Improving the Power
of Ordered Binary Decision Diagrams
by Integrating Parity Nodes

Dissertation zur Erlangung des akademischen Grades
des Doktors der Naturwissenschaften
am Fachbereich IV der Universitat Trier

vorgelegt von Diplom Informatiker
Harald Sack

Oktober 2001

... to Anja and my parents

Our doubts are traitors and make us lose

the good we often might win for fearing to
attempt.

— Measure for Measure,

William Shakespeare

Acknowledgments

To attract good fortune, spend a new penny on an old
friend, share an old pleasure with a new friend and lift
up the heart of a true friend by writing his name on the
wings of a dragon. (Chinese Proverb)

I would like to acknowledge the aid and contribution of all the people, whose encour-
agement and support gave me the motivation and the possibility to undergo the work
of this thesis.

First at all I would like to thank my advisor Prof. Dr. sc. Christoph Meinel, who gave
me the possibility to get things started. He always had an open door for me and many
of the ideas developed in this thesis originated from lengthy discussions I had with him.
The liberal working atmosphere in his department has given me the necessary freedom
to constitute this work at my personal pace. His patience, his humor, and not to forget
his good advice (research and otherwise) and his friendship made my time as being his
PhD student in Trier very enriching.

I feel a deep sense of gratitude towards Kerstin, who always encouraged and supported
me in my life, who never complained, when I was focusing my attention on this thesis.
I know that neglecting her was a serious mistake. But, after all, I want to thank her
for her patience and her friendship.

I would like to express all my gratitude to Elena Dubrova, for her support in all subjects
related to multiple-valued logic, for her encouragement, and especially for her being
such a close friend and for the time we spend together in intriguing and inspiring
discussions in Lake Tahoe, Victoria BC., and Trier.

Thanks to my coworkers and friends, esp. Christian Stangier, who owns that certain
urge of always being a confirmed pessimist that has made him the touchstone in testing
the qualities of my ideas - and also in improving my patience, and to Arno Wagner,
whose obstinacy always encouraged my creativity in finding better ways to explain
concepts and ideas. And thanks to both of you for tolerating my sometimes strange
sense of humor and sarcasm.

Thanks also to my colleges Frank Recker, Martin Mundhenk, and Jochen Bern for
fruitful discussions and proofreading. Also not forgetting to mention Claudine Trittin
for supporting me in my constant struggle with the English language and her com-
forting deep friendship. The most difficult task, finally, was to find all bugs in the
implementation of the ®-OBDD package.

I have to thank Anja from the bottom of my heart. You are the one, giving me always
the support and the inspiration that was mandatory to finish this laborious work.
Also, T would like to express my gratitude towards my parents, who always believed in
me and supported every decision of mine. I owe them the seeds to my curiosity, which
was always the driving force behind all of my work. Thanks to all my friends for the
times you spent allowing me to share my thoughts and ideas and numerous cups of
cappuccino.

Besides all personal acknowledgments I would like to thank everyone with whom I had
the chance to interact in the course of my education. All of you have enriched my life

in so many ways and made it worth while. Please forgive any omissions.

ii

Danksagung

Um das Gliick anzuziehen, schenke einem alten Freund
einen neuen Pfennig, teile mit einem neuen Freund ein altes
Vergniigen, und erhebe das Herz eines wahren Freundes in-
dem Du seinen Namen auf die Fliigel eines Drachen schreibst.

(Chinesisches Sprichwort)

An dieser Stelle moéchte ich mich fiir die Unterstiitzung und den Beitrag all derer
bedanken, deren Ermutigungen und Beistand mir die Motivation und den Freiraum
geschaffen haben, diese Dissertation zu Wege zu bringen.

Als erstes gilt mein Dank meinem Doktorvater Prof. Dr. sc. Christoph Meinel, der
mir die Moglichkeit bot, zu Anfang als externer Doktorand diese Arbeit anzugehen.
Seine Tiir stand fiir mich jederzeit offen und viele der in dieser Dissertation entwickelten
Ideen finden ihren Ursprung in unseren mitunter ausgedehnten Diskussionen. Die offene
Arbeitsatmosphére an seinem Lehrstuhl gab mir den nétigen Freiraum, die Arbeit nach
eigenem Maflstab und Rythmus zu vollenden. Geduld, Humor, nicht zu vergessen sein
guter Rat (nicht nur die Forschung betreffend) und seine Freundschaft waren fiir mich
in meiner Zeit als Doktorand in Trier stets eine Bereicherung.

Mein tiefster Dank gilt vor allem Kerstin, die mich in jeder Hinsicht immer unterstiitzt
hat. TIhr verdanke ich auch die Motivation und die Ermutigung, diese Dissertation
iberhaupt zu beginnen. Mir ist bewuflt, dafl ich sie iiber diese Arbeit sehr ver-
nachlissigt habe. Aber, nachdem dieser Abschnitt meines Lebens jetzt beendet ist,
danke ich ihr fiir ihre Geduld und ihre Freundschaft.

Besonders dankbar bin ich auch Elena Dubrova, und das nicht nur in allen Belangen
rund um die mehrwertige Logik. Vielmehr ebenso fiir ihre Ermutigungen, ihre tiefe
Freundsschaft und fiir die gemeinsame Zeit in Lake Tahoe, Victoria, B.C. und Trier,
die mit vielen fesselnden und inspirierenden Diskussionen angefiillt war.

Mein Dank gilt natiirlich auch meinen Arbeitskollegen und Freunden, besonders
Christian Stangier, dessen einzigartige kritisch-pessimistische Sichtweise der Dinge ihn
zu einem besonderen Priifstein hinsichtlich der Qualitdt meines oft konfusen Ideenuni-
versums machte - und auch so manches Mal meine Geduld auf die Probe stellte. Danke
auch an Arno Wagner, dessen hartniickige Uneinsichtigkeit stets eine Herausforderung
fiir mich war, meine Ideen und Konzepte besser zu durchdenken, zu ordnen und zu
erklaren. Danke an Euch beide, dafl Thr mir meinen oft so seltsamen Humor und
meinen Sarkasmus nie wirklich krumm genommen habt.

Weiterhin mdéchte ich sowohl meinen Kollegen Frank Recker, Martin Mundhenk und
Jochen Bern fiir so manche fachliche Disskussion wie auch ihr Korrekturlesen. Auf
keinen Fall vergessen mochte ich Claudine Trittin, die mir stets in allen Widrigkeiten,
die die englische Sprache fiir mich bereit hielt, treu zur Seite stand, sowie fiir ihre innige
Freundschaft.

Am Ende bestand die schwierigste Aufgabe darin, alle Fehler in der Implementierung
des ®-OBDD Pakets aufzuspiiren. Anja, ich méchte Dir von ganzem Herzen danken,
dal Du mir in dieser Zeit immer inspirierend und unterstiitzend zur Seite standest, um
diese miihevolle Aufgabe zu beenden.

Besonders mochte ich mich auch bei meinen Eltern bedanken, die stets jede meiner
Entscheidungen in meinem Leben getragen und unterstiitzt haben. Ich verdanke euch
die Wurzeln meiner Neugier, die stets die treibende Kraft hinter all meinem Schaffen
war und ist.

Danke auch an all meine hier ungenannten Freunde. Danke fiir die Zeit, die ich mit
euch verbringen durfte, in der ich nicht nur meine Gedanken mit euch teilen durfte,
sondern auch so manche Tasse Cappuccino.

iii

Abstract

Hardware bugs can be extremely expensive, financially. Because microproces-
sors and integrated circuits have become omnipresent in our daily live and also
because of their continously growing complexity, research is driven towards
methods and tools that are supposed to provide higher reliability of hardware
designs and their implementations.

Over the last decade Ordered Binary Decision Diagrams (OBDDs) have been
well proven to serve as a data structure for the representation of combinatorial
or sequential circuits. Their conciseness and their efficient algorithmic proper-
ties are responsible for their huge success in formal verification. But, due to
Shannon’s counting argument, OBDDs can not always guarantee the concise
representation of a given design.

In this thesis, Parity Ordered Binary Decision Diagrams (é-OBDDs) are pre-
sented, which are a true extension of OBDDs. In addition to the regular branch-
ing nodes of an OBDD, functional nodes representing a parity operation (-
nodes) are integrated into the data structure, thus resulting in @-OBDDs. -
OBDDs are more powerful than OBDDs are, but, they are no longer a canonical
representation. Besides theoretical aspects of &-OBDDs, algorithms for their
efficient manipulation are the main focus of this thesis. Furthermore, an analy-
sis on the factors that influence the &-OBDD representation size gives way for
the development of heuristic algorithms for their minimization. The results of
these analyses as well as the efficiency of the data structure are also supported
by experiments. Finally, the algorithmic concept of &-OBDDs is extended to
Mod-p-Decision Diagrams (Mod-p-DDs) for the representation of functions that
are defined over an arbitrary finite domain.

v

Kurzdarstellung

Hardwarefehler kénnen mitunter duflerst kostspielig werden. Da Mikroprozes-
soren und integrierte Schaltkreise in allen Bereichen unseres taglichen Lebens
zunehmend an Bedeutung gewinnen und ihre Komplexitit ungebremst wachst,
kommt der Forschung nach Methoden und Werkzeugen, die eine hohere
Zuverlassigkeit dieser Bausteine gewéihrleisten, heute eine nicht zu unter-
schatzende Rolle zu.

Im vergangenen Jahrzehnt konnten sich geordnete binare Entscheidungsdi-
agramme (Ordered Binary Decision Diagrams, OBDDs) als state-of-the-art
Datenstruktur zur Reprasentation von kombinatorischen und sequentiellen
Schaltkreisen durchsetzen und ihre Qualitdten unter Beweis stellen. Kompak-
theit und ausgezeichnete algorithmische Handhabbarkeit kennzeichnen einer-
seits den ungebrochenen Erfolg von OBDDs im Bereich der formalen Verifika-
tion. Auf der anderen Seite aber kénnen OBDDs nicht immer die kompakte
Darstellung einer Booleschen Funktionen garantieren.

Gegenstand der vorliegenden Dissertation ist die Analyse von Parity Ordered
Binary Decision Diagrams (&—OBDDs), eine echte Erweiterung der OBDD
Datenstruktur. Zusatzlich zu den herkommlichen Entscheidungsknoten eines
OBDDs werden Funktionalknoten in die Datenstruktur eingefiihrt, die eine
XOR-Operation iiber das Ergebnis ihrer beiden Vorgingerknoten ausfiihren
und zusammengenommen die Datenstruktur eines @-OBDDs definieren. Zwar
besitzen @-OBDDs maéchtigere Darstellungseigenschaften als OBDDs, dieser
Vorteil allerdings wird auf Kosten der verlorengegangenen Kanonizitit erwor-
ben.

Neben der Behandlung theoretischer Aspekte der @-OBDD Datenstruktur ste-
hen Algorithmen zur effizienten Manipulation derselben im Mittelpunkt der Ar-
beit. Dartiber hinaus gibt eine Analyse der Faktoren, die fiir die Abhingigkeit
der Darstellungsgrofie die Verantwortung tragen, Aufschluss iiber mogliche
heuristische Algorithmen zu deren Minimierung. Sowohl die Ergebnisse dieser
Analysen, als auch die Effizienz der vorgestellten Datenstruktur werden exper-
imentell belegt.

Abschlielend wird das algorithmische Konzept der &-OBDDs auf die Darstel-
lung von Funktionen iiber endliche Mengen hin zu Mod-p-OBDDs erweitert und
Algorithmen zu deren effizienten Manipulation vorgestellt.

Zusammenfassung

Gegenstand der vorliegenden Dissertation ist die Analyse von Parity Ordered
Binary Decision Diagrams (é-OBDDs), eine Kerndatenstruktur zur Représen-
tation digitaler Systeme auf Ebenen mit niedrigem Abstraktionsniveau, die eine
echte Erweiterung von Ordered Binary Decision Diagrams (OBDDs, geordnete
bindre Entscheidungsdiagramme) darstellen. Die permanent wachsende Nach-
frage nach Rechenleistung, die sich in Form erforderlicher Prozessorgeschwindig-
keit und Speicherplatzbedarf duflert wird durch die kontinuierlich steigende
Komplexitat der eingesetzten Softwaresysteme in allen Bereichen unseres tag-
lichen Lebens verursacht und fungiert als treibende Kraft, die die Entwick-
lung der Hardwareindustrie vorantreibt. Computersysteme sind heute allge-
genwartig: in Transport und Verkehr, im Gesundheitswesen, in Schule und
Ausbildung oder in der Industrie - unaufhérlich wachst die Anzahl der Auf-
gaben, die von Mikroprozessoren und Computern iibernommen werden. Inte-
grierte Computersysteme, eingebettet in Flug- oder Kraftfahrzeugen, Mobil-
telefonen und selbst in unserem Heim, angefangen mit Unterhaltungselektronik
iiber Kiichengeréte bis hin zum intelligenten Haus tragen zusammen mit dem
iiberwaltigenden Erfolg des Internets maflgeblich dazu bei, diese Systeme heute
zu einem unverzichtbaren Bestandteil unseres Lebens zu erklaren, wobei sich
unsere Abhingigkeit in geradezu bedenklichem Mafle tagtiglich vergrofiert.

Doch nicht nur die Zahl der Einsatzgebiete von Computersystemen, sondern

auch die Komplexitit integrierter Schaltkreise als deren Kernkomponenten steigt
kontinuierlich.. Der im Herbst 2000 von Intel vorgestellte Pentium IV Willamette
Mikroprozessor umfasst 42 Millionen Transistoren auf einer Fliche von nur

217 mm?2. Moore’s Gesetz entsprechend [Moo65] verdoppelt sich die Anzahl

der Transistoren auf einem einzelnen Mikrochip alle 18 Monate. Urspriinglich

gedacht als bloe Faustregel, basierend auf Gordon Moore’s Analysen von 1965,

wurde dieses Gesetz zum Leitprinzip der Chipindustrie, die sich dadurch gezwun-
gen sah, immer leistungsfihigere Mikrochips bei gleichzeitigem Preisverfall zu

produzieren. Zusatzlich fihrt der Konkurenzdruck zu immer kurzeren En-

twicklungszyklen und fordert von der Industrie immer komplexere Systeme in

kiirzerer Zeit zu konzipieren. Um einen Hardwaredesigner in die Lage zu ver-

setzen diesem Produktivitatsdruck gerecht zu werden, zentriert sich der Fokus

der Entwicklungsarbeit zunehmend auf hoheren Abstraktionsebenen. Comput-

ergestiitzte Entwicklungswerkzeuge (Computer Aided Design Tools) gewahr-

leisten dabei die notwendige Automatisierung der unteren Abstraktionsebenen

des Designprozesses.

Neben den physikalischen Grenzen, die frither oder spater bei anhaltender
Miniaturisierung erreicht sein werden, ist es gerade diese explosionsartige Zu-
nahme der Komplexitat, die den Beweis der absoluten Korrektheit eines solchen
Designs unmoglich macht. Aus diesem Grund geraten auftretende Fehler - zu-
mal bei steigender Abhangigkeit unserer Gesellschaft vom fehlerfreien Funktion-

vi

ieren einzelner Systeme - mehr und mehr in den Blickpunkt der Offentlichkeit.
Die fatalen Konsequenzen eines fehlerhaften Chips innerhalb eines sicherheit-
skritischen integrierten Systems wie z.B. in Flug- oder Kraftfahrzeugen sind fiir
jedermann offensichtlich. Doch abgesehen davon kénnen auch die finanziellen
Auswirkungen, ausgelost durch fehlerhafte Computersysteme, katastrophale
Folgen nach sich ziehen.

Die Bedeutung der Werkzeuge zur computergestiitzten automatischen Hard-
ware-Verifikation wurde einer breiteren Offentlichkeit erstmals augenfillig als
Ende 1994 der in Intel‘s Pentium 1 auftretende Floating Point Fehler in der
Divisionseinheit des Prozessors (FDIV-Fehler) bekannt wurde und bei Intel,
auf Grund der dadurch ausgelosten bislang grofiten Umtauschaktion in der
Geschichte des Personalcomputers, einen Schaden in Hohe von 475 Millionen
US-Dollar verursachte [Hof95]. Die Reihe aufgetretener Fehler in Mikroprozes-
soren reifit nicht ab, auch wenn die Folgen meist weniger spektakular ausfallen.
Zwar existieren zu allen aktuellen Prozessoren Listen mit bekannten, auftre-
tenden Fehlern, doch auch diese mindern hiufig die Einsatzfahigkeit des betref-
fenden Mikrochips nur in einem geringen Mafle, da sie nur in selten eintretenden
Konfigurationen zum Tragen kommen. Die finanziellen Folgen oder potenziell
lebensbedrohlichen Konsequenzen dieser Hardwarefehler lieen sich jedoch ver-
meiden, wenn sie bereits frith im Designprozess erkannt werden konnten.

Zur Verifikation digitaler Systeme unterscheidet man zwei grundsatzlich ver-
schiedene Ansétze: empirische Verifikation und formale Verifikation. Der em-
pirische Ansatz verfolgt die Losung des Problems iiber die Generierung und
Durchfithrung von Testschemata an einem Modell des entsprechenden Designs.
Die Auswirkungen dieser Tests konnen dann anhand der Ausgaben des Mod-
ells analysiert werden. Empirische Methoden sind nicht geeignet, die Korrek-
theit eines Designs im Sinne einer “Ja/Nein”-Antwort zu belegen. Vielmehr
sind sie dazu gedacht, Zuverlissigkeitsaussagen zur Fehlerfreiheit eines Designs
entsprechend zu quantifizieren. Auch wenn sich empirische Methoden im frithen
Stadium des Fehlersuchprozesses als sehr effektiv erweisen, verlieren sie rasch
ihre Effizienz, wenn im Laufe des Prozesses die Fehler immer seltener vorkom-
men. Eine erschopfende empirische Simulation eines aktuellen Prozessordesigns
ist auf Grund des immensen Zeitbedarfs nicht durchfiihrbar. Daher erlangen
formale Methoden zum Nachweis der Korrektheit eines Designs immer stirkere
Bedeutung. Formale Verifikation ist dazu bestimmt, absolute Korrektheit eines
gegebenen Designs nachzuweisen, bzw. die Zuverlassigkeit einer empirischen
Verifikation zu erhohen, indem Teile des Designs formal verifiziert werden. Ziel
ist es dabei, den Nachweis zu fithren, dass eine Implementation eines Designs
mit einer gegebenen Spezifikation uibereinstimmt. Implementation eines De-
signs bezeichnet hierbei das Modell eines Designs, welches verifiziert werden
soll, wohingegen mit der Spezifikation entsprechend abstrakte Modelle bzw.
Eigenschaften der Modelle beschrieben werden, mit deren Hilfe die Fehlerfrei-
heit des Systems nachgewiesen werden soll.

