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Abstract. Knowledge Graphs are organized to describe entities from
any discipline and the interrelations between them. Apart from facilitat-
ing the inter-connectivity of datasets in the LOD cloud, KGs have been
used in a variety of applications such as Web search or entity linking,
and recently are part of popular search systems and Q&A applications
etc. However, the KG applications suffer from high computational and
storage cost. Hence, there arises the necessity of having a representa-
tion learning of the high dimensional KGs into low dimensional spaces
preserving structural as well as relational information. In this study, we
conduct a comprehensive survey based on techniques of KG embedding
models which consider the structured information of the graph as well as
the unstructured information in form of literals such as text, numerical
values etc. Furthermore, we address the challenges in their embedding
models followed by a discussion on different application scenarios.

Keywords: Knowledge Graph · Embedding · Literals · Knowledge Graph
embedding survey.

1 Introduction

Various Knowledge Graphs (KGs) have been published for the purpose of sharing
linked data. Some of the most popular general purpose KGs are DBpedia [14],
Freebase [1], Wikidata [23], and YAGO[16]. KGs have become quite invaluable
for various applications mainly in the area of artificial intelligence. For instance,
in a more general sense, KGs can be used to support decision making process
and to improve different machine learning applications. Spam detection, movie
recommendation, and market basket analysis are some of the ML applications
which can benefit from KGs [25]. General purpose KGs as e.g., Wikidata, often
comprise millions of entities, represented as nodes, with hundreds of millions of
facts, represented as edges connecting those nodes. However, a significant number
of important graph algorithms needed for the efficient manipulation and analysis
of graphs have proven to be NP-complete [11]. Although KGs are effective in
representing structured data, the underlying symbolic nature of the way data is
encoded as triples (i.e. < subject, predicate, object >) usually makes KGs hard
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to manipulate [24]. In order to address these issues and use a KG efficiently, it is
recommended to convert it into a low dimensional vector space while preserving
the graph properties. To this end, various attempts have been made so far to learn
vector representation (embeddings) for KGs. However, most of these approaches,
including the state of the art TransE [2], are structure based embeddings which
do not include any literal information. This is a major disadvantage because a
lot of information encoded in the literals will be left unused when capturing the
semantics of a certain entity.

Literals can bring advantages to the process of learning KG embeddings in
two major ways. The first is in learning embeddings for novel entities i.e., entities
which are not linked to any other entity in the KG but have some literal values
associated with them. In most existing structure based embedding models, it
is not possible to learn embeddings for such novel entities. However, this can
be addressed by utilizing the information held in literals to learn embeddings.
The other advantage of literals is improving the representation of entities in
structure based embedding models where an entity is required to appear in at
least minimum number of relational triples. Some approaches have been proposed
to make use of literals for KG embeddings. The focus of this paper is to discuss
these different embedding approaches and their advantages and drawbacks in
the light of different application scenarios. Our contributions include:

– A detailed analysis of the existing literal enriched KG embedding models
and their approaches. In addition, a method is proposed to categorize them
into different groups.

– The research gaps in the area of KG embeddings in using literals are indi-
cated as directions for further future works.

The rest of this paper is organized as follows. Sect. 2 presents a brief overview
of related work. In Sect. 3, the problem formulation is provided. In Sect. 4,
the analysis of the different KG embedding techniques with literals is discussed.
In Sect. 5, various tasks used to evaluate the embedding models discussed in
Sect. 4 are explained. The survey is concluded in Sect. 6 by providing directions
for future work for KG embedding with literals.

2 Related Work

Few attempts have been made to conduct surveys on the techniques and appli-
cations of KG embeddings [12, 3, 24]. However, none of these surveys include all
the existing KG embedding models which make use of literals. The first survey
[12] is conducted with focus on network embedding models. The second [3] and
the third [24] surveys discuss only RESCAL [17] and KREAR [15] as methods
which use attributes of entities for KG embeddings, and focuses mostly on the
structure based embedding methods.

