed from the results of MADLINK
as depicted in Table 9 that link prediction works better for FB15k and FB15k-237 compared to WN18 and
WN18RR. This is because Freebase entities have detailed and longer text descriptions than WordNet entities.
Also, only the textual description-based variant of MADLINK outperforms the base model DistMult for all
the 5 benchmark datasets. Therefore, the textual entity descriptions play an important role in the task of link
prediction in KGs.

The obtained results suggest that the impact of the textual entity description and the contextual structural infor-
mation is different for different KGs. However, the combination of contextual structural information together with
the textual entity descriptions in the MADLINK model outperforms all the text-based KG embedding models.

In future work the following research directions will be considered to further improve the model:

– Explore the translational embedding models such as TransR to learn the initial embeddings of the entities and
relations.

– Explore the different scoring functions such as ConvE, translational models, etc. for the base model to analyze
the embeddings for the link prediction task.

– Use different multi-hop strategies to generate the context information.
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– Multiple text literals available for the entities in the KGs as labels, summary, comments, etc. can also be
incorporated in the model. Also for relations, relation name labels can be considered as the textual description.

– Include explicit external text information such as from Wikipedia into the model.
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