Als Basisgrundlage der Verifikation dient eine entsprechende formale Reprasen-
tation des Modells, um dieses fiir mathematische Beweisverfahren zuginglich zu
machen. Wihrend das Verhalten eines Systems auf einer abstrakten Ebene (be-
havioral level) durch Datenflussdiagramme (data flow graphs), Prozess-Algebren

vii

oder hoherwertige Logiken erfolgt, umfassen Reprasentationsformen auf niedri-
gem Abstraktionsniveau (low level, switching level) endliche Automaten oder
Modelle auf Gatter- bzw. Schaltebene. Eine Ubersicht der Methoden der for-
malen Verifikation ist in [Gup92] zusammengestellt.

Der Schwerpunkt dieser Arbeit liegt auf der Analyse von @-OBDDs, einer
Datenstruktur zur Reprasentation digitaler Systeme auf niedrigem Abstraktion-
sniveau, die sowohl die symbolische Simulation von kombinatorischen Schalt-
kreisen auf Gatterebene umfasst, als auch zur Modellierung endlicher Auto-
maten, einschliellich der symbolischen Darstellung riesiger Zustandsriume ge-
eignet ist. Die Datenstruktur, die derzeit bevorzugt fir diese Aufgabe Verwen-
dung findet und Bestandteil der meisten kommerziellen Verifikationswerkzeuge
ist, sind OBDDs. Allerdings konnen OBDDs nicht immer effizient zur Darstel-
lung digitaler Systeme eingesetzt werden. Ausschlaggebend dafiir ist die Tat-
sache, dass OBDDs als kanonische Reprasentationsform fiir Boolesche Funk-
tionen tauglich sind, die u.a. in Form digitaler Schaltkreise vorliegen konnen.
So vorteilhaft sich diese Kanonozitit hinsichtlich der algorithmischen Handhab-
barkeit erweist, bedingt sie jedoch auch, dass die Darstellung eines Grofiteils der
moglichen Funktionen exponentielle Grofle in Relation zur Zahl der Eingabevari-
ablen aufweist [Sha49].

Eine Option, die Darstellungskraft dieser Datenstruktur zu erhéhen, liegt in der
Einfiihrung zusatzlicher Funktionalknoten, die eine kompaktere Reprisentation
ermoglicht. In der vorliegenden Dissertation werden daher Operatorknoten
eingefiihrt, die eine @-Operation (XOR, exclusive or) realisieren und OBDDs
hin zu &-OBDDs erweitern. Es wird gezeigt, dass &-OBDDs tatsichlich sowohl
das Potenzial zu einer kompakteren Reprasentation bergen, als auch die algo-
rithmischen Vorteile von OBDDs bewahren. Allerdings sind &-OBDDs nicht
mehr kanonisch, d.h. eine eindeutige Darstellung einer gegebenen Booleschen
Funktion ist nicht mehr gewihrleistet, sodass sich der Test der Aquivalenz
zweier Boolescher Funktionen iiber &-OBDDs aufwendig gestaltet. Nachfol-
gend werden effiziente Manipulationsalgorithmen fiir @-OBDDs vorgestellt, die
auf einem schnellen probabilistischen Aquivalenztest basieren und deren Leis-
tungsfahigkeit anhand ihres Einsatzes in der symbolischen Simulation von 6ffen-
tlich erhiltlichen Standard-Benchmarkschaltkreisen nachgewiesen wird. Da-
rauf aufbauend werden Methoden zur weiteren Effizienzsteigerung erortert,
die sowohl ein dynamisches Umordnen der Variablen, als auch die gezielte
Plazierung von @-Knoten innerhalb der @-OBDD Datenstruktur umfassen.
Zuletzt wird die Datenstruktur dahingehend erweitert, auch Funktionen, die
iiber endlichen Mengen definiert sind, reprasentieren zu kénnen.

Die vorliegende Untersuchung gliedert sich wie folgt: Nach einer ersten Motiva-
tion und Hinfithrung zum Thema werden in Kapitel 2 grundlegende Definitionen
und Eigenschaften von OBDDs wiederholt. Neben komplexitatstheoretischen
Eigenschaften elementarer OBDD-Manipulationsalgorithmen liegt der Schwer-
punkt dieses Kapitels einerseits auf implementationstechnischen Details, ander-
erseits auf grundlegenden Optimierungstechniken.

Im nachsten Kapitel wird in einem ersten Schritt die Notwendigkeit der Er-
weiterung der OBDD-Datenstruktur motiviert. Das Hauptaugenmerk richtet
sich bei derartigen Verallgemeinerungen auf die Kapazitidtserweiterung hin-

viii

sichtlich der Darstellungskraft der Datenstruktur. In der Regel liegt aller-
dings die Schwiche der meisten Erweiterungen in ihrer mangelhaften algorith-
mischen Handhabbarkeit. Dariiberhinaus sind diese Verallgemeinerungen auch
meist nicht mehr kanonisch, d.h. ein Aquivalenztest fiir diese Datenstrukturen
gestaltet sich meist sehr aufwendig. Als Schwerpunkt wird die Einfuhrung
zusatzlicher Knoten von unterschiedlicher Funktionalitat betrachtet, die neben
der Lockerung von Restriktionen, wie z.B. die Aufrechterhaltung einer fixen
Variablenordnung auf allen Berechnungspfaden oder der Beschrankung, dass
jede Variable auf einem beliebigen Berechnungspfad hoéchstens einmal getestet
werden darf, eine Generalisierung der OBDD-Datenstruktur bedeutet. Es wird
gezeigt, dass nur die Operatoren @ (XOR) und = (EQUIVALENCE) in der
Lage sind die erforderlichen algorithmischen Vorteile von OBDDs zu bewahren.
Daher werden in Kapitel 4 @-OBDDs eingefiihrt, basierend auf OBDDs mit
zusitzlichen @-Funktionalknoten. Zunichst werden die Darstellungseigenschaf-
ten von @-OBDDs analysiert, die ebenfalls komplexitatstheoretische Ergebnisse
beinhaltet, um einen Vergleich mit konkurrierenden Datenstrukturen wie OB-
DDs, OFDDs, FBDDs oder ESOPs ermoglichen zu konnen. Dariiber hin-
aus werden Zusammenhinge zwischen diesen Reprasentationsformen und &-
OBDDs geknupft, was notwendigerweise eine effiziente Simulation derselben
durch &-OBDDs umfasst. Im anschlieenden Abschnitt wird ein schneller pro-
babilistischer Aquivalenztest fiir #-OBDDs vorgestellt und gezeigt, wie dieser
die effiziente Umsetzung von &-OBDD Manipulationsalgorithmen gewahrleistet.
Basierend auf diesen Manipulationsalgorithmen wird die erfolgreiche Implemen-
tation eines Programmpakets zur Manipulation von @-OBDDs beschrieben,
dessen Effizienz anhand der symbolischen Simulation von kombinatorischen und
sequentiellen Schaltkreisen des Benchmarkpakets nachgewiesen und mit den Er-
gebnissen eines Standard-OBDD-Manipulationspakets verglichen.

Das nachfolgende Kapitel dreht sich um die Moglichkeiten einer weiteren Op-
timierung der @-OBDD Datenstruktur. Neben der gewahlten Variablenord-
nung, die den entscheidenden Faktor hinsichtlich des Speicherplatzbedarfs fiir
OBDDs darstellt, ist es fiir @-OBDDs ebenfalls von entscheidender Bedeu-
tung, wieviele zusatzliche @-Operatorknoten eingefithrt werden und an welchen
Stellen innerhalb des @-OBDDs diese positioniert werden. Im Folgenden werden
Notwendigkeiten und Beschriankungen analysiert, die zur dynamischen Adap-
tion der Variablenordnung von @&-OBDDs beachtet werden miissen. Desweiteren
werden implementationstechnische Aspekte zur Realisierung eines &-OBDD
Pakets, einschlieflich zugehdriger Optimierungsmethoden diskutiert, die die
Grundlage einer effizienten Realisierung bilden. Ausgehend von den gewonnenen
Erkenntnissen werden heuristische Verfahren zur Minimierung von é&-OBDDs
entwickelt und im Anschluss experimentell erprobt.

Kapitel 6 beleuchet einen weiteren und abschlielenden Aspekt in der Verallge-
meinerung der Datenstruktur. Hier werden &-OBDDs, ausgehend als Repra-
sentationsform fiir Boolesche Funktionen hinsichtlich des zugrunde liegenden
Definitionsbereichs zu Funktionen tiber einem endlichen Koérper hin erweit-
ert. Die daraus resultierende Datenstruktur, Mod-p-Decision Diagrams (Mod-
p-DDs), stellt ebenfalls eine Verallgemeinerung von Multi Valued Decision Dia-
grams (MDDs) dar, indem in die MDD-Datenstruktur zusétzliche Funktional-

ix

knoten integriert werden. Diese mod-p Funktionalknoten reprasentieren ihrer-
seits eine Addition modulo p und kénnen somit als Generalisierung der binédren
@-Operatorknoten in &-OBDDs betrachtet werden. Mod-p-DDs sind genau
wie @-OBDDs nicht mehr kanonisch. Der probabilistische Aquivalenztest, der
fir -OBDDs in Kapitel 4 dargelegt wurde, wird entsprechend fiir Mod-p-DDs
erweitert und angepasst. In einem letzten Schritt werden Manipulationsalgo-
rithmen fir Mod-p-DDs eingefithrt und Hinweise zu einer moglichen effizienten
Implementierung gegeben.

Das abschlielende Kapitel resiimiert noch einmal die Hauptergebnisse der Dis-
sertation und skizziert einen Ausblick auf weiterfithrende Arbeiten.

Contents

Acknowledgments ii
Abstract iv
Zusammenfassung vi
1 Introduction 1
1.1 Motivation e 1

1.2 Verification of Digital Systems 3

1.3 Scopeofthe Thesis 3
1.4 Overview of the Thesis, 4

1.5 Publicationso e 5

2 Preliminaries 7
2.1 Ordered Binary Decision Diagrams 7
2.1.1 Definitions and Properties 8

2.1.2 Implementation Techniques 13

2.1.3 Minimizationof OBDDs 18

3 Extensions of OBDDs 23
3.1 OBDDs - an Ideal Data Structure? 23
3.2 Extensionsof OBDDs 24
3.2.1 Free BDDs and Read-k Decision Diagrams 24

3.2.2 Functional Decision Diagrams 26

3.2.3 Binary Decision Diagrams with Operator Nodes 27

4 &-OBDDs 29
4.1 Definitions.o 29
4.2 Propertiesof ®-OBDDso Lo 31
4.3 Reductionof @-OBDDs 35
4.4 Equivalence Test o 37
4.4.1 Deterministic Equivalence Test 38

4.4.2 Probabilistic Equivalence Test for Boolean Functions . . . 42

4.4.3 Applying the Probabilistic Equivalence Test to &-OBDDs 46

4.4.4 Determining the Error Probability 48

4.4.5 Implementation of the Probabilistic Equivalence Test . . . 50

4.5 Synthesisof @-OBDDs 53

xi

4.5.1 Cofactor Creation 54

4.5.2 The Standard Apply Algorithm 56
4.5.3 The ITE-® Algorithm 58
4.5.4 FExtending the Synthesis Algorithm 62

4.6 Basic Manipulation Tasks for ®OBDD 63
4.7 Applying &-OBDDs in Symbolic Simulation 65
4.7.1 Experimental Setupo, 66
4.7.2 Experimental Results 67

5 Minimization of &-OBDDs 73
5.1 @-Node Frequency 74
5.1.1 Prerequisiteso .. 74

5.1.2 Experimental Setup 75
5.1.3 Experimental Results 76

5.2 @-Node Placement 80
5.2.1 A Simple ®&-Node Placement Heuristic 80
5.2.2 Using Linear Combinations 83
5.2.3 Dynamic ®-Node Placement 84
5.24 Meta-®-Nodes 92
5.2.5 Jiggling - A Simple Heuristic for ®-Node Placement . . . 109
5.2.6 Applications of Dynamic ®&-Node Placement 116

5.3 Dynamically Changing the Variable Order 117
5.3.1 Adapting OBDD Minimization Heuristics 118
5.3.2 The Swap In Place Algorithm 118
5.3.3 Adapted Sifting - A Heuristic for @-OBDDs Minimization 127
534 Conclusionso oL 134

6 Extension of $-OBDDs to the Discrete Domain 137
6.1 Multiple Valued Decision Diagrams 137
6.2 Mod-P Decision Diagrams 140

6.3 Probabilistic Equivalence Test for Mod-p-DDs and Finite Functions143
6.3.1 Definition and Properties of the Generalized A-transform 143

6.3.2 Efficient Computation of the A-transform 147

6.3.3 Probabilistic Equivalence Test for Mod-p-DDs 154

6.4 Synthesisof Mod-P-DDs 156
6.4.1 Cofactor Creation for Mod-P-DDs 156

6.4.2 Extended CASE-® Algorithm for Mod-P-DDs 156

7 Conclusions 161
71 KeyResults 161
7.2 Possible Future Work 162

A Experimental Results 165

xii

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1

3.2

4.1

4.2
4.3

4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

OBDDs for f=Ty+z(yZ+72) - -« « v v v v o i i 9
Deletion Rule (a) and Merging Rule (b) for OBDDs. 10
Shared OBDD. 11
The ITE-Algorithm for OBDDs. 16
OBDD with Complemented Edges 16
Equivalences for Complemented Edges 17
The Function DQF3(x1, %9, X3, T4, T5,Te) = T1T2 + T3T4 + T5T6. . 19
Exchange of Adjacent Variables 21
Outline of the Sifting Algorithm in Pseudo Code. 22
Example of a FBDD (a) and an OBDD (b) for f(z1,z9,z3,z4) =
T1Tox3 + T1ToL4 + T1T3L4 + T1L2L3 -« o o o v v v v v v e e e 24
OBDD Node and OFDD Node 26
@-OBDD P and OBDD O with Complemented Edges, Both
Computing the Boolean Function fp 30
Equivalences for Complemented Edges and &-Nodes. 31
OBDD Py, u,v,w € {1,...,n}, 1 <u<v<w<n for Deciding
Whether wvw is a Triangle. 34
Transformation of a OFDD into a &-OBDD. 34
Deletion Rule Set for @-Nodes 36
Merging Rule Set for &-Nodes. 36
Reduction Rule Set for @-Nodes Connected to a Terminal Node. 37
Additional Equivalence for &-OBDDs. 37
Special Case of Equivalence for &-OBDDs. 38
Transformation from @¢-OBDDs to Parity OBDDs. 41
Algorithm for a Probabilistic Equivalence Test for &-OBDDs. . . 48
Comparing the Error Probability of Signatures(a) and Simula-
tion(b) 52
Cofactor Creation Algorithm for &-OBDDs in Pseudo Code . . . 55
Cofactor Creation for @-OBDDs. 56
AN D-Synthesis with the standard-apply Algorithm for &-OBDDs. 58
standard-apply Algorithm for ®-OBDDs. 59
The ITE-& Algorithm for &-OBDD Synthesis. 61
Transformation from pDE-Formula to ®-OBDD. 63
apply-@ Synthesis Algorithm for @-OBDDs Based on pDE. . . . 64
Symbolic Simulation with @-OBDDs. 66

xiii

4.21 Equivalence of Branching Node and Multiplexer Gate.
4.22 Experimental Setup for Testing the Reliability of &-OBDDs.

5.1 NAND and NOR Realizations of @ (a) and = (b).
5.2 Locally Greedy Heuristic for -OBDD Optimization.
5.3 Exchange of &-Nodes and Branching Nodes.
5.4 Algorithm for Exchange of @-Nodes and Branching Nodes (part
O
5.5 Algorithm for Exchange of ®-Nodes and Branching Nodes (part2).
5.6 Reduction while Exchanging &-Nodes and Branching Nodes (1).
5.7 Reduction while Exchanging @-Nodes and Branching Nodes (2).
5.8 Exchanging ®-Nodes with Complemented Edges.
5.9 Reduction for Exchanging @&-Nodes with Complemented Edges. .
5.10 Swap-Up Operation of ®-Node.
5.11 Swap Down Operation of @-Node.
5.12 Reduction in Swap Down Operation.
5.13 Combining Single ®-Nodes to a Meta-@-Node.
5.14 Implementation of Meta-@®-Nodes.
5.15 Additional Reductions for Meta-®-Nodes.
5.16 2nd-Level-Reduction for Meta-®-Nodes.
5.17 Algorithm for Transformation of Binary @-Nodes to Meta-&®-

5.18 An Example for Meta-®-Node Transformation in a &-OBDD. . .
5.19 Cofactor Creation for a Meta-®-Node.
5.20 Cofactor Creation for a Tree of Binary &-Nodes.
5.21 Cofactor Creation Algorithm for a @-OBDDs with Meta-®-Nodes.
5.22 Meta-@-Node Swap Down Operation.
5.23 Sketch of the Algorithm for Downward Exchange of Meta-®-
Nodes and Branching Nodes.
5.24 Meta-®-Node Swap Down Operation with Complemented Edges.
5.25 Extended Meta-@-Node Swap Down Operation with Comple-
mented Edges. oL
5.26 Meta-®-Node Swap Up Operation.
5.27 Sketch of the Algorithm for Upward Exchange of Meta-®-Nodes
and Branching Nodes (Part 1).
5.28 Sketch of the Algorithm for Upward Exchange of Meta-®-Nodes
and Branching Nodes (Part2).
5.29 Joining Meta-®-Nodes After Swap Up Operation.
5.30 Non Reversible SWAP Operation.
5.31 Sketch of the Jiggle-Algorithm for &-OBDD Minimization.
5.32 Transformation of a @-OBDD intoa OBDD.
5.33 XOR-SOP Represented as &-OBDD.
5.34 Example (1) for Swap-In-Place Operation for &-OBDDs.
5.35 Example (2) for Swap-In-Place Operation for &-OBDDs.
5.36 Sketch of the Swap-in-Place Algorithm for &-OBDD in Pseudo
Code. e
5.37 Implementation of Variable Exchange for OBDDs.

xiv

66
67

75
81
86

97
98
99
99
100
104

104
105

105
106

5.38
5.39
5.40

5.41

5.42

5.43

6.1
6.2
6.3

6.4
6.5
6.6
6.7

7.1

Merge During the Swap-in-Place Procedure.
Non Symmetrical Situation for the Swap-in-Place Operation.
Keeping Symmetry by Adapting the Extended Reduction Rule
to Meta-@-Nodes.
Considering Predecessor Meta-®-Nodes in the Swap-In-Place Al-
gorithm (1).
Considering Predecessor Meta-®-Nodes in the Swap-In-Place Al-
gorithm (2).
Outline of the Sifting Algorithm for &-OBDDs in Pseudo Code. .