However, RESCAL is a matrix-factorization method for relational learning
which encodes each object/data property as a slice of the tensor ending up in-
creasing the dimensionality of the tensor automatically. Thus, this method is
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not efficient to utilize literals in KG embedding. Similarly, KREAR is not a
proper KG embedding model with literals since it takes only those data prop-
erties which have categorical values and ignores those which take any random
literals as values. This shows that there is a gap in the KG embedding surveys.
Taking this into consideration, in this paper, a survey on KG embedding models,
which make use of literals is provided.

3 Problem Formulation

In this section, a brief introduction is provided on fundamental KG and its
embeddings followed by a formal definition of KG embedding with literals.

3.1 Definitions and preliminaries

Relations (or Properties). Based on the nature of the objects, relations are
classified into two main categories:

– Object Relations – relations that link entities to entities
– Data Type Relations – relations that link entities to data values (lit-

erals).The triples consisting of literals as objects are often referred to as
attributive triples.

3.2 Types of literals

Literals in a KG encode information that is not captured by the relations or links
between the entities. There are different types of literals present in the KGs:

– Text – Wide variety of different information can be stored in KG in the
form of free text such as names, labels, titles, descriptions, comments, etc.
In most of the KG embedding models with literals, text information has
been further categorized into Short text and Long text for better capture
of the semantics in the model. The literals which are fairly short such as
for relations like names, titles, etc. are considered as Short text. On the
other hand, for strings that are much longer such as descriptions of entities,
comments, etc. are considered as Long text.

– Numeric – Information encoded in the form of real numbers, decimal num-
bers such as height, year or date, population, etc. also provide useful insight.
It is worth considering the numbers as distinct entities in the embeddings
models, as it has its own semantics to be covered which cannot be covered
by string distance metrics. For e. g. 777 is more similar to 788 than 77.

– Units of Measurement – (Numeric) literals often denote units of mea-
surements to a definite magnitude. For e. g. Wikidata property wdt:P2048
takes values in mm, cm, m, km, inch, foot, and pixel. Hence, discarding the
units and considering only the numeric values without normalization results
in loss of semantics, especially in the case if units are not comparable, as e.g.
units of length and units of weight.
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– Images – Images also provide latent useful information for modelling of
the entities. For example, a person’s details such as age, gender etc. can be
deduced via visual analysis of an image depicting the person.

– Others – Useful information encoded in the form of other literals such as
external URIs which could lead to an image, text, audio or video files.

Since the information present in the KGs is diverse, modelling of the entities is
a challenging task.

– RQ1 – How to combine the structured (triples with object relations) and
unstructured information (attributive triples) in the KGs into the represen-
tation learning?

– RQ2 – How to capture and combine the heterogeneity of the types of literals
present in the KGs into representation learning?

4 Knowledge Graph Embeddings with Literals

In this study, the investigated KG embedding models with literals are divided
into the following different categories based on the literals utilized: (i) Text, (ii)
Numeric, (iii) Image , and (iv) Multi-modal. A KG embedding model which
utilizes at least two types of literals is considered as multi-modal. This section
consists of an analysis of the models in each category, with their similarities and
differences, followed by a discussion of potential drawbacks.

4.1 Text Literals

Subsequently, four KG models considering text literals are discussed, namely,
Extended RESCAL [18], DKRL [28], KDCoE [4], and KGloVe with literals [5].

Extended RESCAL improves the original RESCAL approach by process-
ing literal values more efficiently and deal with the sparsity nature of the ten-
sors. In this method, attributive triples are handled in a separate matrix fac-
torization, which is performed jointly with the tensor factorization of the non-
attributive triples. Attributive triples containing only text literals are encoded
in an entity-attributes matrix in such a way that given a triple, one or more
< data type relation, value > pairs are created by tokenizing and stemming the
object literal. Despite the advantage that this approach handles multi-valued
literals, it does not consider the sequence of words in the literal values.

DKRL generates embeddings of entities and relations of a KG by combin-
ing structure-based and description-based representations. The structure based
representation of entities and relations are obtained via TransE [2], in which the
relation in each triple (head, relation, tail), is regarded as the translation from
head entity to tail entity. On the other hand, continuous bag of words (CBOW)
and a deep convolutional neural network model (CNN) have been used to gen-
erate the description based representations of the head and tail entities. In case
of CBOW, short text is generated from the description based on keywords and
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their corresponding word embeddings are summed up to generate the entity em-
bedding. In the CNN model, after preprocessing of the description, pre-trained
word vectors from Wikipedia are provided as input. The CNN has five layers
and after every convolutional layer pooling is applied to decrease the parameter
space of CNN and filter noises. Max-pooling is applied for the first pooling and
mean pooling for the last one. CNN model works better than CBOW because it
preserves the sequence of words.

KDCoE focuses on the creation of an alignment between entities of mul-
tilingual KGs by creating new inter-lingual links (ILLs). The model leverages
a weakly aligned multilingual KG for semi-supervised cross-lingual learning us-
ing entity descriptions. It performs co-training of a multilingual KG embedding
model (KGEM) and a multilingual literal description embedding model (DEM)
iteratively in order for each model to propose a new ILL alternately. KGEM
adopts TransE whereas DEM uses an attentive gated recurrent unit encoder
(AGRU) to encode the multilingual entity descriptions.

KGloVe with literals works by first creating a cooccurrence matrix from
the underlying graph by performing Personalized PageRank (PPR) on the (weighted)
graph followed by the same optimisation used in the GloVe [19] approach. Two
cooccurrence matrices are generated independently and merged in the end. The
first matrix is generated using KGloVe [6] technique and Named Entity Recog-
nition is performed prior to the creation of the second matrix.

The basic differences between these models lie in the methods used to exploit
the information given in the text literals and combine them with structure-
based representation. One major advantage of KDCoE over text literal based
embedding models is that it considers descriptions present in multilingual KGs.
Also, both DKRL and KDCoE embedding models are designed to perform well
for the novel entities which have only attributive triples in the KGs. Other types
of text literals are not widely considered.

4.2 Numeric literals

In this section, four models which make use of numeric literals, namely, MT-
KGNN [21], KBLRN [10], LiteralE [13], and TransEA [26] are discussed.

MT-KGNN trains a relational network (RelNet) for triple classification
and an attribute network (AttrNet) for attribute value regression in order to
learn embeddings for entities, object properties, and data properties. Only data
properties with non-discrete literal values are considered in this approach. RelNet
is a simple binary (pointwise) classification whereas the AttrNet is a regression
task. In RelNet, a concatenated triple is passed through a nonlinear transform
and then a sigmoid function is applied to get a linear transform. In the case of
AttrNet, two regression tasks are performed for head and tail data properties
respectively. Finally, the two networks are trained in a multi-task fashion using
a shared embedding space.

KBLRN combines the relational, latent (learned by adapting TransE), and
numerical features together. It uses a probabilistic PoE (Product of Experts)
method to combine these feature types and train them jointly end to end. Each
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relational feature is formulated by adopting the rule mining approach AMIE
+[9], to be evaluated in the KG to compute the value of the features. Numer-
ical features are used with the assumption that, for some relation types, the
differences between the head and tail is seen as characteristics for the relation
itself. In PoE, one expert is trained for each (relation type, feature type) pair.
The parameters of the entity embedding model are shared by all the experts
in order to create dependencies between them. For numerical features, a radial
basis function is applied as activation function if the difference of values is in a
specific range.

LiteralE is designed in order to incorporate literals into existing latent fea-
ture models, which are designed for link prediction. Given a base model, for
instance Distmult, LiteralE modifies the scoring function f used in Distmult
by replacing the vector representations of the entities ei in f with literal enriched
representations eliti . In order to generate eliti , LiteralE uses a learnable transfor-
mation function g which takes ei and its corresponding literal vectors li as inputs
and maps them to a new vector. For g, linear transformations, non-linear trans-
formations, simple multi-layer NNs, and non-linear transformations with gating
mechanisms are proposed. The modified scoring function f is trained following
the same procedure as in the base model.