Reduction Rules for OMDDs.
Example of a 3-Valued OMDD.
Two Different Mod-p-DDs P;y and P>y, both representing the

same function f. oL oL
Three Extended Reduction Rules for Mod-p-DDs.
Algorithm for a Probabilistic Equivalence Test for Mod-p-DDs.
Cofactor Creation f|z,—o for Mod-p-DDs.
CASE-® and APPLY-@,, Algorithm for Mod-p-DD Synthesis. .

Binary Encoding of Multiple Valued Variables.

XV

. 125

126

127

127
130

139
139

141
142

. 155

156

. 158

xvi

List of Tables

4.1

4.2
4.3

4.4
4.5

4.6

5.1
5.2
5.3
5.4
9.5
5.6

5.7
0.8
5.9
5.10
5.11

5.12

Al

A2

A3

A4

Ab

Exponential Gaps between &-OBDDs and other Representations

of Boolean Functions. 35
Extended Boolean Operations 43
Probability of Degeneracy using Theorem 3.16 for s 32-bit Sig-

natures L L L Lo 52
Testing Signature Reliability. 67
Comparing OBDD and @-OBDD Size for Fixed Variable Order

- Combinatorial and Sequential Circuits. 69

Comparing OBDD and ¢-OBDD Overall Runtime in CPU-Seconds
for Fixed Variable Order - Combinatorial and Sequential Circuits. 69

Influence of @-Node Frequency on @&-OBDD Size (Part 1) 77
Influence of ®-Node Frequency on &-OBDD Size (Part 2) 78
Reference Table for OBDDs and @-OBDDs with pDE/nDE. . . . 82
Locally Greedy Heuristic for &-Node Placement. 82
Overall Time Requirement for Locally Greedy Heuristic. 83
Effects of the Meta-@®-Nodes and Additional Reduction Rules on
@-OBDD Size. 102
Jiggle Heuristic for Dynamic &-Node Placement 112
Time Requirements of the Jiggle Heuristic 112
Dynamic Application of the Jiggle Heuristic. 115
Time Requirements for Dynamic Jiggle Heuristic. 115
Comparison of OBDD and &-OBDD size for the Sifting Heuris-
tic. . . e e e 132
Runtime Requirements for the Sifting Heuristic for OBDDs and
@-OBDDs. 132
Comparing OBDD and &-OBDD Size for Fixed Variable Order
- Sequential Circuits. oo 165
Comparing OBDD and @-OBDD Size for Fixed Variable Order
- Combinatorial Circuits. 166
Influence of @-Node Frequency on ©&-OBDD Size - Complete
Results (Part 1). 167
Influence of @&-Node Frequency on @&-OBDD Size - Complete
Results (Part 2). 168
Influence of ®-Node Frequency on é&-OBDD Size - Complete
Results (Part 3). 169

A.6 Influence of @-Node Frequency on &-OBDD Size - Complete

Results (Part 4). 170
A.7 Influence of @-Node Frequency on @&-OBDD Size - Complete
Results (Part 5). 171

A.8 Locally Greedy Heuristic for ®-Node Placement - (MAX/nDE).
A.9 Locally Greedy Heuristic for &-Node Placement — (MAX/pDE). 173
A.10 Locally Greedy Heuristic for @-Node Placement — (ADD/nDE). . 174
A.11 Locally Greedy Heuristic for @-Node Placement — (nDE/pDE

first). 175
A.12 ®-OBDD Size for Binary @-Nodes vs. Meta-®-Nodes (Part 1) —
Sequential Circuits. 176
A.13 ®-OBDD Size for Binary @-Nodes vs. Meta-@®-Nodes (Part 2) —
Combinatorial Circuits., 177
A.14 ®-OBDD Size for Synthesis with Meta-@®-Nodes (Part 1) -
Sequential Circuits. 0. 178
A.15 ®-OBDD Size for Synthesis with Meta-@®-Nodes (Part 2) -
Combinatorial Circuits., 179
A.16 Jiggle Heuristic for @-node Placement — Sequential Circuits. . . . 180

A.17 Jiggle Heuristic for @-node Placement — Combinatorial Circuits. 181
A.18 Dynamic Application of the Jiggle Heuristic — Sequential Circuits.182
A.19 Dynamic Application of the Jiggle Heuristic - Combinatorial Cir-

Cuits. . . o o e 183
A.20 Dynamic Application of the Sifting Heuristic - Sequential Circuits.184
A .21 Dynamic Application of the Sifting Heuristic - Combinatorial

Circuits. 185

xviil

Chapter 1

Introduction

This thesis presents ®-Ordered Binary Decision Diagrams (¢-OBDDs), a func-
tional extension of Ordered Binary Decision Diagrams, which serve as a core
data structure for the switching level representation of digital systems. The
main objective is the analysis of @-OBDDs and their properties, developing
an efficient implementation, and the evaluation of their performance. In this
chapter we will demonstrate the need for efficient verification tools as an aid
for the design of digital systems and give an overview of the key points of the
thesis.

1.1 Motivation

Today, a steadily growing demand on computing power that is manifesting itself
in terms of mere microprocessor performance needs and storage requirements,
driven by a simultaneous growth in the complexity of software systems in every
area of our today’s life, constitutes the driving force of the so called silicon
industry. The ubiquitous invasion of hardware systems in traffic and trans-
portation, health care and surgery, education and manufacturing - everywhere,
the number of tasks taken over by microprocessors and computers is subject
to a permanent increase. Embedded systems inside automobiles, airplanes, cell
phones, even in our homes, starting from consumer electronics to kitchen aids
and environmental facilities, not to mention the striking success of the Internet
have let these systems become critical parts of our daily lives now, and we will
become increasingly dependent on them.

Not only that the number of areas, where computers are utilized is perma-
nently growing, but also the integrated circuits as their basis multiply in their
inherent complexity. In fall 2000 the Intel Corporation presented the Pentium
IV Willamette, which combines 42 million transistors on an area of 217 mm?.
According to Moore’s Law [Moo65] the number of transistors on a single chip
doubles every eighteen months, and it has withstood the test of time since Gor-
don Moore made this observation in 1965 [Mo0095]. While originally intended as
a rule of thumb, Moore’s Law has become the guiding principle for the industry
to deliver ever-more-powerful semiconductor chips at proportionate decreases
in cost.

In the midst of the growing complexity of these designs, there is also a tremen-
dous pressure to get early time-to-market schedules to maintain business com-
petitiveness. This leads to the need of tools that enable the companies to design
even more complicated systems in lesser time. In order to provide the hardware
designer with a higher level of productivity, the focus of the design effort has
moved towards higher levels of abstractions, which was only possible by the
introduction of Computer Aided Design (CAD) tools that automate the design
process at lower levels of abstraction.

Besides physical limitations that will be reached sooner or later, this explosion
in complexity is responsible for the fact that guaranteeing absolute correctness
of hardware designs has become an infeasible task. But, as we are depending
more and more on the operational correctness of the computer systems that
are surrounding us, discovered faults and flaws in processor designs are com-
ing to the public’s attention. The disastrous effects of adding a faulty chip to
an embedded system inside an airplane or an automobile are obvious. Apart
from these safety critical applications the financial costs caused by faults in
computers might get prohibitively expensive. The importance of hardware ver-
ification tools became obvious, when in late 1994 the bug in Intels Pentium I
floating point division unit (FDIV-bug) was uncovered, which was responsible
for a $475 million loss for the Intel Cooperation because it started the largest
recall action in the history of computing [Hof95]. Actually, only five missing
transistors out of 3.3 Million transistors caused floating point errors in 42% of
all personal computers sold in December 1994.

Then, by the time when I started writing this thesis, the latest important
hardware error, which was the Intel memory translator hub (MTH) error in May
2000 should serve as an actual motivation for this work. Again, the situation
was not only embarrassing, but also rather costly for the Intel Cooperation,
because it necessitates a recall of the motherboards using the error prone MTH.
But, while writing the introductory chapter one year later, Intel was struck by
another disaster concerning their most expensive 32-Bit microprocessor, the
Pentium IIT Xeon 900MHz with 2MB level 2 cache, where a rarely occurring
error might cause the processor to step into an endless loop. Not only the
market leader, but, also other companies are struck by errors in their produced
hardware, e.g. at the same time, Sun Microsystems and its UltraSPARC 111
microprocessor, where firmware patches have become necessary to fix an error
in the floating point unit that caused stale data during prefetch operations.

Taking into account the general growth in complex computer systems and the
risk that is connected to errors in these systems, risks that are not only con-
nected to immense costs, but also to possible life threatening consequences, the
importance to guarantee the correctness of an implemented hardware design
can not be underestimated. An early detection of these bugs would have saved
Intel Cooperation from this huge financial loss and also from the simultaneous
public relations fiasco.

1.2 Verification of Digital Systems

The existing methods for the verification of digital systems can be divided
into two categories: empirical and formal methods. The empirical approach
attacks the problem of design verification by generating and applying tests to
a model of the design. Then, the effect of the input tests is simulated with the
model. Empirical methods are not attempting to prove correctness of designs
in terms of a yes/no answer, but rather to derive a level of confidence that the
design is free of errors. Although empirical methods are provably effective in
the very early stages of the debugging process, when a system is infected with
multiple bugs, their effectiveness quickly decreases when the design becomes
less erroneous. Exhaustive simulation of today’s microprocessor designs would
require an unsurmountable amount of time. Thus, the task of formal verification
has become the main focus of attention. Formal verification is giving way to
proving either absolute correctness of a given design or, at least, is able to
increase the reliability of empirical simulation by formally verifying parts of the
entire design. Methods of formal verification are aiming at establishing that
an implementation satisfies a given specification. While implementation refers
to a model of the design to be verified, the term specification refers to a more
abstract model or some properties with respect to which the correctness is to be
determined. A formal model of the underlying design with a precisely defined
meaning enables the application of mathematical proof methods. While on a
behavioral level this formalism is achieved in terms of data flow graphs, process
algebras, and higher order logics, lower level formalism comprises finite state
machines and switching level models. The design can be directly modeled in
one of these formalisms, which form the basis of formal verification methods.
For a survey of formal verification methods see [Gup92].

1.3 Scope of the Thesis

The focus of this thesis lies in the analysis of @-OBDDs, a data structure for
the representation of models of digital systems in the lower levels of abstraction.
On this level of abstraction @-OBDDs can be utilized for the representation of
combinatorial circuits on the gate level (symbolic simulation) or also for the
symbolic representation of finite state machines including large state spaces.
Today, most CAD tools are employing OBDDs for these tasks, because OBDDs
have well proven their efficiency over the last decade. But, not in every case
the efficient application of OBDDs can be guaranteed. As being a canonical
data structure for the representation of Boolean functions, they suffer from the
potential of an exponential blow up in size and then, prevent a proper verifica-
tion of a given design. We extend the concept of OBDDs to &-OBDDs by the
insertion of operator nodes representing the Boolean parity function (&, XOR,
EXOR). &-OBDDs have the potential of being more efficient, while simultane-
ously preserving the excellent algorithmic properties of OBDDs. &-OBDDs are
not canonical. So, there does not necessarily exist a unique ®-OBDD represen-
tation for a given Boolean function and thus, testing the functional equivalence

3

of two designs given in terms of &-OBDDs becomes a complex task. We present
manipulation algorithms for &-OBDDs based on a fast probabilistic equivalence
test and prove their efficiency in symbolic simulation of publicly available stan-
dard benchmarks. Furthermore, we show how to improve ®-OBDD efficiency
by adapting variable reordering algorithms and by proper @-node placement.
Finally, we generalize the &-OBDD concept from the Boolean domain to an
arbitrary finite domain by introducing Mod-p-Decision Diagrams (Mod-p-DDs)
and show how to adapt manipulation algorithms efficiently for this new data
structure.

1.4 Overview of the Thesis

We start our analysis in Chapter 2 with a recapitulation of preliminary ba-
sic definitions of OBDDs and their related manipulation algorithms. Besides
complexity results for elementary operations on OBDDs, we focus on impor-
tant details about their implementation and give a brief overview on available
optimization techniques.

In Chapter 3 we motivate the need for extensions of the OBDD data structure.
The main objective of all generalizations is to make the data structure more
efficient in terms of their capacity in representation. Unfortunately, most ex-
tensions suffer from the disadvantage of a more complex algorithmic behavior
concerning their manipulation. Another disadvantage is that generalizations
often lead to non canonicity and thus, making equivalence testing often rather
difficult. Besides losing restrictions as reading each variable at most once, or
keeping the same fixed variable order on every computation path, we concen-
trate on the possibility of introducing additional operator nodes of distinct
functionality. We show that only the operators & and = are able to preserve
the required algorithmic properties.

Thus, in Chapter 4 we introduce &-OBDDs as OBDDs with additional &-
operator nodes. First, we give an analysis of @-OBDD properties and give
some complexity related results for a comparison with other competitive data
structures as there are OBDDs, OFDDs, FBDDs, or ESOPs. We also show
how these data structures are connected to @-OBDDs and how @&-OBDDs can
be transformed into these representations. In the next step, we show, how
to implement a fast probabilistic equivalence test for ®-OBDDs and how to
apply this test in &-OBDD manipulation algorithms that are introduced in the
following section. Based on these algorithms we present the implementation of
a &-OBDD package and show its efficiency in symbolic simulation compared to
standard OBDDs.

Chapter 5 is focussed on possibilities of &-OBDD optimization. Besides the
variable order that is the most influencing factor for OBDD size, in ¢-OBDDs
it is also necessary to introduce an appropriate number of @-nodes at well chosen
and distinct positions. We show, how to adapt variable reordering algorithms
to the requirements and limitations of @-OBDDs and analyze the influence of
proper é-node introduction and placement.

As a next step of generalization in Chapter 6, we extend &-OBDDs from the

4

Boolean domain to an arbitrary finite domain and introduce so called Mod-p-
OBDDs, which correspond to Multiple Valued Decision Diagrams with addi-
tional operator nodes that are representing addition modulo p. We show how
to extend the probabilistic equivalence test from &-OBDDs to Mod-p-DDs and
give the key manipulation algorithms for Mod-p-DDs.

Chapter 7 concludes the thesis with summarizing its key results and gives hints
on possible future work on the subject.

1.5 Publications

Parts of this thesis are contained in the following publications:

1. H. Sack, Ch. Meinel: Improving XOR-Node Placement for Mod20BDD
Minimization, Proc. of the 5th Int. Workshop on Applications of the
Reed-Muller Expansion in Circuit Design (Reed-Muller 2001), Mississippi
State University, Starkville, Mississippi, USA, 2001.

2. H. Sack, Ch. Meinel: A Simple Heuristic for Mod20BDD Minimiza-
tion, in Proc. of IEEE/ACM Int. Workshop of Logic And Synthesis
(IWLS2001), Lake Tahoe, CA, USA, 2001, pp.304-309.

3. H. Sack, E. Dubrova, Ch. Meinel: Representation of Multiple-Valued
Functions with Mod-p-Decsion Diagrams, in Proc. of IEEE/ACM Int.
Workshop of Logic Synthesis (IWLS2000), Dana Point, CA, USA, 2000,
pp- 341-348.

4. H. Sack, E. Dubrova, Ch. Meinel: Mod-p Decision Diagrams: A Data-
Structure for Multiple-Valued Functions, in Proc. of the 80th IEEFE Inter-
national Symposium on Multiple- Valued-Logic (ISMVL 2000), Portland,
Oregon, USA, 2000, pp. 233-238.

5. E. Dubrova, H. Sack: Probabilistic Verification of Multiple-Valued Func-
tions, in Proc. of the 30th IEEE International Symposium on Multiple-
Valued- Logic (ISMVL 2000), Portland, Oregon, USA, 2000, pp. 460-466.

6. Ch. Meinel, H. Sack: Mod20BDDs - a BDD Structure for Probabilistic
Verification, in Electronic Notes in Theoretical Computer Science, vol.22,
2000.

7. Ch. Meinel, H. Sack: Algorithmic Considerations for Parity-OBDD Re-
ordering, in Proc. of the 1999 IEEE/ACM Int. Workshop on Logic Syn-
thesis (IWLS99), Lake Tahoe, CA, 1999, pp.71-74.

8. Ch. Meinel, H. Sack: Case Study: Manipulating Mod20BDDs by Means
of Signatures, Proc. of the 3rd Int. Workshop on Applications of the
Reed-Muller Ezpansion in Circuit Design (Reed-Muller’97), Oxford, UK,
1997, pp. 175-184

Chapter 2

Preliminaries

In this chapter we start with an introduction into the theoretical context of
this work and motivate, why it is reasonable to work with Ordered Binary De-
cision Diagrams and their functional extensions. In particular, we survey some
important state-of-the-art techniques in the area of Boolean manipulation that
form the foundation for our analysis and the starting point for the development
of a new data structure.

2.1 Ordered Binary Decision Diagrams

All tasks involved in the process of computer aided design of very large scale
integrated circuits (VLSI-CAD) and Electronic Design Automation (EDA) are
based on the manipulation of switching functions. Switching functions are a
subset of Boolean functions, restricted to the domain {0,1} and are defined in
the following way:

Definition 2.1 A Boolean function f : {0,1}" — {0,1}™, n,m € N over a set
of n input variables {x1,...,zy} is called switching function.

For working efficiently with switching functions, we require some sort of data
structure for the representation of these functions within a computer. Basically,
this data structure should describe the function under consideration appropri-
ately and completely. Besides this basic requirement that has to be fulfilled in
every case the data structure should be concise for fitting into the computer’s
memory, and in addition manipulation and evaluation of the represented func-
tion should be simple.

The general problem that is connected to the representation of switching func-
tion lies in the immense number of possible functions of n variables (also de-
noted as inputs) and m outputs, which computes to 2m2" Therefore, a data
structure that determines all possible switching functions uniquely has to be of
exponential size for a most of the functions to be represented.

Boolean functions are finite functions. Therefore, in principle it is possible to
represent Boolean functions with the help of truth tables, i.e. tables where
all possible variable assignments together with the computed function values
are listed. But, because of the fact that a truth table for a given function

7

f :{0,1}" — {0,1} of n € N input variables requires 2" rows, truth tables
are only suitable for functions with a rather small number of variables. On
the other hand, truth tables are easy to manipulate from an algorithmic point
of view. The application of an arbitrary binary Boolean operator ® to two
functions f,g, f ® g, both given in terms of truth tables requires only time
linear in the number of input rows. But, the number of input lines is always
exponential in the number of input variables and therefore, the requirement of
being concise can never be fulfilled for achieving any relevance in practice.
Boolean formulas, i.e. literals connected by Boolean operators are another way
for representing Boolean functions. Compared to truth tables they are much
more concise, but performing manipulation operations like testing, whether
there exists a variable assignment a € {0,1}" for f : {0,1}" — {0,1} that
computes f(a1,...,a,) =1 (satisfiability test) or testing, whether two Boolean
functions f, g, given in terms of Boolean formulas are representing the same
function (equivalence test) are NP-complete.

Therefore, the requirements for a well suited data structure for the computer
internal representation of Boolean functions are quiet clear: First, the data
structure should be concise for as many Boolean functions of practical relevance
as possible and secondly, manipulation operations should be efficiently feasible
from an algorithmic point of view.

Instead of representing Boolean functions based on computation rules as in the
models mentioned above, branching programs are a data structure that is using
a decision process for the representation of Boolean functions.

Definition 2.2 A branching program is a rooted directed acyclic graph G =
(V, E) that is representing a Boolean function f :{0,1}" — {0,1}. G = (V,E)
consists out of two sets of nodes V. = Vg UVy, VBN Vy = 0, and a set of
edges E CV x V. The branching nodes Vg are labeled with a Boolean variable
z; € {x1,...,zp} and are switching according to a given wvariable assignment
a; € {0,1} to one of their two successor nodes. The terminal nodes Vp are
labeled with a Boolean constant 0 or 1. They have no outgoing edges and denote
the function value f(a1,...,a,) = b € N that is computed by the branching
program for a given variable assignment (a1, ...,a,) € {0,1}".

The introduction of branching programs for the representation of switching
circuits dates back to Lee in the late 1950’s [Lee59] and was later refined as
a representation for Boolean functions by Akers resulting in the Binary Deci-
sion Diagram concept [Ake78]. By postulating several restrictions on branching
programs they turn into a data structure that fulfills the above mentioned prop-
erties quite well for the representation of switching functions within computers
- and we finally end up in so called Ordered Binary Decision Diagrams (OB-
DDs), today’s state-of-the-art data structure for the representation of Boolean
functions in VLST CAD.

2.1.1 Definitions and Properties

Definition 2.3 Let X = {xg,...,zn_1} be a set of n Boolean variables and
let m: X — {0,1,2,...,|X| = n — 1} be a bijective mapping of the variable

8

Figure 2.1: OBDDs for f =7y + z(yz + yz)

indices. An Ordered Binary Decision Diagram (OBDD) [Bry86, Bry92]
is a rooted directed acyclic graph with the following properties: There are two
distinct terminal nodes (sink nodes) labeled with the Boolean constants 0 and
1. All non terminal nodes (branching nodes, inner nodes) are labeled with a
Boolean variable z;, i€{0,...,n — 1} and have two outgoing edges labeled with
0 (0-edge) and 1 (1-edge), respectively. The order in which the variables occur
in the diagram is consistent with the variable order given by w, i.e. if there is an
edge leading from a node labeled by z; to a node labeled by x;, then m(x;) < 7(x;)
must hold. On all paths from the root to a sink in the OBDD all variables must
occur at most once (read-once property).

For computing the function value of a function f given in terms of a branching
program for a given variable assignment (ay,...,a,_1), a; € {0,1} one is fol-
lowing a path starting in the root, switching at each node to the edge given by
the according variable assignment z; = a;. The label of the reached sink deter-
mines the value of the function on that specific input. Thus, the evaluation of
a function value of a Boolean function given in terms of an OBDD for a given
assignment requires time O(n). Figure 2.1 shows two OBDDs for the function
f:{0,1}® = {0,1}, f = Zy + z(yZ+7z). Note that in the diagrams 1-edges are
denoted with a solid line and 0-edges with a dotted line. As shown in Fig. 2.1
with our definition of OBDDs it is possible to construct several different OB-
DDs representing the same Boolean function. But, for working efficiently with
OBDDs a unique representation for Boolean functions is required.

An OBDD is called reduced if it does not contain any vertex v such that the
1-edge and the 0-edge are pointing to the same node, and it does not contain
any distinct vertices v and v’ such that the subgraphs rooted by v and v’ are
isomorphic. Equivalently, an OBDD is called reduced if none of the following
two local reduction rules can be applied:

Deletion rule: (simple reduction) If the 1-edge and the 0-edge of a node v
lead to the same node w, then eliminate v and redirect all incoming edges
to w.

Merging rule: (algebraic reduction) If the nodes v and v’ are labeled with the
same variable, their 1-edge lead to the same node wi, and their 0-edge

9

@ (b)
Figure 2.2: Deletion Rule (a) and Merging Rule (b) for OBDDs.

lead to the same node wo, eliminate one of the two nodes v, v’ and redirect
all incoming edges to the other node.

The ongoing application of the local reduction rules to an OBDD until no further
reduction can be applied is well suited for an algorithmic implementation. Both
reduction rules are shown in Figure 2.2.

Sieling and Wegener have shown that given an arbitrary not reduced OBDD
G, it can be transformed into a completely reduced OBDD G’ in time O(|G|)
[SW93]. By the size |G| of an OBDD G we denote the number of its inner
nodes.

Reduced OBDDs fulfill the fundamental property of being a canonical repre-
sentation for Boolean functions.

Fact 2.1 With respect to a given variable order m the reduced OBDD Py for
each Boolean function f : {0,1}" — {0,1} is uniquely determined (up to iso-
morphism) and can be computed from an arbitrary OBDD Gy for f in time
0(G/)).

For the representation of multiple output switching functions f : {0,1}" —
{0,1}™, m > 1 we can use multi-rooted OBDDs called shared OBDDs, where
each root Gy, 1 < i < m is representing a subfunction f; : {0,1}" — {0,1}
of f (see Figure 2.3). In the following all functions are represented by shared
OBDDs and we will always refer to reduced OBDDs w.r.t. a given variable
order 7, while only using the term OBDD.

In each node v of an OBDD G labeled with z; a Boole/Shannon-decomposition
(also simply referred to as Shannon-Ezpansion) w.r.t. the variable z; is com-
puted. If the node v is representing the Boolean function f(x1,...,z,), then,
the OBDDs rooted by the two successors vy, v; of v are representing

foo=f(x1,--,2i1,0,Zi41, ..., Tp)

and

f’Ul = f(.’I,'l,. ey Lj—1, 1,-'171'—1—1,--- ,.Tn),

respectively.

10

Figure 2.3: Shared OBDD.

Definition 2.4 The subfunction (restriction) f|z,—q, a € {0,1} that is defined
by the replacement of a variable x; by a Boolean constant a, is defined by

floi=alz1, ..y 2n) = f(@1,- ., Tio1,a, Tig1, .-, Tn)

flzi=1 = flaz; is called the positive cofactor of f w.r.t. z;, and flz,—0 = flz
is called the negative cofactor, respectively. The operation replacement of an
arbitrary variable x; by a Boolean constant a in an OBDD G can be computed
in time O(|G|). Now, the function f can be written with Boole/Shannon-
decomposition

OBDDs are not only a canonical representation of Boolean functions, but they
can also be manipulated rather efficiently. For basic Boolean manipulation
tasks that have to be performed very frequently in CAD systems as e.g. testing
satisfiability, testing equivalence, composition (i.e. substitution of a variable by
another Boolean function), or Boolean synthesis for Boolean functions given in
terms of OBDDs there exist algorithms with runtime polynomial in the number
of input variables [Bry86, BRB90].

The most important basic operations are:

1. Evaluation:
Given an OBDD representation G of f : {0,1}" — {0,1} and an assign-
ment a € {0,1}" compute f(a).

2. Satisfiability:
Given an OBDD representation G of f : {0,1}" — {0,1}, is there an
assignment a € {0,1}" such that f(a) =17

3. Replacement by constants:
Given an OBDD representation G of f : {0,1}" — {0,1}, a variable
z; € {z1,...,2n}, and a constant a € {0, 1}, compute f|z;—q-

4. Equivalence:
Given OBDD representations Gy,Gy of f,g : {0,1}" — {0,1}, decide
whether f = g holds.

11

5. Binary synthesis:
Given the OBDDs Gy and G representing f,g : {0,1}" — {0,1} and
a Boolean operation @ : {0,1} x {0,1} — {0,1}, compute an OBDD
representation Gy, of h = f ® g.!

6. Complementation:
Given an OBDD representation G of f : {0,1}" — {0,1}, compute an
OBDD representation of f.

7. Universal Quantification:
Given an OBDD representation G of f : {0,1}" — {0,1} and a variable
z; € {z1,...,2,}, compute the OBDD representation of Vz; : f.

8. Existential Quantification:
Given an OBDD representation G of f : {0,1}" — {0,1} and a variable
z; € {x1,...,2,}, compute the OBDD representation of 3z; : f.

9. Composition:
Given the OBDDs G1,G2 of g1,92 : {0,1}" — {0,1} and an arbitrarily
chosen variable z; € {z1,...,z,}, compute the OBDD representation H
of h = gl‘zi:gg-

Some of these operations are not independent of each other, e.g. satisfiability
of the function f can also be tested as the negation of testing the equivalence
of f and the constant 0, while equivalence of two functions f and g can be
performed by XOR-synthesis of f and g, followed by the negation of testing
the satisfiability of the result. For OBDDs the time complexity of all basic
manipulation tasks is polynomially related to the size of the input OBDDs.

Fact 2.2 Let G, G1, and Gy be OBDDs ordered w.r.t. a variable ordering «
that are representing the Boolean functions g,g1,g2 : {0,1}" — {0,1}, and let
z; € {x1,...,zp} an arbitrary variable.

(1) The evaluation of G can be computed in time O(n), where n is the number
of variables.

(2) Satisfiability of G can be tested in time O(1).

(8) Replacement of an arbitrary variable z; in G by a constant can be carried
out in time O(|G|). The resulting graph G' is again ordered by m and it
holds that |G'| < |G]|.

(4) Equivalence of G1 and G can be decided in time O(|G1|+|G2|). Note that
if G1 and Go are represented by a common shared OBDD the equivalence
test is possible in constant time.

Let ® denote an arbitrary Boolean operation ® : {0,1} x {0,1} — {0,1}, e.g.
disjunction or conjunction. In order to compute f ® g from given OBDDs of the

'Tn a similar way the synthesis of three or more OBDDs can be defined.

12

Boolean functions f and g, we can also apply the Boole/Shannon-decomposition
w.r.t. the first variable z of the given variable order =:

f®9=2(fr ®gs) +T(fz @ gz)

f ® g can be computed by repeated application of this decomposition. In order
to perform this task efficiently, multiple calls with the same pair of arguments
are avoided - instead, the previously computed results will be looked up in a
table. By using this technique, the originally exponential number of decompo-
sitions is now bounded by the product of the sizes of both OBDDs, and thus,
is polynomial.

Fact 2.3

(5) Boolean synthesis of G1 and Go with an arbitrary Boolean operation can
be carried out in time O(|G1]| - |G2).

(6) Complementation of G can be computed in constant time O(1).

(7) Universal Quantification of G w.r.t. an arbitrary variable x; can be car-
ried out in time O(|G?|). Note that universal quantification is defined by

Vo, f = [z, - f77

(8) Egistential Quantification of G w.r.t. an arbitrary variable z; can be car-
ried out in time O(|G?|). Note that existential quantification is defined by

ELTif = facz + fE

(9) Composition of G1 by replacement of an arbitrary variable x; by Go can
be computed in time O(|G1|% - |G3|).

2.1.2 Implementation Techniques

For working with OBDDs in a practical environment an efficient implementation
of the data structure itself as well as sophisticated algorithms for all involved
manipulation operations are of essential importance. We have already shown
that synthesis of two OBDDs, if implemented in a straightforward way requires
run time exponential in the number of input variables. But, for all manipulation
tasks polynomial run times are necessary and thus, we have to think of more
sophisticated ways of implementation.

Hash Tables and Canonicity

Because OBDDs are a canonical representation of Boolean functions, we have to
assure that equivalent OBDDs can easily be determined. Two OBDDs P; and
P, are equivalent, if their root nodes v1 and vy are labeled with the same variable
z and if the successors of both root nodes P, Pi_ and P, , P»_ are equivalent.
Thus, we can identify two OBDDs by comparing the variable in the root node
and their two successors. If two OBDDs are equivalent, their root nodes have
the same address in the computer’s memory and the representation becomes
strongly canonical. Thus, testing the equivalence of two Boolean functions

13

represented by OBDDs is reduced to a simple address pointer comparison. Note
that every single node of a shared OBDD determines an OBDD of its own.
While working with OBDDs a fast access to distinct OBDDs, or sub-OBDDs is
highly desirable. Therefore, most implementations rely on storing OBDD nodes
in hash tables. The hash function, which determines the position of the node in
the hash table can be computed from the addresses of the node’s both successors
and its variable assignment. At this position a pointer to the node’s address
or even the node itself is stored. Because it is possible that the hash function
is mapping different nodes to the same position in the hash table, collision
lists have to be maintained. If the node is directly stored in the hash table,
each node requires a next pointer, connecting the nodes in the collision list.
Most software packages for OBDDs are working with one separate hash table
for each input variable x;, which is important for the efficient implementation
of dynamic minimization techniques (see Minimization of OBDDs). Thus, all
nodes are stored in the hash table according to their variable assignment.
Before a new OBDD node is created, it can be tested, whether a node with the
required properties does already exist. We simply have to compare all nodes in
the collision list of the computed hash table slot, whether there exists a node
of the same variable and with the same successors as the node that has to be
created.

The ITE-algorithm and Caches

The task of transforming a description of a digital circuit, often given as a
netlist of gates to an OBDD representation is called symbolic simulation. During
this process for every gate starting from the inputs to the output gates of the
circuit an OBDD is computed gradually from the OBDDs representing the
gate’s predecessors and the Boolean function realized by the gate. To connect
two Boolean functions f and g given in terms of OBDDs with an arbitrary
Boolean operation ® the Boole-/Shannon decomposition w.r.t. variable z; is
applied:
f®9=12i(fls; ® gla;) + Ti(flzr @ glz7)-

The composition of the cofactors can be computed recursively. The recursion
stops if one of its parameters is a constant or if the operation can be computed
trivially. Note, that for each variable the number of computations doubles
during this recursion. To avoid this exponential blow up it is mandatory to
maintain a cache for storing already computed results.

For efficiency reasons all Boolean operations are mapped to a single general
operation, which is able to express all Boolean operations, the so called If-
Then-Else operator (ITE) [BRB90]. Then, we only have to maintain one single
operator cache. ITE(z,y,z) is a three parameter function computing if z, then
y, else z.

ITE(z,y,2) =x-y+T-2

Thus, the ITE operator refers exactly to the operation that is performed in
an OBDD node and additionally, we do not have to provide different terminal
cases for different operators. For computing the synthesis of functions f,g,h

14

represented as OBDDs, ITE is evaluated recursively w.r.t. the top variable of
the involved OBDDs.

The recursion stops, if the first argument is constant, if the second and the third
arguments are constant, or if the second and the third arguments are equal.
The operation cache for storing already computed results is called computed
table. For every possible combination of subfunctions of f, g, h it contains an
entry with the result computed by the application of ITE(f,g,h). Now, it is
obvious, why every binary Boolean operation is mapped to ITE. Otherwise, we
would have to provide larger cache table entries also containing the operator
itself, or we would have to maintain a distinct cache table for each operator.
Thus, the mapping of each operation to a single operator increases the efficiency
of the cache.

If the computed table already contains all computed partial results, then the
time complexity of the ITE algorithm is limited by O(|Gy| - |Gyl - |Gh|). For
binary operations the run time is even only quadratic, because one of the three
arguments is constant.

In most implementations the computed table is maintained as a hash based
cache without using dynamically allocated collision lists, i.e. each slot of the
hash table contains at most k& € Ng entries. If more than & entries are mapped
to the same slot, an old entry will be overwritten. Experience has shown that
most results are only reused shortly after their computation, which enables the
efficient usage of a computed table with only small size.

To increase the hit rate of the computed table, the entry (f,g,h) is trans-
formed into a standard form (f*, g*, h*) via equivalences like e.g. ite(f, f,g) =
ite(f,1,9), ite(f, g, f) = ite(f,g,0), etc. Also, if complemented edges are main-
tained (see the following chapter for more details), we have to take care that
the creation of nodes with complemented 1-edge is avoided. Whenever a new
node is created by the algorithm we have to test its existence via a lookup in
the unique table.

See Fig. 2.4 for the ITE-algorithm in pseudo code.

Complemented Edges

In OBDDs the only difference between the function f and its complement f
is the interchange of the two sink values 0 and 1. This similarity can be used
by employing a single attribute bit for each edge. If this bit is set, the func-
tion denoted by the edge is taken as its complement. Thus, f and f can be
represented by the same graph: f will be expressed by an edge pointing to the
root node of f with the complement bit set to 1 [Ake78, MB88]. When using
complemented edges we require only a single sink, the 1-sink. The Boolean
constant 0 can be represented by the complement of 1. See Figure 2.5 for an
example. Complemented edges are denoted by a dot on the arcs.

In most implementations OBDD nodes are identified by their memory address.
For complementation of the function f represented by the OBDD P; the least

15

Input: OBDDs f, g, h
Output: OBDD res representing res = ite(f, g, h).

ITE(f,g9,h) {
transform to_standard triple(f,g,h);
if (res = terminal case(f,g,h)) {
return(res) ;
}
reorder _triple_acc_to_variable order(f,g,h);
check rules _for_complemented_edges(f,g,h) ;
if (res = in_computed_table(f,g,h)) {
return(res) ;
} else {
x = top-variable(f,g,h);
new_1left=ITE(fy, gz, hy) ;
new_right=ITE(fz, gz, hz) ;
if (new_left==new.right) {
res=new_left;
} else {
res=create node (x,new_left,new right) ;

}

insert_in_computed_table(f, g, h,res);

}

find or_add_in unique_table(res);
return(res) ;

}

Figure 2.4: The ITE-Algorithm for OBDDs.

Figure 2.5: OBDD with Complemented Edges

16

- -

- -

‘\\\\\ ‘\\Q\ ‘\\\\\ ‘\\Q\
/ \ / \ / \ / \
‘\\\\\ ‘\\Q\ ‘\\\\\ ‘\\Q\
/ \ / \ / \ / \
Figure 2.6: Equivalences for Complemented Edges
significant bit of the memory address is inverted. Because today for almost all
computer architectures newly allocated pieces of memory are aligned to bound-
aries determined by the underlying word size, e.g. 32 or 64 bit, complemented
OBDD nodes can easily be determined, because their least significant address
bit is set to one, while for nodes that are not complemented the least significant
bit is set to zero, respectively.
Unfortunately, one is losing canonicity when working with complemented edges.

Therefore, we have to limit the usage of complemented edges to 0-edges, which
can be assured by utilizing the following pairs of equivalences (see Figure 2.6).

The advantage of using complemented edges lies in the potential of an up to
50% reduction in size of the OBDD. Furthermore, the negation of a function
can be computed in constant time, and the computation of Boolean operations
can be accelerated by utilizing rules as f- f =0 and f+ f = 1.

For working with OBDDs in practice, experience has shown that the reduction
in size in most cases is limited to about 10%. But, the possibility of negating
functions in constant time accelerates operations often up to a factor of 2.