TransEA has two component models; a newly proposed attribute embed-
ding model and a directly adopted translation-based structure embedding model,
TransE. For the attribute embedding, it uses all attributive triples containing
numeric values as input and applies a linear regression model to learn embed-
dings of entities and attributes. The loss function for TransE is defined by taking
the sum of the respective loss functions of the component models with a hyper-
parameter to assign a weight for each of the models. Finally, the two models are
jointly optimized in the training process by sharing the embeddings of entities.

Despite their support for numerical literals, all the embedding methods dis-
cussed fail to interpret the semantics behind data types of literals and units.
For e. g., ‘1999e ’ and ‘the year 1999’ could be considered same because type
semantics are discarded. Moreover, none of the models apply normalization for
literal values, hence the semantic similarity between two literal values such as,
200 mm and 2 cm is not captured. Also, most of the models do not have proper
mechanism to handle multi-valued literals.

4.3 Image

IKRL [27] learns embeddings by jointly training a structure-based (by adapting
TransE) with an image-based representation. For the image-based representa-
tion, an image encoder is applied to generate embedding for each instance of a
multi-valued image relation. Attention-based multi-instance learning is used to
integrate the representations learned for each image instance by automatically
calculating the attention that should be given to each instance. Given a triple,
the overall energy function is defined by combining four energy functions which
are based on two kinds of entity representations. The first energy function is same
as TransE and the second uses their corresponding image-based representations
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for both head and tail entities. The third function is based on the structure-
based representation of the head entity and the image-based representation of
the tail entity whereas the fourth function is the exact opposite.

4.4 Multi-modal

Numeric literals and text: LiteralE with blocking [8] proposes to improve
the effectiveness of the data linking task by combining LiteralE with a CER
blocking[7] strategy. Unlike LiteralE, it also considers literals from URI infixes
of the head entities and data relations of attributive triples. The CER blocking
is based on a two-pass indexing scheme. In the first pass, Levenshtein distance
metric is used to process literal objects and URI infixes whereas in the second
pass semantic similarity computation with Wordnet is applied to process objec-
t/data relations. All the extracted literals are tokenized into word lists so as to
create the indices.

EAKGAE [22] jointly learns entity embeddings of two KGs using structure
embedding (by adapting TransE) and attribute character embedding. Given a
triple (h, r, a), the data property r is interpreted as a translation from the head
entity h to the literal value a i.e. h + r = fa(a) where fa(a) is a compositional
function. Three different compositional functions SUM, LSTM, and N-gram-
based functions have been proposed. SUM is defined as a summation of all
character embeddings of the attribute value. In LSTM, the final hidden state
is taken as a vector representation of the attribute value. The N-gram-based
function, which shows better performance than the others, uses the summation
of n-gram combination of the attribute value.

The common drawback with both methods is that text and numeric literals
are treated in the same way. They also do not consider literal data type semantics
or multi-valued literals in their approach. Furthermore, since EAKGAE is using
character-based attribute embedding, it fails to capture the semantics behind
the cooccurrence of syllables.

Numeric literals, Text, and Images: MKBE [20] is a a multi-modal
knowledge graph embedding, in which the text, numeric and image literals are
modelled together. It extends DistMult, which creates embedding for entities and
relations, by adding neural encoders for different data types. For image triples,
a fixed-length vector is encoded using CNN. On the other hand, textual at-
tributes are encoded using sequential embedding approaches like LSTMs. Given
the vectors representations of the entities, relations and attributes, the same
scoring function from DistMult is used to determine the correctness probability
of triples.

5 Applications

In this section, the different KG application scenarios used by the techniques
discussed in Sect. 4 are presented.