Relevant Software Systems

In recent years different OBDD packages have been developed providing func-
tions for the manipulation of switching functions. The first efficient implemen-
tation of the OBDD data structure dates back to 1990 and was developed by
Brace, Rudell, and Bryant at the Carnegie Mellon University, Pittsburgh PA
[BRB90]. The package is available to public and many of the implementation
techniques described in this chapter have been developed in the context of this
work. In 1993 Long [Lon93], also from Carnegie Mellon University introduced
a new OBDD package that was mainly supposed to be utilized in symbolic
model checking. This package for the first time was providing dynamic vari-

17

able reordering techniques for OBDD optimization and was included in the SIS
software for synthesis of sequential systems [SSL+92].

The currently most developed open-source OBDD package is provided by the
University of Colorado in Boulder and was developed by Somenzi in 1996
[Som96]. CUDD (Colorado University Decision Diagrams) is publicly avail-
able and has become the state-of-the-art package, which is constantly improved
and maintained. Sophisticated implementation of algorithms as well as efficient
memory management strategies are responsible for the great improvement in
run time provided by CUDD. The CUDD programming package is also included
in the VIS verification software of Berkeley [BHS+96).

The &-OBDD package that has been developed based on the work of this thesis
is adapting many of the algorithms and techniques that were introduced with
CUDD.

2.1.3 Minimization of OBDDs

When working with OBDDs the available main memory of the computer is the
most important limiting factor. If the main memory is not sufficient for storing
an OBDD, secondary memory with much longer access time has to be utilized.
But, manipulation of an OBDD that is partially stored in secondary memory is
much too time consuming in practice. Thus, efficient minimization techniques
for OBDDs are of the utmost importance to keep the representation as small
as possible.

The size of an OBDD representation of a Boolean function crucially depends
on the order of the input variables. In this section the importance of a well
chosen variable order is shown and techniques how to improve the variable
order dynamically based on a local variable exchange are introduced.

The Variable Order

The size of an OBDD and thus, the complexity of its manipulation depends on
the chosen order of the input variables. For example, the OBDD size of the
disjunctive quadratic function

DQFn(xl, e ,.Tzn) = x122 + 34 4+ ...+ Ton—-1T2n

is rather sensitive w.r.t. any change of the variable order. For the order
T1,T9,...,To, 1%2, the reduced OBDD consists of exactly 2n + 2 nodes and
thus, is of size linear in the number of input variables. But, for the variable
order 1,z3,...,%Top_1,%2,T4,...,To, the OBDD consists out of 2”1 nodes.
The reduced OBDD for this variable order grows exponentially. See Figure 2.7
for an example of DQF,, for n = 3.

Other functions with high sensibility to the variable ordering resulting in OBDD
sizes ranging from polynomial to exponential size are e.g.:

e the direct storage access function DSA,,, defined over n + k, n = 2F
input variables zo, ..., Tk-1,%0,---,Yn-1, computing DSA,(z,y) = Y|4,
where |z| is the number whose binary representation equals z,

18

(a) variable order zi,zs, ..., Ts (b) variable order z1,z3, x5, 2, T4, Tg

Figure 2.7: The Function DQF3(x1, %2, %3, %4, %5, T6) = T1T2 + T3T4 + T5T6.

e the comparison function COM that is deciding whether |z| > |y| for two
n-bit inputs z =x1...2, and y =y1 ... Yn, O

e the computation of the most significant bit in the addition of two binary
encoded numbers.

But, because OBDDs are a canonical representation of Boolean functions it is
not possible to find concise representations for all Boolean functions, i.e. repre-
sentations of non exponential size w.r.t. the number of input variables. There
are 22" Boolean functions f : {0,1}® — {0,1} and just because of this simple
counting argument, there must be OBDDs for many functions that are of expo-
nential size, no matter what ordering of the input variables is chosen [Sha49].
Although for that reason a randomly chosen Boolean function requires an ex-
ponentionally large representation, functions occurring in practice are usually
strongly structured and have many inherent symmetries. These properties can
be exploited by OBDDs and often lead to a succint representation.

For an example of Boolean functions that can only be represented by OBDDs
of exponential size, see

e the Hidden Weighted Bit (HWB) function [Bry91]

n
HWB(z1,...,2,) = { ooz VA2 2 zg 7> 0

0 otherwise,

e the multiplication of two n-bit binary encoded numbers [Bry91],

e or the Parity of 3-clique function ®-cl3(z1,. .., z,) [ABH+86], deciding,
whether the number of triangles in a given undirected graph is even or
odd.

19

One possibility for achieving an appropriate variable order for an OBDD are
heuristics based on the underlying circuit topology of the Boolean functions
to be represented, if the function is given in terms of a netlist, representing a
circuit. Starting from the outputs of the circuit description the circuit tree is
traversed and the input gates are ordered according to their significance for each
gate and hence, for the represented function [MWB88, FFK88, MIY90]. These
approaches are often based on the idea that variables should be tested first, if
they influence many subparts of the circuit. Moreover, variables which are close
together in the circuit should also be close together in the variable ordering.
Thus, finding important variables and grouping together related variables are
the basic principles in these static approaches.

More sophisticated techniques like variable interleaving [FOH93] have to be
applied, if functions with multiple outputs are represented by a shared OBDD.
But, the power of these static approaches is rather limited and often, there exist
much better variable orders for the functions under consideration.

Local Variable Exchange

Besides the static algorithms mentioned before, another approach for achieving
better variable orders is based on the exchange of variables, which are adjacent
according to the given variable order in an already existing OBDD represen-
tation. This operation is also often referred as the swap-operation. By using
this dynamic reordering technique one is able to improve the variable order
even during the construction of the OBDD. All dynamic reordering procedures
are based on the fact that two adjacent variables of an OBDD within a given
variable order can be exchanged efficiently [FMK91], and this basic operation
remains local and does not have global effects on the entire OBDD.

Let the variable x; be positioned directly before variable x; w.r.t. the given
variable order 7, and let f be the function represented by a node labeled with
z;. Then, according to the Boole-/Shannon-decomposition the following propo-
sition holds:

[= ziz; fi1 + :%j fi0 + Tizj for + Ti T foo-

If we reorder the terms while applying the rules of commutativity in the way
that x; will be positioned in front of z;, then we obtain

[=z;zifu1 + 2T for + Tjz; f10 + T Ti foo-

Thus, only the subfunctions fy; and fip have to be exchanged in the OBDD
(See Figure 2.8).

No other nodes in the OBDD, except those labeled with z; and z; are affected
and thus, the swap-operation remains local.

Exact Algorithm and Heuristics

Due to the fact that the size of an OBDD crucially depends on the chosen
variable order, algorithms for computing well suited orders are of significant

20

(o] (3] (o] (]

Figure 2.8: Exchange of Adjacent Variables

importance. But, there is no efficient algorithm for determining the best vari-
able order among all possible variable orders. In 1996 Bollig and Wegener
have shown that even the improvement of a given variable order remains NP-
complete [BW96].

Exact optimization algorithms, like the one given in [FS90, ISY91] are based
on dynamic programming or branch and bound methods, and have been further
improved in 1998 by [DDG98]. But, because of the run time being exponential
in the number of input variables, these methods are only suitable for circuits
with a rather small number of input variables.

What makes the problem of finding the best variable order so hard is the fact
that the only way of judging the quality of a given variable order is the explicit
construction of the according OBDD. If the chosen variable order is not suited
for the represented function, the OBDD to be constructed will be of exponential
size. Thus, this optimization problem is much harder to solve than e.g. the
well known Traveling Salesman Problem (TSP). In TSP the number of possible
solutions, i.e. the number of possible round trips through = cities is equal to the
number of possible variable orders of n variables, namely n!. But, the quality of
the function to be optimized in TSP can simply be determined by the addition
of n integers, while the construction of an OBDD may require exponential time
and space.

Therefore, in a practical working environment, one has to apply heuristical
methods for finding an appropriate variable order. Heuristics are reducing the
search space - here the number of variable orders to be investigated - drastically,
and thus, most times got stuck in some local but acceptable minimum. The
heuristics for OBDDs are ranging from simple greedy methods [Rud93] to more
sophisticated algorithms that are also taking symmetries [PS95] or sampling
methods [MS97] under consideration.

The Sifting Algorithm

In 1993 Rudell proposed the so called Sifting algorithm for dynamic minimiza-
tion of OBDDs [Rud93]. The algorithm is based on the application of a sub-
routine, which for a given variable is searching the optimal position without
changing the position of the remaining variables. The variable is moved through
every position in the variable order by ongoing exchange with its neighbor. This

21

Input: OBDD Py, with variable order II, and growth factor 1.
Output: OBDD PJI(-, PJ,(' < Py with variable order II'.

sifting (P, 7v) {
create ordered list of variables z;, 1 <1 <n;
foreach variable z; {
repeat {
move z; through all levels j, 1 <37 <n, while
storing |P;|, the size of P with z; in level j

until (|P;| >y |P| or all levels j have been accessed)
target = level j with |P;| = min(|P;]), 1<i<n;
move z; to level target;

}

return(P);

}

Figure 2.9: Outline of the Sifting Algorithm in Pseudo Code.

routine is subsequently called for all variables until it ends in some local mini-
mum. During moving a single variable through the order the size of the OBDD
may grow dramatically. Then, it is most unlikely that a local minimum will
be reached in one of the following steps. Therefore, the search routine stops,
if the growth of the OBDD is exceeding a given growth factor v, v € R. Also
the order in which the single variables are accessed is important. Usually, the
variables are ordered according to the number of nodes labeled with that vari-
able. The variable that has the most nodes associated with, will be moved first,
because there is a high probability that a change of the position of this variable
will affect the OBDD size most. See Fig. 2.9 for a brief outline of the sifting
algorithm in pseudo code.

The idea of sifting is up to now the most successful approach for the construction
of good variable orders in a practical working environment. This stems due to
the fact that it may move a variable fast over a long distance within the given
order and that it is possible to leave a local maximum of size in search space
again, because the position to which the variable is moved is only dependent of
the minimum found and not of the in between lying local maxima.

Obviously, there is a given space-time trade off. The algorithm becomes faster,
if we are using a limiting growth factor -, but more possible solutions are
explored for larger y-values or even v = 0o, because then, we are able to escape
more often from local minima. Efficient implementations have to consider an
appropriate choice of 7, the sequence in which the variables are chosen, and
the direction in which the variables are moved first, what is depending on their
position in the variable order. Also properties like symmetries, interaction of
variables [PS95], and theoretical lower bounds [DG99] can be applied to speed
up the sifting algorithm.

22

Chapter 3

Extensions of OBDDs

In this chapter the question is investigated, whether OBDDs are sufficient as a
data structure for canonically representing Boolean functions. Although most
Boolean functions of practical interest can be represented efficiently with OB-
DDs, most Boolean functions must be of exponential OBDD size, no matter
what variable order is chosen. To cope with functions of exponential OBDD
size, one idea is to relax some of the restrictions that have been risen for OB-
DDs. Unfortunately one of the consequences might be the loss of canonicity
and a dramatic increase in difficulty of the manipulation tasks. Some exten-
sions of OBDDs based on the relaxation of given restrictions are presented and
the main focus of this chapter lies on the introduction of so called operator
nodes into the OBDD data structure. These operator nodes compute a binary
Boolean operation from the functions that the successors’ BDDs are comput-
ing. The best suited operations for all purposes are the Boolean FEzclusive Or
(EXOR, Parity,®) and the Boolean Equivalence (EQU) and therefore, we are
concentrating on &-OBDDs, i.e. OBDDs extended with & operator nodes.

3.1 OBDDs - an Ideal Data Structure?

As already mentioned above, many Boolean functions of any practical relevance
can be efficiently represented by OBDDs. But, this observation does not hold
for every function, simply because of Shannon’s counting argument cited in the
previous chapter, there are also Boolean functions of importance for practice
that can not be represented in a concise way by OBDDs, like e.g. the multi-
plication of two n-bit binary numbers [Bry91]. Unfortunately, this fact holds
for all possible variable orders and thus, there is a need to think of different
data structures for representing them. To make the OBDD data structure more
powerful, one may think of relaxing the given restrictions for OBDDs. Thus, on
the one hand giving this data structure the potential of being more concise, but
on the other hand their manipulation becomes often much more difficult. One
reason for that lies in the fact that canonicity of the data structure might get
lost by losing certain restrictions. The single restrictions that are taken under
consideration for relaxation are:

o the ordering restriction,

23

(b) FBDD

Figure 3.1: Example of a FBDD (a) and an OBDD (b) for f(z1,z2,23,24) =
T1Z2%3 + T1T2%4 + X1T3%T4 + 12223

e the read once property,
e the internal node functionality in general, or
e the introduction of additional nodes with different functionality.

Other forms of extensions like the introduction of multiplicative or additive
edge values [LPV94], or extensions to the word level domain using momentum
based function decomposition [BC95] are not further considered in this work.
The question to be investigated is:

Is it possible to transform OBDDs to a data structure being more
concise, while simultaneously maintaining their nice algorithmic prop-
erties?

3.2 Extensions of OBDDs

3.2.1 Free BDDs and Read-k Decision Diagrams

If we give up the ordering restriction for OBDDs completely, we end up in read
once branching programs, also called Free Binary Decision Diagrams.

Definition 3.1 A BDD is called a free binary decision diagram (FBDD)
if, on each path, each variable is tested at most once.

See Figure 3.1 for an example.

The size of a minimal FBDD for a given Boolean function is, of course at most
the size of a minimal OBDD, but in many cases, it can be exponentially smaller.
For example the indirect storage access function or the hidden weighted bit func-
tion can be represented in quadratic FBDD size, while OBDD representations
of these functions are always of exponential size. Unfortunately, operations

24

like Boolean synthesis of two FBDDs are NP-hard [GM94b] but, testing the
equivalence of two FBDDs can be decided probabilistically in polynomial time
[BCW80]. Testing satisfiability for FBDDs can be realized in time linear to
the size of the FBDD by simply testing in a depth-first-search-approach (dfs),
whether the 1-sink is reachable on any path starting at the root node. Func-
tion evaluation, testing satisfiability, and replacement of variables by Boolean
constants are of equal complexity as for OBDDs.

But, the problem of FBDD synthesis being NP-hard remains and thus, for work-
ing more efficiently with FBDDs, the concept of FBDD types was introduced
by Gergov and Meinel [GM94a], and independently by Sieling and Wegener
[SW95]. A FBDD type 7 is a generalization of the linear order for OBDDs
and is defined like an FBDD with only one sink. In a FBDD F: related to a
specific type 7 all variables are tested according to the graph given by 7. Then,
for two FBDDs F; and G, both related to type 7, binary Boolean operations
can be computed efficiently. Typed FBDDs can be reduced in the same way as
OBDDs. Then, FBDDs related to a specific completely reduced type 7* are a
canonical representation for Boolean functions.

But, the size of a FBDD crucially depends on the chosen type, and generating
a well suited type for FBDD operations is a task that is even more difficult
than generating a well suited linear order for OBDDs. Another disadvantage
in the case of FBDDs is that in contrary to OBDDs in the lower levels of the
graph there is less possibility of sharing between subfunctions, because of the
different variable orders of the FBDDs representing these subfunctions. Because
of this particular property, it is often not possible to compute FBDDs that are
significantly smaller than the OBDD representation of the same function.

By relaxing not only the ordering restriction, but also the read once property,
we will get a binary decision diagram, where on each path, every variable may
occur several times in a random order. BDDs, where each variable appears
on every path at most k times, kK € N, are called read-k-times-only branching
programs (k-BP).

Definition 3.2 Let k € N. A read-k-times decision diagram (read-k-times
branching program, k-BP) is a depth restricted decision diagram, where each
variable appears on every path from the root to the sink at most k times.

Thus, FBDDs as a special case of k-BPs, can be regarded as 1-BPs. In contrast
to FBDDs, k-BPs may contain inconsistent paths (also called null-chains). An
inconsistent path is a path, which cannot be part of a computation path, since
at least one variable would have to be tested with different results on it.

Several variants of k-BPs have been proposed, like e.g. k-indexed binary decision
diagrams (k-IBDDs) [JAB+92], where the decision diagram is divided into k
layers, each layer obeying a variable order m;, 1 < ¢ < k, or k ordered binary
decision diagrams (k-OBDDs)[BSS+98], where each layer has the same variable
order m; = m, Vi. But, although k-BPs or restricted models of k-BPs (k > 1)
have the potential of being more concise than FBDDs or OBDDs [Weg87], they
are even more difficult to manipulate [CHS74]. Synthesis of two k-BPs might
cause an exponential blow up in size, testing the equivalence of two k-BPs is

25

0 0

fof,

(a) OBDD (b) OFDD

Figure 3.2: OBDD Node and OFDD Node

known to be co-NP-complete and k-BP-satisfiability is NP-complete even for
2-BPs [FHS78] or 2-IBDDs.

3.2.2 Functional Decision Diagrams

Another way of extending the concept of OBDDs is changing the way a func-
tion is computed in the single branching nodes. In OBDD nodes the function
is computed according to the Boole/Shannon decomposition (BS) w.r.t. the
variable z; that the node is labeled with: f = z;f;, + Z;fz,. The advantage
of this functionality lies in the fact that each input activates exactly one path,
called its computation path. In some applications one works with represen-
tations of Boolean functions by Z-polynomials, i.e. @-sums of monomials of
positive literals. This representation is related to Reed-Muller’s expansion rule
(RME) [Reeb4, Mul54], also often referred to as the positive Davio expansion
(pDE), or, if we consider only monomials of negative polarity, the negative
Davio ezpansion (nDE) [BD95].

pDE: f = f|@ @wz(f‘wl @ f|Ez)
nDE: f = f|w1 ®§Z(f|wz S f|@)

The correctness of these decompositions follows by the consideration of the
cases ; = 0 and z; = 1. The decompositions are unique.

If f = g® z; - h for arbitrary Boolean functions f and g that are not essentially
depending on z;, then flz,—0 = ¢ and f|z,=1 = g ® h, and therefore, h =
flz;=0® flg:=1- This motivated Kebschul, Schubert and Rosenstiel to introduce
Ordered Functional Decision Diagrams [KSR92], which are not based on the
Boole/Shannon decomposition as OBDDs, but on the positive Davio expansion
(see Figure 3.2).

Definition 3.3 Ordered Functional Decision Diagrams (OFDDs) are defined
in the same way as OBDDs, but the function f, that is computed by an OFDD
node v is based on the following inductive rules:

1. If v is a sink labeled with 1 (0), then f, =1 (f, =0).

2. If v is a node labeled with variable x;, whose successor nodes are repre-
senting the functions g and h, then f, = g ® x;h.

26

Note that an input @ € {0,1}" can activate more than a single path on an
OFDD. At a node v labeled with z; and the input a; = 0, it is sufficient to
consider the 0-successor and only the 0-edge is activated. But, if a; = 1 we
have to consider both successors and to take the @-sum of their results. Then,
both outgoing edges are activated. An input a that contains j 1s activates 27
edges in a complete OFDD.

OFDDs can be reduced similar to OBDDs: if the 1-successor of an OFDD
node is pointing to the 0-sink, the node is redundant and can be removed while
redirecting all incoming edges to its 0-successor. Isomorphic subgraphs can be
reduced in the same way as for OBDDs. If no reduction rule can be applied to
an OFDD, then the OFDD is completely reduced. As reduced OBDDs, reduced
OFDDs are a canonical representation for Boolean functions.

A point that may cause problems for working with OFDDs is that the replace-
ment of a variable z; in an OFDD F by a constant ¢ € {0,1}, which is an
essential low level operation for all other manipulation tasks, is much more dif-
ficult than for OBDDs. The best known algorithm for replacement of variables
by constants for OFDDs has running time ©(|F|?), and already logarithmically
many applications of this operation may increase the size of the representation
exponentially [BLS+95].

For some classes of functions OFDDs are exponentially more compact than
OBDDs but, for other classes of functions the opposite holds. Because of this
observation for combining the advantages of both decision diagram types a
hybrid representation called Ordered Kronecker Functional Decision Diagram
(OKFDD) was introduced [DST+94]. Each variable z; in an OKFDD has an
assigned decomposition type d; € {BS,pDE,nDE}. In every node labeled
with variable z; the decomposition d; is computed. For a fixed decomposition
type order OKFDDs are also a canonical representation for Boolean functions.
The list of possible decompositions of Boolean functions is limited to the three
decompositions pDE, nDE, and BS, if we demand that the functions represented
at the successors vy, v1 of a node v labeled with z; do not essentially depend
on z; and that the function f, represented by v can be computed by some
operations op : {0,1}* — {0,1} from z;, vy, and v;. Additionally, we don’t
distinguish operations leading to an isomorphic graph structure [BD95].

3.2.3 Binary Decision Diagrams with Operator Nodes

When changing the functionality of OBDD nodes the next step may be the
introduction of additional operator nodes into the data structure, i.e. nodes
that are not labeled with a Boolean variable but only with a binary Boolean
operation w € Q = {A,V,®,=,...}. This operator node computes a function f
resulting from the application of its operator w to its two successors fi, f2, f =
fiwfa. Q-Branching Programs introduced by Meinel in [Mei88] are generalizing
this concept.

Definition 3.4 Let Q) be a set of binary Boolean operations. An Q-branching
program (Q2-BP) on the variable set X = {x1,...,x,} is a directed, acyclic

graph with the same structure as a regular branching program, but which may

27

additionally contain nodes labeled with a function w € Q instead of a variable.

V-branching programs are also known as non-deterministic branching programs.

Definition 3.5 A non-deterministic branching program is a directed, acyclic
graph with the same structure as a regular branching program, but which may
additionally contain binary nodes labeled with the operation V (V-nodes). An
assignment a = (a1,...,a,) to the input variables z;, 1 < 1 < n computes 1 if
there exists a path compatible to a, i.e. at a branching node x; the edge a; is
chosen and at a V-node an arbitrary edge can be chosen.

A-branching programs are also called co-non-deterministic branching programs
and {V, A}-branching programs are called alternating non deterministic branch-
ing programs. Unrestricted {V, A}-branching programs can be considered to be
similar to circuits that are based on {V, A, =}, since they are polynomially re-
lated to each other. Although being a rather compact data structure for repre-
senting Boolean functions, manipulation tasks cannot be carried out efficiently.
Despite this fact, {V, A}-branching programs have also been considered under
the name XBDDs [JPH+91]. The idea is to use as “few non-determinism” as
possible. XBDDs are restricted by splitting the branching program in an upper
and a lower part. The upper part consists of nodes labeled only with 3 and
V (which corresponds to V and A), and the lower part consists of OBDD like
structures. But, XBDDs as well as {V, A}-branching programs have the obvious
drawback that testing satisfiability is NP-complete.

In [Mei90] it was shown that, within polynomial size, each Q-BP is computa-
tionally equivalent to an Q'-BP, Q' € {{V},{A},{®},{V,A}}.

If we restrict 2-BPs to 2-BP1s or 2-OBDDs, manipulation tasks become easier,
but the drawback of being non-canonical representations for Boolean functions
remains. Testing equivalence of w-OBDDs, w € {{A},{V},{A, V}}, is co-NP-
complete, if it is computed deterministically. Only for w € {®,=} testing the
equivalence is within co-RP. The reason for this is explained later in detail in
the section probabilistic equivalence test.

In fact, working with non canonical representations of Boolean functions ne-
cessitates the existence of an efficient equivalence test. In our case this fast
equivalence test can only be performed with probabilistic techniques, i.e. we
are generating hash codes identifying the instances of the data structure under
consideration. But, the proposed hashing technique is only working in an effi-
cient way, if we admit only the operators @ or =. The usage of conjunction (V)
or disjunction (A) as an operator node would require that the functions that
are combined are of disjoint support for applying the probabilistic equivalence
test. Thus, the subject of this work is the development of efficient manipulation
techniques for &-OBDDs.

28

Chapter 4

d-OBDDs

In this chapter the data structure for &-OBDDs will be defined. After focusing
on the properties of ®-OBDDs we will separate them from other derivatives
of OBDDs and EXOR based data structures by comparing their algorithmic
capacities. The well-known reduction concept for OBDDs will be expanded to
be applicable for &-OBDDs. But, for working efficiently with this non-canonical
data structure, we are in need for a fast equivalence test. The fastest known
deterministic equivalence test, based on a slightly changed version of the &®-
OBDD model concept requires time cubic in the number of nodes, what makes
it not suitable for an application in any commercial environment. Therefore,
we consider a probabilistic equivalence test, which is based on an arithmetic
transformation of the Boolean function to be represented by &-OBDDs into
a polynomial over a finite domain. Next, we proceed with the definition of
algorithms for efficient @-OBDD synthesis. For this task, the computation of
the function’s cofactors has to be adapted to the new data structure, as well
as already known efficient synthesis procedures like the ITE algorithm. One
problem remains, which is the way of how to introduce ®-nodes into the data
structure during the synthesis procedure. We are adapting the ITE algorithm
and the APPLY algorithm for @-OBDDs with the help of alternative function
decompositions (pDE, nDE), which provide explicit EXOR operations that can
be directly mapped into @-nodes. Finally, complexity results for the basic
manipulation tasks for -OBDDs are summarized.

4.1 Definitions

If the Boolean operator @ (XOR, EXOR) is chosen to serve as an operator
node for extending the OBDD data structure we obtain so called &-OBDDs
(Parity-OBDDs, Mod2-OBDDs).

Definition 4.1 A ®&-OBDD P over a set X, = {z1,...,2n} of Boolean vari-
ables is a directed acyclic connected graph P = (V,E). V is the set of nodes,
consisting of non-terminal nodes with out-degree 2, and of terminal nodes with
out-degree 0. There is a distinguished non-terminal node, the root, which, as
only node, has the in-degree 0. The two terminal nodes with no outgoing arcs

29

'
P 1 w2 =3 | fP
0 0 0 0
0 0 1 0
’ 0 1 0 1
. 0 1 1 1
b 1 0 0 0
@ 1 0 1 1
\:R o 1 1 0 1
VY 1 1 1 0

Figure 4.1: &-OBDD P and OBDD O with Complemented Edges, Both Com-
puting the Boolean Function fp

are labeled with the Boolean constants 0 and 1. The remaining nodes are either
labeled with Boolean wvariables x; € X,, denoted as branching nodes, or with
the binary Boolean operator & (EXOR, Parity), denoted as @-nodes. On each
path, every variable must occur at most once. In the following, let [(v) denote
the label of the node v € V' and |P| the number of non terminal nodes of P.

E CV xV denotes the set of edges. The two edges starting in a branching node
v are labeled with 0 and 1. The 0(1)-successor of node v is denoted by vg(v1).
There is a permutation m, which defines an order T,(1) < ZTp(2) < ... < Ty(p)
on the set of input variables. If w is a successor of v in P with l(v),l(w) € X,
then l(v) < l(w) according to ™ must hold.

Note that since the @-operation is symmetric, the outgoing edges of @-nodes
do not have to be labeled separately. For representing multiple output Boolean
functions f : {0,1}" — {0,1}™, we consider multi-rooted shared ®-OBDDs
by introducing multiple roots into a single &-OBDD, each root representing a
subfunction of f = (f1,..., fm), fi : {0,1}} — {0,1}, 1 < n.

The function fp associated with the &-OBDD P can be evaluated in the fol-
lowing way: For a given input assignment (a1,...,a,) € {0,1}", the Boolean
values assigned to the leaves extend to Boolean values associated with all nodes
v of P as follows:

e Let vy and v; be the successor nodes of v, computing the Boolean values
0o, 01 € {0, 1}.

e If v is a branching node labeled with x; € X,,, then v will be associated
with dg; .

e If v is a ®-node, then v will be associated with @(d, d1) = (do+d1) mod 2.

fp(ai,...,ay) is associated with the value that is computed by the root node
of P. Thus, the value of a Boolean function fp for a given variable assignment
represented by the @-OBDD P can be evaluated in time O(|P)).

Furthermore, we can also consider the use of complemented edges as already
introduced for OBDDs in chapter 3 to achieve a more compact representation.
See Fig. 4.1 for an illustrating example.

30

Figure 4.2: Equivalences for Complemented Edges and &-Nodes.

In the example, let fp : {0,1}3 — {0,1} be defined by the given truth table.
Moreover, let m be the natural order on the set of variables, i.e., (i) = 4. For
branching nodes, the dashed line always represents the edge labeled with 0. A
dot on an edge denotes that the edge is complemented and that it points to the
Boolean complement of the function that is represented by its successor. Note
that the edge pointing to the root of O is complemented, too.

As for branching nodes in regular OBDDs (see Fig. 2.6), in &-OBDDs there is
a set of equivalences for @-nodes and complemented edges that has to be con-
sidered. In contrary as for OBDDs, restricting any newly created node to one
distinct case of these equivalences for reasons of canonicity, here, this restric-
tion is useful for avoiding further ambiguity, because the data structure is not
canonical, anyhow. Additionally, this restriction leads to an increase in cache
efficiency of the &-OBDD implementation. See Fig. 4.2 for the complement
equivalences concerning @-nodes.

4.2 Properties of ®-OBDDs

Since OBDDs are special cases of @-OBDDs (namely &-OBDDs without any
@-node) and since, for each variable ordering, OBDDs provide a universal rep-
resentation schema, for Boolean functions, every Boolean function can be rep-
resented by means of a @-OBDD.

Theorem 4.1 Let be an ordering on X, = (z1,...,zy). Each Boolean func-
tion f :{0,1}" — {0,1} over X, can be represented by means of a &-OBDD
that tests variables according to w.

Furthermore, from taking the assumption that each OBDD is also a $-OBDD
we can also conclude the following theorem.

Theorem 4.2 The size of a minimal &-OBDD for a given Boolean function f
is at most the size of a minimal OBDD for f.

31

To confirm the assumption that &-OBDDs have the potential of being more
concise than OBDDs are, we can show that there exist Boolean functions with
small (low polynomial degree) ®-OBDD representation, whose OBDD repre-
sentations have exponential size independent of the chosen variable order.

The first example is the hidden weighted bit function HWB as a very simple
version of the storage access function: for simplicity, let 3 denote 0 and let
wt(x1,...,Tn) = > iy Ti. Here, wt is denoting the address of the bit that we are
computing. Thus, HWB is defined by HWB(z1,...,%n) = Tyi(s,,....s,)- HWB
has the feature of an indirect storage access function. The whole input serves
as indirect address, which is computed as the weight (sum) of the input. This
weight is the direct address of the output bit. Intuitively, HWB is a very simple
function. But, in [Bry91] it has been shown that for every possible variable
order m each OBDD representation of the HWB must be of exponential size.
One reason for the difficulty of HWB might lay in the fact that the complete
input (z1,...,x,) serves as control information and simultaneously also as data
information. But, Gergov and Meinel showed that the &-OBDD representation
of HWB requires only cubic size [GM96]:

Theorem 4.3 The function HWB(z1,...,x,) can be represented with a &-
OBDD of size O(n?).

Proof: The equation HWB(z1,...,2n) = @k—1(zk A Ex(z1,...,zy)), where
Ey(z1,...,zy,) computes 1, if the input assignment of (z1,...,z,) contains ex-
actly k 1s can be verified easily. For each variable order, zx A Ex(z1,...,z,) can
be represented with an OBDD of at most quadratic size, because the function
Ey(z1,...,zy,) is symmetric, what enables a quadratic OBDD representation
for every variable order. For the representation of zx A Ey(x1,...,2,), ev-
ery 0-edge of a node in the OBDD representing Fy(z1,...,z,) that is labeled
with the variable z; has to point to the 0-sink. Thus, the above equation can
be immediately transformed into a cubic size &-OBDD for HWB(x1,...,Zy)-

O

For a survey on the complexity of HWB for various BDD models, see [BLS+99].
We can also easily show that a Boolean function represented by a @-OBDDs is at
most of the size of an EXOR Sum of Products expression (ESOP) representation
of the same function.

Theorem 4.4 The size of a minimal ©-OBDD for a given Boolean function f
18 at most the size of a minimal ESOP for f.

Proof: With respect to a given variable ordering 7, the monomials of an ESOP
can be represented by OBDDs of size equal to the monomials. The EXORs of
the ESOP can be simulated by @-nodes and thus, any function represented by
an ESOP can be represented by a @&-OBDD of at most the same size. i

However, in general the available reduction algorithm for &-OBDDs that are
simulating the ESOP expressions are able to provide even smaller representa-
tions. But, we can also proof that &-OBDDs in fact provide much smaller
representation sizes than ESOPs.

32

For an example of a Boolean function with exponential ESOP representation
size, but small &-OBDD representation size we chose the majority function
MAJ that outputs 1, if the number of input bits with value one is greater than
the number of input bits with value 0:

1 if anxz > [n/2]
i=1

0 else.

MAJ(zy,...,zp) = {

In [Raz87] it has been shown that any representation of MAJ by means of
multilevel {A, @}-expression (unbounded fan in and constant depth) has to be
necessarily of exponential size. However, because MA.J is a symmetric function,
for each variable ordering we can construct a @-OBDD (indeed an OBDD)
of quadratic size that is counting the number of ones. Thus, MAJ can be
represented efficiently with polynomial size ®&-OBDDs.

As an additional step, if we combine MAJ(z1,...,z,) and HWB(y1,...,yn) to
the resulting function f(z1,...,yn) = MAJ(z1,...,2,) ® HWB(y1,-..,yn), We
have constructed an example of a function of small &-OBDD representation size
that on the other side necessarily has exponential representation size in terms
of ESOPs as well as in terms of OBDDs. Therefore, we are able to conclude
that ®-OBDDs can be considered to be a more compact data structure for the
representation of Boolean functions than OBDDs or ESOPs are.

Also, the function ® —cly, 3(x), = (24,j)1<i<j<n, Wwhich decides whether a given
undirected n-node graph G = G(z) contains an odd number of triangles, has a
@®-OBDD of size O(n>) [Mei88], although it is even for a powerful representation
as FBDDs always of exponential size independently of the chosen variable order
[ABH+86].

Theorem 4.5 [Mei88] The function ® — clp3(x), = = (T5;)1<icj<n can be
represented by a ®-OBDD of size O(n?).

Proof: Obviously, the OBDD Py, 1 <u < v < w < n, given in Fig. 4.3
decides, whether the three nodes of a given undirected graph G = G((z;;),
1<i < j<n constitute a triangle. There are (3) sets {u,v,w} C {1,...,n} with
1<u<v<w<n. If we are replacing all leaves of a binary tree of @-nodes of size
2- (3) — 1 with all possible OBDDS Py, u,v,w € {1,...,n}, 1<u<v<w<n,
then, we obtain a &-OBDD of size O(n?), which computes & — cly 3(z). O

Thus, we have shown that &-OBDDs also have the potential of being a more
concise representation for Boolean functions than FBDDs are. In the next step,
we compare @-OBDDs with OFDDs, a representation for Boolean functions
that is also depending on the EXOR-function (see Chapter 3). We show, how
OFDDs can be simulated efficiently with &-OBDDs and moreover, that there
also exist exponential gaps between the two representation forms.

Theorem 4.6 Let Py be a OFDD that is representing an arbitrary Boolean
function f:{0,1}" — {0,1}. Then, f can be represented by a ®-OBDD Qy of
size Q] < 2- Py

33

Figure 4.3: OBDD Py, u,v,w € {1,...,n}, 1 <u <v<w <n for Deciding
Whether vvw is a Triangle.

FDD

Figure 4.4: Transformation of a OFDD into a @-OBDD.

Proof: Let us assume that each variable z; € {z1,...,z,} occurs in each path
of Py (i.e. Py is not reduced). The sink of a source-to-sink path p of Py is
labeled with 1, if the monom that consists exactly of all variables that are
positively tested on p appears in the pDE of f. A ®-representation of P; can
be created in the following way: Bottom up, for each node v of Py we introduce
a new node w also labeled with /(v) and take the 1-successor v; of v as the
1-successor of w and the 0-sink as the 0-successor of w. Then, we are changing
the node v to a @-node and take the node w for its new second successor in
addition to vy (see Fig. 4.4). O

In the last theorem we have shown, how OFDDs can be efficiently simulated
with @-OBDDs. On the other hand, Becker, Drechsler, and Theobald have
shown that there are polynomial sized OBDDs for Boolean functions that can
only be represented by exponential sized OFDDs [BDT97]. In particular they
were showing that the function 1 — cl,, 3, which is testing for the existence of
exactly one single triangle in a given undirected graph, can be represented by
OBDDs of size O(n*) [Weg00], but requires an OFDD representation of size
29Un) In their proof the fact is used that the graph of the OFDD represen-
tation can also be interpreted as an OBDD. Thus, the OBDD P representing

34

Model Function Model size | &-OBDD size
OBDD | HWB(z1,...,s) 0(2") O(n?)
FBDD @-Cln,g(l‘l, ce ,.’En) 0(271) O()
ESOP | MAJ(z1,...,2y) o(2") O(n®)
OFDD | 1-clp3(z1,--.,2n) 202(n) O(n?)
HWB(z1,...,Zn) 29n) O(n®)

’1’1,3
2

Table 4.1: Exponential Gaps between @-OBDDs and other Representations of
Boolean Functions.

1-cl, 3 is of size O(n*), while interpreted as an OFDD, the graph of P is com-
puting the function @®-cl, 3. Vice versa, the OFDD representation of 1-cl, 3
must be isomorphic to the OBDD representation of ®-cl, 3 and thus, must be
of exponential size, while, on the other hand, the OBDD size of 1-cl, 3, and
thus, the &-OBDD size is only polynomial.