Link prediction. Link prediction aims to predict new links for a KG given
the existing links among the KG entities. The models Extended RESCAL, Lit-
eralE, TransEA, KBLRN, DKRL, KDCoE, EAKGAE, IKRL, and MKBE have
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FB15K FB15K-237 YAGO-10

KBLN 0.739 0.301 0.487

MTKGNN(DistMult+MultiTask) 0.669 0.285 0.481

DistMult+LiteralE 0.583 0.314 0.504

DistMult+LiteralE-Gate 0.723 0.300 -

ComplEx+LiteralE 0.765 0.299 0.509

ConvE+LiteralE 0.66 0.314 0.506

(a)

Model MRR

Numeric

KBLN 0.503

S+N 0.549

Image

IKRL 0.509

S+I 0.566

(b)

Table 1: (a) MRR results on link prediction taken from LiteralE [13], and (b)
MRR results on link prediction task on YAGO-10 taken from MKBE [20].

been evaluated on the link prediction task. However, it is not possible to compare
the obtained evaluation results because the experiments have been carried out
on different datasets. The authors of the LiteralE and MKBE models conducted
some experiments to compare their proposed models/submodels with already
existing ones. LiteralE has been compared with KBLN, which is a submodel of
KBLRN designed without taking into consideration the relational information of
graph feature methods. Besides KBLN, LiteralE has been compared with a new
modified version of MTKGNN, where its ER-MLP part is replaced with Dist-
Mult to make it compatible with their specific implementation environment. The
results taken from LiteralE are shown in Table 1a. From the result, it can be
seen that DistMult+LiteralE delivers better MRR values when it is compared
with both KBLN and MTKGNN on the datasets FB15k-237 and YAGO-10. The
authors of LiteralE argue that the performance of DistMult+LiteralE is lower
than the others on the FB15K dataset because this dataset includes a lot of
inverse relations and hence claim that it is not an appropriate dataset for link
prediction. The other experiments conducted are in MKBE where the submodels,
structures along with numeric and image literals respectively arecompared with
KBLN and IKRL respectively as shown in Table 1b. Thereby, it can be inferred
that the two submodels of MKBE perform better than their counterparts.

Triple Classification. A potential triple is classified as 0 (false) or 1 (true).
MTKGNN, KGlove with literals, and IKRL have been evaluated on this task.
Since they do not use a common evaluation dataset, it is not possible to compare
the reported results directly.

Entity Classification. Given a KG and an entity, the entity type is pre-
dicted using a multilabel classification algorithm with KG entity types as given
classes. DKRL has been evaluated on this task.

Entity Alignment. Semantically similar entities are determined from mul-
tiple KGs using specific similarity metrics. EAKGAE has been evaluated on
an entity alignment task. In addition, KDCoE has also been evaluated on a
cross-lingual entity alignment task which determines similar entities in different
languages. Despite the fact that both these models use the same task for eval-
uation, their experimental results cannot be compared since they are based on
different datasets.



Survey on KG Embeddings with Literals 9

Other Machine Learning problems. Attribute value prediction, near-
est neighbor analysis, data linking, and document classification are other ap-
plications scenarios used for the evaluation of the models discussed in Sect. 4.
In MTKGNN, attribute value prediction is applied using an attribute-specific
Linear Regression classifier for evaluation. Nearest neighbor analysis has been
performed in LiteralE to compare DistMult+LiteralE with the base model Dist-
Mult. Data linking and document classification tasks have been used in LiteralE
with blocking and KGlove with literals respectively.

6 Conclusion and Future Directions

To sum up, in this paper, a comprehensive survey of KG embedding models with
literals is presented. The survey provides a detailed analysis and categorization
of the embedding techniques of these models along with their application sce-
narios and limitations. As mentioned in Section 4, these embedding models have
different drawbacks. None of them consider the effect that data types and units
have on the semantics of literals. Most of them also do not have a proper mech-
anism to handle multi-valued literals. Thus, filling these gaps will be taken as a
direction for future work.

Moreover, only few approaches have been proposed for multi-modal KG em-
beddings and none of them take into consideration literals with URIs linking to
items such as audio, video, or pdf files. This clearly indicates that more work has
to be invested to address different types of literals. Regarding the comparison of
the quality of the models, as discussed in Section 5, it was only possible to use
the experimental results conducted for some of the models as most use different
datasets and application scenarios. However, as a future work, experiments for
all of the models on different applications will be performed to enable better
comparability.
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9. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast Rule Mining in Onto-
logical Knowledge Bases with AMIE+. VLDB (2015)
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