Another example for an exponential gap between &-OBDDs and OFDDs is the
already mentioned HWB-function. In [BDW95] it was shown that the OFDD
representation of HWB requires size 2°(") while the ®-OBDD representation
of HWB is only of size O(n?).

Thus, we may conclude that there exist ®-OBDDs that can only be represented
by exponential sized OFDDs, and furthermore, that ®&-OBDDs are a more
concise representation of Boolean functions than OFDDs are.

To summarize the results of this section we may state that the representation
forms of OBDDs, FBDDs, ESOPs, and OFDDs can efficiently be simulated in
terms of @-OBDDs. Simultaneously, there are exponential gaps between these
standard representation forms and @-OBDDs, confirming that @-OBDDs are
really a more powerful data structure. See table 4.1 for a summary of these
results.

4.3 Reduction of §-OBDDs

For working efficiently with &-OBDDs, also the reduction concept introduced
for OBDDs has to be adapted and extended. In general, the reduction rules for
OBDDs are also suitable for &-OBDDs, i.e. the deletion rule and the merging
rule can also be applied to regular branching nodes within the &-OBDD. For
@-nodes the rule set has to be extended accordingly.

First, the task of the deletion rule for branching nodes is to get rid of redundant
nodes, i.e. branching nodes, which are connected to two identical successors.
If the edges of a @-node v happen to point to the same successor v1, then the
operation f, = f,, ® f,, has to be computed, which results in f, = f,, ® f,, = 0.
Thus, a @-node with identical successors has to be replaced by the 0-sink.
Furthermore, the deletion rule set has to be extended for the use of comple-
mented edges. If the edges of a @-node v happen to point to the successors vy
and vg, where f,, = fy,, then the operation f, = f,, @ f,, has to be computed,
which results in f, = fy, ® fo, = 1. Thus, a @-node with complementary

35

Figure 4.6: Merging Rule Set for &-Nodes.

successors has to be replaced by the 1-sink (see Fig. 4.5).

For the application of the merging rule, isomorphic subgraphs have to be de-
tected and identified. This rule is working for branching nodes as well as for
@-nodes in the same way. If we consider two @-nodes v and w that are of
different complementation parity, i.e. for the successors vi,vy and wi,wqy the
following holds: (for = fuw, and fo, = fuwe) O (fo, = fur and fy, = fu,), then
fv = fw, and the two nodes can be identified, while regarding the rules for
complementation (see Fig. 4.6).

In addition to the already introduced reduction rules for @-OBDDs, we also have
to consider the case that a successor of a @-node is a terminal node. Then, the
represented function can directly be computed: If a successor of a @-node v,
w.lo.g let’s take f,, , is the 0-sink, then f, = fi,,® fo;, = fu,®0 = fy, is computed
and the @-node is replaced by its other successor vg. On the other hand, if the
1-sink is a successor (f,,) of the @-node, then f, = fuo @ fo, = fuo @ 1 = fup
is computed and v is replaced by complementing all its incoming edges and
connecting them to its second successor vy (see Fig. 4.7).

Additionally, there exists another reduction that is especially addressing &®-
OBDDs of the following structure: Consider a @-OBDD with a @-node v at
the top, representing the Boolean function f,, and with the two successors g
and v1, both labeled with the same variable [(vy) = I(v1) = x;. Then, because
the functions represented by the two successors of f,, and f,,, let them be

36

ORI G G RN)

Figure 4.7: Reduction Rule Set for @-Nodes Connected to a Terminal Node.

Figure 4.8: Additional Equivalence for @-OBDDs.

denoted as f1, fo and f3, f4, are disjunct and with the commutative law the
following equivalences hold (see also Fig. 4.8):

fv = fvo 69f’ul

(zif1 +Tif2) © (zif3 + Tifs)
(zif1 © Tif2) © (vif3 @ Tifa)
Tif1 @ Tifs ® i f3 D Tifo

= (zf1 + Tifs) © (wif3 + Tifo)

These equivalences are suited to design the following reduction rule: Before
any new @-node is created, if both of its successors are labeled with the same
variable, the equivalence of f; = f4 and fo = f3 has to be tested and additionally
possible reductions have to be carried out. In an extremal case, if f; = f; and
at the same time fo = f3 holds, the reduction shown in Fig. 4.9 will take place.

Note that this special kind of reduction might also take place, if we consider
trees of @-nodes, which are connected with branching nodes at their leaves
labeled with the same variable

4.4 Equivalence Test

One of the most important reasons responsible for the efficiency of a data struc-
ture for the representation of Boolean functions is a fast equivalence test. Start-
ing with the essential task of combinatorial verification, where the equivalence

37

f1 fa

Figure 4.9: Special Case of Equivalence for &-OBDDs.

of the representation of a given specification and its implementation has to be
tested, at each single step in the process of symbolic simulation we are in need
of the equivalence test. The functions represented as OBDDs or &-OBDDs have
to be uniquely identified, because each time, when a new node is created, it has
to be tested, whether the node does already exist or not. Also the whole syn-
thesis procedure is only able to work in an efficient way, if already computed
results can be reused, what also necessitates the identification of equivalent
nodes. Furthermore, as we have seen in the foregoing chapter, the application
of reduction rules also depends on proper identification of equivalences.

For OBDDs, testing the equivalence of two given diagrams, both respecting the
same variable order and both being completely reduced is very easy, because
they are canonical and thus, uniquely determined. If they are given as two
separate data structures their equivalence can be tested by examining, whether
the two graphs are isomorphic. If both OBDDs are synthesized within the
same process, their top nodes must have the same memory address, if they are
representing equivalent functions (strong canonicity) [BRB90] and thus, the
equivalence test can be performed by a mere pointer comparison.

For &-OBDDs, testing the equivalence of two given diagrams is much more
difficult, because this data structure is not canonical anymore. Two given &®-
OBDDs might represent the same Boolean function, although not being isomor-
phic. E.g. the two @-OBDDs might be constructed from different subfunctions
that are connected by @, and therefore, testing only graph isomorphism is not
sufficient for &-OBDDs.

4.4.1 Deterministic Equivalence Test

If we are testing graph isomorphism of two given &-OBDDs P and @, repre-
senting the Boolean functions fp and fg, both respecting the same variable
order 7w, and the test returns a positive result, then, of course P and () are
representing the same Boolean functions fp = fp. But, from a negative test
result, it is not possible to conclude that fp # fg holds.

Because equivalent &-OBDDs may consist out of different subfunctions, all
connected by @ nodes, equivalence may not in any sense be related to isomor-
phism. Therefore, an explicit test for equivalence has to check the identity of
the function results for every single variable assignment.

38

Testing the equivalence of two given &-OBDDs P and (), both representing
Boolean functions fp, fo : {0,1}" — {0,1}, and both respecting the same
variable order =, in a naive way requires time 2°("). By checking, whether
the identical function value is computed for each given variable assignment
{a1,...,a,} € {0,1}" for both ®-OBDDs P and @, all 2" variable assignments
have to be taken under consideration. For &-OBDDs P and @ the function
evaluation for a given variable assignment requires time O(|P| + |@|). Thus,
the required time is 20(%).

But, if we admit some slight changes to the model of the &-OBDD data struc-
ture, we are able to achieve polynomial runtime. Recently, Waack introduced
the so called Parity OBDDs as a generalized variant of &-OBDDs [Waa97].

Definition 4.2 A Parity OBDD over the variable set {z1,..., Ty} with a given
variable ordering w is a directed acyclic graph with one root and sinks labeled
with 0 and 1, respectively. Non terminal nodes are labeled with o variable and
may have an arbitrary number of outgoing edges labeled with 0 or 1. As for
reqular OBDDs, the sequence of tests of variables on each path from the root to
a sink has to be consistent with .

The function f, computed by a non-terminal node v in a Parity OBDD equals
the XOR-synthesis of all its a;-successors a; € {0, 1} according to the assignment
of the variable z; = a; the node v is labeled with.

P q
fo = .’17_,@ fvm_ij + T @ foaiks
i=1

k=1

where p is the number of 0-successors f,z; and g the number of 1-successors

f’U.’Ei'
A Parity OBDD according to this definition computes the output 1 for a given
variable assignment {a1,...,a,} € {0,1}", if and only if the number of paths

from the root to the 1-sink w.r.t. the given variable assignment is odd. Because
of the arbitrary number of outgoing edges per node, the suitable measure for
the size of a Parity OBDD is the number of its edges, which is at most quadratic
in the number of nodes.

As in the case of regular @-OBDDs, Waack’s Parity OBDDs are not a canonical
data structure for the representation of Boolean functions. Nevertheless, Waack
has shown how a Parity OBDD P representing a Boolean function fp w.r.t. a
given variable order m with a minimal number of nodes can be constructed
in polynomial time starting from an arbitrary Parity OBDD for fp. For the
construction of a Parity OBDD with a minimal number of nodes the functions
represented by each single node of the Parity OBDD are considered as vectors
within a vector space. By an algebraic transformation the task of minimizing
the Parity OBDD is transferred to the solution of a set of linear equations.
Furthermore, he has also devised polynomial time algorithms for the operations
synthesis and satisfiability on Parity OBDDs.

Theorem 4.7 [Waa97] The satisfiability problem for Parity OBDDs is in P.

39

Proof: Let P be a Parity OBDD that computes the function f. We want to
test, whether f = 0.

Let v be the root node of P labeled with the variable z1. Let gi,...,g; be
the functions computed at the 0-successors of v and let gx11,...,gr+; be the
functions computed by the 1-successors of v, respectively. Then, f can be
expressed with an equation over GF(2) as follows:

f = (@+D)g+...+ (@1 +Dgp + Z1gk41 + - - + L1951
= g+...+gc+zi(g+ ...+ gr1)-

Since, x1 does not occur in the functions g;, 1 < ¢ < k 4+, it holds that f =0
if and only if g1 + ...+ gx = 0 and g1 + ... + gx+; = 0. But, this requires
that the functions g; are linearly dependent. Some of the functions g; can be
expressed by linear combinations of others and are therefore superfluous. The
goal now is to get rid of the superfluous nodes such that the functions computed
at the remaining nodes are linearly independent. Then, the given equation must
reduce to f = 0, if f in fact is the zero-function.

The algorithm works bottom up starting at the sink nodes representing the
functions 0 and 1, respectively. Suppose that P is reduced up to some level [—1,
1 <1< nandlet by,...,b; be the linearly independent functions computed by
the nodes at that level. Then, for level [, let there be m nodes computing the
functions fi,..., fm- Each f;; 1 <i < m can be expressed analogously to f in
the above equation in terms of the 2k base functions by, ..., bg, zib1, ..., Tib.
In this way we get a set of m linear equations:

by
a1 ... G192 : f1
X by, _)
Ilbl ’
am,1 --- Gm2k . fm
z by

where a; ; € {0,1} are the corresponding coefficients of each f;.

Now, with Gaussian elimination the matrix is transformed into a lower tri-
angular form and simultaneously the same transformations are computed at
the vector (fi,...,fm)T. Suppose, the resulting matrix has d < m O-rows at
the bottom. Then, there are d equations such that f,,—4+1,--.,fm can be
expressed in terms of fi,..., f;,—q¢ and the nodes computing fr—g+1,---,fm
become superfluous. These nodes are eliminated and all incoming edges are
redirected according to the equations obtained for f,,_441,..., fr in order to
get an equivalent Parity OBDD. Now, all nodes up to level [compute linearly
independent functions. Since, Gaussian elimination is required for each level
of P, the running time sums up to O(n|P|3), where |P| denotes the number of
nodes of P. O

Now, by computing, whether for Parity OBDDs P, () the expression fp @ fg
is satisfiable, a deterministic equivalence test can be performed in polynomial

40

fl f2 f3

f2 f3

&-0BDD - Parity OBDD

Figure 4.10: Transformation from @-OBDDs to Parity OBDDs.

time.

The @®-OBDD model can easily be transformed into the alternative Parity
OBDD data structure.

Theorem 4.8 Let P be a ®-OBDD that is representing an arbitrary Boolean
function fp:{0,1}" — {0,1}. Then fp can be represented by a Parity-OBDD
Q of size |Q| = O(|P?|).

Proof: Note that the size of a @-OBDD is the number of nodes, and for Parity
OBDDs the size equals the number of edges. The sink nodes and every regular
branching node (Pg) in a &-OBDD P can be directly regarded as a node of a
Parity OBDD Q. For every @-node v (Pg) in P we are introducing up to two
edges into (), connecting every predecessor of the ®-node with vy and v;. Thus,
the size of) is bounded by |Q| < 2|Pg| + 2|Pg| - | Ps| = O(|P|?). O

For transforming a @&-OBDD into a Parity OBDD we are proceeding in the
following way: First, we sum up all @-nodes that have a direct connection
to each other, resulting in meta-@®-nodes (see Chapter 5) with an arbitrary
number of successors. Then, every branching node v labeled with the variable
z; and connected to a @-node being one of its successors v or vy is directly
connected to all the successors of vy and vy, while edges leading to successors
of vg are labeled with 0, and edges leading to successors of vy are labeled with
1, respectively (see Fig. 4.10).

For a transformation of a Parity OBDD into a &-OBDD, we simply reverse
the whole process: Let v be a node of a Parity OBDD, having n 1-successors
v1,,...,01,, and ng 0-successors vy, ,...,vo,,- Lhe node v is transformed into
a regular binary branching node by connecting it to two new meta-®-nodes vy
and v1. vy is connected to all ng 0-successors of the former Parity OBDD node
v, and v1 with all ny 1-successors, respectively. In the last step, vg and v; are
transformed into trees of [log(ng)] and [log(n1)] regular binary @-nodes, with
V0, -+ -,00,, and vi,,...,v1,, as their leaf nodes.

41

Based on the model of Parity OBDDs the fastest known deterministic equiva-
lence test requires time cubic in the number of nodes. But, in symbolic sim-
ulation for the creation of a single node several equivalence tests have to be
performed: First, we have to verify, whether the operation that is computing a
new node has already been carried out before. Then, before the node can be
created we have to test, whether a rule out of the set of reduction rules can be
applied. Finally, we have to verify, if the node to be created does already exist.
For all these operations equivalence tests have to be performed. Circuit designs
in a practical working environment often comprise millions of nodes and thus,
the deterministic equivalence test although having polynomial runtime related
to its number of inputs is much too slow and not suitable for working in a
commercial environment.

4.4.2 Probabilistic Equivalence Test for Boolean Functions

For achieving an equivalence test for @-OBDDs that fulfills the necessary per-
formance requirements, we have to fall back on a probabilistic approach. In
general the method that is described here is based on the arithmetic transfor-
mation of the Boolean function represented as a ®&-OBDD into a multi-variate
and multi-linear polynomial over a finite domain. Then, the equivalence of
two @-OBDDs transformed into polynomials can be easily tested by applying a
standard randomized procedure. This technique has already been successfully
applied to OBDDs or FBDDs, and can be extended to &-OBDDs, too.

The algorithm itself belongs to the complexity class co-R P, which means that
the algorithm has a one-sided error probability. But, given that the error proba-
bility is %, the k-fold repetition of the test leads to a reduction of the error proba-
bility to 2% Blum, Chandra, and Wegman described a probabilistic equivalence
test for FBDDs [BCW80] based on a probabilistic zero-test for polynomials de-
veloped by Schwartz[Sch80] and Zippel[Zip70]. This concept was extended and
generalized by Jain, Bittner, Fussel, and Abrahams to be applied for OBDDs
[JBF+92]. To develop a probabilistic equivalence test for @-OBDDs, we take a
closer look on this method.

Probabilistic Equivalence Test for OBDDs

For every node v in an OBDD, a Hash Code aj, for the Boolean function
fo(z1,...,zy) represented by v is created. To achieve this, for each input
variable z1,...,z, a random integer element a; € Z,, p prime - the finite
field of integers modulo p is chosen. Then, a functionally transformed version
of f,, denoted as A[f,] (A-transformation of f,) that is represented by a field
polynomial over Z,, is generated and evaluated with the chosen random elements
a;.

We are now defining the A-transformation for a Boolean Function: Let b; €
{0,1} represent the truth value assigned to the variable z;. For representing
the value assignment to a Boolean variable z; = b; we introduce the expression
w(b;, z;) that can be expanded for the representation of a whole minterm to
w(bi,y ...y bny T, ..., Tn).

42

Boolean operation ® | 0,1-equivalent extended operation ®z,
~f -z, = 1-f
fiN fo firz, 2 = fi-fa
1V fa fivz, fo = fitfo—fi-fe
[19 f2 iz, fo = fitfo—2-fi-fo

Table 4.2: Extended Boolean Operations

Definition 4.3 Letw : Z,xZ, — Z, be defined as w(b,z) = bx+(1-b)(1—zx).
Then, define w : Z?,” — Z, as

n

Wy (b1, ey by X1y e s Ty) = Hw(b,-,:vi)
i=1

Now, we can sum up all minterm representations w,, to represent the A-trans-
form of a given Boolean function f. For readability we abbreviate by,...,b,
with b and z4,...,z, with z.

Definition 4.4 Given a function f : {0,1}" — Z,, the polynomial A[f]: Z; —
Z, is defined as

Alfiz) = D f(0) - wa(b,2).

be{0,1}»

If two functions fi and fo compute the same result for any Boolean vector
b € {0,1}", they are called 0,1-equivalent. Applying the A-transform to a
Boolean function increases the domain from {0,1} to Z,, but A[f] still yields
the same values as f, when evaluated on a Boolean vector (a4, ...,a,) € {0,1}".

Theorem 4.9 The functions f and A[f] are 0,1-equivalent, f U Alf].

Note that 0,1-equivalent functions on the domain Z, do not have to be equal,
e.g. f =2 ke N. Here, z* U z, but z* # z, if z¥ is defined over the domain
Z,. For computing the A-transform of a more complex Boolean expression ®
we are replacing simple Boolean subfunctions ®; by their corresponding 0,1-
equivalent field function A[®1] (shown in the 2nd column of Table 4.2) incre-
mentally until we finally get A[®].

If an arbitrary extended Boolean operation ®z, is to be applied to two functions
f1 and fo, which are defined on a disjoint variable set, then A[f; ®z, fo] =
A[f1] ®z, A[f2] holds. Otherwise, if the two variable sets are not disjoint, the
following theorem holds.

Theorem 4.10 For all extended Boolean operations ®gz, it holds that
Alf1 ®z, f2] = A[A[f1] ®z, Alf2]]-

43

This means that every Boolean operation can be extended in a way that no
exponents k£ > 1 will be created. Since ®, y must be a polynomial in z and y
we have the 0,1-equivalence

0,1
TQRpy =c1+tc-rt+c3-yt+cs-x-y

for some c1, c2,¢3, ¢4 € Z, and any extended Boolean operation can be assumed
to have this bilinear form.
To achieve identical polynomials A[fi] = A[f2] for functions f; and fo, which

are equivalent on the Boolean domain f; U fo, it is sufficient to extend the
Boolean operations to operations over a finite domain in that way that higher
exponents cannot be created and to exclude higher exponents in general. Thus,
we can define the following computation rules for obtaining the polynomial

A[f]:

Theorem 4.11 For any field function fi, fo: Z, X Z,, — Z,, and any constant
c € Z,, the following holds:

(1) Ale- f1] = c- A[fi]

(2) Alfr + fo] = A[fi] £ A[f2]

(3) Alfy- fo] = ALf] - Alfa], if fr and fy are disjoint
(4) Al =c

(5) Alz;] = z;.

(6) Alf1] = (1 —2) - Alfiz] + = - Alf1a]

Proof: (1), (2), (4), and (5) follow directly from the definition of the A-
transform. (3) is the application of the rule concerning the application of op-
erations on functions with disjoint variable sets. (6) follows from the definition
of A[fi] after reordering the addends. O

With these rules, the A-transform can be applied to any arbitrary arithmetic
expression, but the explicit evaluation of the polynomial often would be too dif-
ficult and thus, would also require to much time. For a probabilistic equivalence
check, it is sufficient to compare the A-transforms of two given functions only
in distinct instances. But, care must be taken, when substituting variables with
numeric values, if we want to maintain a proper hash code. This means that we
can only substitute a variable by a constant in an expression A4; ®, A, if only
one of the two expressions A; and A, is dependent of this variable. From the
given rules for the A-transform and an arbitrary extended Boolean operation
we have

A[f1 ®p fo] = c1 + 2 A[f1] + c3A[f2] + ciA[f1 - fo]

The term A[f; - f2] prevents the direct combination of the hash codes for f;
and fo and it can be eliminated for the conditions A[f; - fo] = 0, which requires

44

f1 and f5 to be orthogonal, or, if for fi and fo the dual of the orthogonality
condition holds, then A[fi] 4+ A[f2] + A[f1- f2] = 1.

Based on this theoretical foundation we can start a general analysis of the error
probability.

Theorem 4.12 For any polynomial f on Z, over n variables such that f # 0,
and any S C Z,, s = |S|, there are at least (s — 1)" vectors v € S™ such that

A[f](v) # 0.

Proof: The proposition can be shown by induction on n. For n = 0 the
polynomial is a constant ¢ # 0. Otherwise, let z; € {z1,...,z,} be a variable
of f. Then we can expand A[f] in the following way:

Alfl = (=) Alfg]+zi- Alfs)]
= zi- (Alfz,] — Alfz]) + Alfz]
= =i Alfe; — [z + Alfz]
If fz = fu;, then A[fz, — fz] = 0. By induction, there are at least (s — 1)"*
vectors v € S"! such that A[fz] # 0. 7; can be chosen arbitrarily and thus,
we have s(s —1)" ! > (s —1)" possible assignments, which compute A[f] # 0.

Otherwise, if A[fz] = 0, then, there are at least (s — 1)"~! vectors v € §"!
such that A[fy, — fz;] # 0. Since, z; can be chosen arbitrarily with

_ AlfsF]
A[f z = f E] ’
each provides (s — 1) additional vectors of length n and therefore, we have

(s —1)(s — 1)»t = (s — 1)" possible assignments, which compute A[f] # 0.
O

Ti #

Now, we can easily compute the probability that the A-transform of two arbi-
trarily chosen field functions fo, f1 differs on a randomly chosen input v € Z;,
if A[fo] and A[f1] are different.

Theorem 4.13 Let fy and f1 be any two field functions of n variables, such
that A[fo] # A[f1], and let v be a vector of length n, whose elements are ran-
domly chosen from Z,. Then

Prob(A[fo](v) # A[f1](v)) > (%)n

Proof: For any v € Zj;, A[fo](v) # A[f1](v) holds, if and only if A[fo— f1](v) #
0. We have just shown that there are at least (p — 1)" vectors out of possible
p™ that are full filling this proposition. O

The error probability is therefore bounded by e = 1 — (1 — %)" ~1—e /P
and if p> n, then 1 — e /P ~ %. Thus, the error probability can be reduced

45

by either choosing a larger field Z,, or by independently performing several
random tests.

The Boolean functions under consideration are hashed on the p elements of the
field. With ideal hashing the probability of a collision would be 11—), thus making
2 a good choice for a simple hash function as the one we have designed.

In the following section, this technique will be adapted to &-OBDDs, as it was

first proposed by Gergov and Meinel [GM93].

4.4.3 Applying the Probabilistic Equivalence Test to &-OBDDs

For applying the probabilistic equivalence test to @-OBDDs we use polynomials

over a Galois field GF(2™), m € N. GF(2™) is of characteristic char(GF(2™)) =
2, which simplifies the computation rules for creating polynomials that are gen-

erated from @&-OBDDs representing Boolean functions. For improving the read-

ability we write p; for the polynomial that is described by the A-transform A[f]

of a Boolean function f.

Definition 4.5 A polynomial py in GF(2™) representing the A-transform A[f]
of a Boolean function f, is defined in the following way:

n
pr= 3y [lef(—a)t—
aef~1(1) =1
where a = (a1,...,a,) € {0,1}".
The following properties can be shown easily:

Lemma 4.1 Let f,g : {0,1}" — {0,1} be Boolean functions and GF(2™),
m € N a Galois field.

(1) The polynomials pg,pg € GF(2™) are linear in all of their variables x; €
{xlﬂ .. a:L'n}; and f =g ’lf and only ‘I,fpf = pg-

(2) If f~1(1) and g~ '(1) are disjoint then Prvg = Pfag = Pf + pg-

(8) If there does not ezist a variable z; € {x1,...,z,}, such that both func-
tions f and g are depending on x;, then pyag = Py - Dg-

(4) Prog = Py + pg-

Proof: (1)-(3) follow directly from the theorems of the last section
(4) prog = pf+pg—2-pf-pg. With char(GF(2™)) = 2 the subtract multiplied
by the factor 2 can be reduced to 0. O

If we now consider the elements of GF(2™) as bit vectors of length m, then the
addition can be performed by bitwise application of EXOR. Now, a polynomial
py for a node v of a ®-OBDD Py, representing the Boolean function f, can
easily be computed.

46

Definition 4.6 Let P; be a ©-OBDD that is representing the Boolean function
f:{0,1}" — {0,1}. Let vy, vi be the successor nodes of node v. We associate
each node v of Py with a polynomial p, : (GF(2™))" — GF(2™):

0(1) if v is a 0-sink(1-sink),
Pv =1 DPz; Pl + (1 —pg;) poo if v is labeled with x;,
Pvo + Pu1 if v is a @ -node.

The polynomial p; for the Boolean function f represented by the &-OBDD
Py is the polynomial computed for the root node of P;. Note that for the
Boole/Shannon expansion of a branching node v by the variable z;, the addends
z; - fz; and T; - fz; are disjoint conjunctions, and that the sum z; - f, +@; - fz;
is also disjunctive.

For reasons of efficiency the polynomials of the &-OBDDs to be compared will
not be computed explicitely, but they will be compared at certain randomly
chosen instances as shown in the previous section. Therefore, for every variable
z; € {z1,...,2n} of the Boolean function f : {0,1}" — {0,1} represented by
the ®-OBDD Py we choose the elements A[z;] = py; € GF(2™), 4= (1,...,n)
independently and uniformly at random. With these values the hash codes
Po(Pzys- - - Pz,) identifying a unique node v of the @-OBDD Py can be com-
puted efficiently. Note that the hash codes for each node of a &-OBDD are
computed, when the node itself is created during @-OBDD synthesis. Thus,
the computation of the hash code depends only on the already computed hash
codes of its successors (for more details see Implementation of the Probabilis-
tic Equivalence Test). This hash code for the Boolean function f is also often
referred as Boolean signature or simply signature sig;.

Now, everything is prepared for the definition of an algorithm for the proba-
bilistic equivalence test for ®-OBDDs. Let Py and P; be two ©&-OBDDs rep-
resenting the Boolean functions f,g : {0,1}" — {0,1}. Let m € N such that
m > log(n) + 1, and, thus, |GF(2™)| > 2n. Assume that ai,...,a, € GF(2™)
are generated independently and uniformly at random.

Theorem 4.14 For the Boolean signatures p; and py computed for the ©-
OBDDs Py and P, it holds that

(1) pf(afla-",a'n) :pg(afla-":a'n)a fo =9, and
(2) Prob(ps(ai,...,an) = pglar,...,an)) < 3, if f #g.

Proof: (1) follows directly from the definition of the A-transform A[f] of a
Boolean function f. (2) With theorem 3.13 it follows that
p— 1 n
Prob(ps(ai,...,an) = pglay,...,a,)) <1—(—)" for f#g
with p denoting the size of |GF(2™)| > 2n. The error bound can be estimated
in the following way:

N

1 o — 1 1
1—(1’—)"<1—(”2 P=l-(1——)"<1-e"
P n 2n

<

N =

47

Input: ©-OBDDs Py, P,.
Output: If f = g the algorithm answers yes, otherwise it returns no with
probability greater than %

equivalence(Ps, P)) {

choose independently and uniformly at random ai,...,an;
compute pf(ai,...,a,) and pgy(ai,...,an);
if (pglai,...,an)==pg(ai,...,an)) {
return(yes) ;
} else {
return(no) ;

}
}

Figure 4.11: Algorithm for a Probabilistic Equivalence Test for &-OBDDs.

See Fig 4.11 for the algorithm in pseudocode.

Since SAT and EQU are related in the way that SAT(f) can be computed
by testing EQU(f,0) and negating the achieved result, we conclude also the
following theorem:

Theorem 4.15
(1) SATg_oBpp 1is probabilistic feasible, SATy_oBpp € R.

(2) EQUg_oBpp is probabilistic feasible, EQUg_oppp € co-R.

4.4.4 Determining the Error Probability

Based on the theorems 4.13 and 4.14, now, a closer look on the reliability of
this hashing technique is taken. According to the given definitions, the Boolean

signatures pf(ai1,...,a,) and pg(ai,...,a,) of two given Boolean functions f
and g, for f = g are certainly equal, but, on the other hand if two given
signatures pf(ai,...,a,) and py(ai,...,a,) are equal, then the functions f and

g are equal only with a certain probability.

Definition 4.7 A pairwise degeneracy between unequal Boolean functions f,g :
{0,1}" — {0,1}, f # g, occurs for those assignments (ai,...,a,) of input
signatures that cause pg(ai,...,an) = pglai,-..,a,). A degeneracy in a ®-
OBDD occurs for those assignments, where a pairwise degeneracy exists between
any pair of vertices in the ®&-0OBDD.

For &-OBDDs we can adopt the bound for pairwise degeneracy given by Brace
[Bra92].

48

Theorem 4.16 On a ®-OBDD P containing |P| nodes, the proportion of sig-
nature assignment to variables, which will cause a degeneracy somewhere in the
@-0BDD is less than 2-|G’|§7‘(22m|)'

Proof: There are (“;') pairs of nodes in the -OBDD P. Letr,s € N, 1 < r,s <
n. If we consider nodes v, of a distinct level [(v,) = z, in P, all labeled with the
variable z, (or, if v, is a @-node and its highest successor node is labeled with
z,. These nodes are actually stored in the same hash table (unique table) as
the variable z,, see section Implementational Details of the &-OBDD Package),
then a pair of nodes (v, v,) is of level r, if maz(l(vq),(vp)) = z,. Note that the
nodes labeled with the bottom variable next to the sink are level 1 and nodes
labeled with the top variable are of the highest level. A level r degeneracy is
called the degeneracy between a level r pair such that no degeneracies occur
between any level k pairs for any & < r. For determining the maximum number
of possible level r degeneracies, we require the following lemma:

Lemma 4.2 For each level r pair (vq,vp) in an ®-OBDD P there are at most
|GF(2™)|" L signature assignments to the variables of level k, k < r which will
lead to a level r degeneracy between v, and v,.

Proof: By induction on . For r = 1 at level 1, there are only the ®&-OBDDs
representing the constant functions f(z;) = 1/0, or f(z1) = z1/Z1. For every
possible pair, the lemma allows one degenerate signature assignment. For (z1,1)
/ (z1,0) the only degenerate assignment is sig;, = 1, for (z1,0) / (z1,1) the
only degenerate assignment is sig;, = 0, respectively. For (z1,Z7) the only
degenerate assignment is the unique value which is its own additive inverse.
By induction hypothesis the lemma holds for ®-OBDDs having r — 1 levels. Of
the |GF(2™)|" ! possible signature assignments to the r — 1 previous variables,
some of them might lead to an earlier degeneracy, but they are not considered
for this proof, because a level r degeneracy only occurs, when there are no
degeneracies in lower levels. Thus, there are at most |GF(2™)|"~! assignments
through level r — 1 which could possibly allow a level r degeneracy. Blum,
Chandra, and Wegman [BCW80] showed that there is at most one assignment
of a signature to z, such that sig,, = sig,, for each of these |GF(2™)|" !
A pairwise degeneracy for (vg,vp) exists, if sig,, = sig,,. We can decompose
vq and v, with Boole/Shannon decomposition by variable z,:

cases:

iz, - Sigv,, + Sigz; -siquﬁ = Sigg, * SiGv,, + Sigz - sigWE
Now, either vy, # vp, , OF Vg # vp_. W.lo.g. assume vy, # vp, (the

other case is symmetric) and let (zi,...,z,_1) be assigned values such that
sig(vg,,) # sig(vp,,). The above equation reduces to

S19z, * (szqum = 819y, — SiGv,_ + szgvpﬁ) = sigg, (szqumT — szgvm)
0

49

Since only sigy,, ~# Sigy,, is considered and all computations are performed
in a finite field (i.e. each signature has a unique multiplicative inverse except
for the unique signature 0) there is at most one value for sig;, that solves the
equation. Since there are r — 1 other variables, there are at most |GF(2™)|"~*
assignments to the r variables which could cause a level r degeneracy between
vg and vp. O

Thus, the portion of possible candidate assignments, where a pairwise degener-

ight is at most CEEITY 1 N d ight
acy might occur is at most =grmumyr— = 1g@ay- Now, a degeneracy mig

ﬂ of all signature assignments and the chance of finding

: 1
occur 1n at most TGF @™ : : .
no degeneracy among all possible pairs of nodes is greater than

|P| 1 |P|? 1 |P[?
1— e > 1 — : =1

2 | |GF(@2m)| 2 |GF(2™)| ~ ~ 2-|GF(2™)|
Od

Note that the probability of pairwise degeneracy has not been bounded to
m throughout all pairs and all variable assignments in the ®&-OBDD.
A degeneracy in the lower levels of the &-OBDD does increase the chance of
degeneracy in some higher levels. The proof is only concerned for the portion of
variable assignments, which yield a ©-OBDD completely free of degeneracies,
not the proportion of pairwise degeneracies over all of those assignments.

The reliability of Boolean signatures can be amplified by providing a larger test
domain, i.e. increasing m of |GF(2™)|, or by performing multiple independent
tests, i.e. providing several parallel signatures.

Theorem 4.17 Let P be a &-OBDD. Using s parallel signatures, the propor-

tion of signature assignments that lead to a pairwise degeneracy between any
|P|?n®

pair among |P| functions is at most STGFE

Proof: By theorem 4.13 and 4.14 we have already shown that a particular
pairwise degeneracy occurs in at most |GF’(172,”)‘ of the possible initial signature
assignments. By using s parallel signatures the risk of pairwise degeneracy
comes to (W)S With | P| nodes, there are less than (‘12:’ |) possible pairs of

nodes, therefore the chance of having at least one pairwise degeneracy among
P|2_ns
a

them is less than W

Compared to theorem 4.16 this bound is not as tight for s = 1. But, it is safe
even for assuming the worst pathological interaction between all functions that
are represented.

4.4.5 Implementation of the Probabilistic Equivalence Test

The implementation of the probabilistic equivalence test has been an essential
part in the development of the &-OBDD package and the main focus of that
implementation was concerned on questions of efficiency. The development

50

of the &-OBDD package started in a 32-bit UNIX environment. Thus, the
probabilistic equivalence test is based on word level 32-bit arithmetic, but it
can also easily be expanded for 64-bit arithmetic.

We consider the use of 32-bit words for representing a hash code of a polynomial
that is representing a Boolean function, i.e. we consider the field GF(23!)
as a basis. We can work in GF(2™) as in Fa[z]/p(z) with p(z) denoting an
irreducible polynomial of degree m. Such polynomials can be found easily, e.g.
223" 423" 41 is irreducible in Fo[z] for each k € N [LN86]. For taking advantage
of the full 31-bit length we are choosing the irreducible polynomial 23! + 341,
which computes a bit vector of the value 23! +23 +1. All computations in Fa[z]
have to be computed modulo the chosen irreducible polynomial. The 32nd bit
is used as a temporary storage for the carry of the multiplication of two 31-
bit numbers. Thus,we are avoiding an overflow out of the given word bounds.
While addition and subtraction can be computed by a bitwise XOR operation
on the bit vectors, the multiplication algorithm for two r-bit numbers using
only a r+1 bit variable for intermediate results is working in the following way:

Let (ar—1 -..ap) and (by_1 ...bg) be bit vectors of length r, and let (i,_1,...,ip)
be the irreducible polynomial for Fy[z]. Now, for every bit b; of (b,_1...by) we
add b;-2¢-(ar_1 ...ag) mod (iy_1,...,40) to the intermediate result (c,_1 ... co).
Note that multiplication by 2¢ is equivalent to shifting the bit vector to the left
by ¢ digits. For avoiding an overflow the multiplication is split in single shift
left and addition operations for each digit. Thus, the multiplication operation
in GF(2") requires O(r) elementary operations [STP86].

As mentioned in the previous chapter, the computation of the hash code for a
branching node v labeled with the variable z; € {z1,...,z,} in a ®-OBDD P
depends only on the already computed hash codes of its two successors vy and
v1 and the hash code for the variable x;. Thus, we are computing

SiGy = Sigg; * SiGy, + (1 — 8iGs;) * Sigy,-

We require two multiplications and one addition for computing the hash code
of a branching node and only one addition for computing the hash code of a
@-node.

For storing the Boolean signature of a @-OBDD node we have two different
possibilities: First, if our goal is to use as little memory as possible, we dont
reserve additional space in each node for storing its signature, but we have to
recompute the signature every time it is required. Note that this approach
necessitates also the recomputation of the signatures of all the node’s predeces-
sors. Thus, we are saving space, but the larger the &-OBDD gets, the longer
the computation of a signature in the upper levels of the &-OBDD will take,
although its time complexity is linearly bound by O(|P|). But, equivalence
testing is one of the most frequent operations in &-OBDD synthesis and ma-
nipulation. Therefore, we decided to spend additional memory for each node
for storing one or more signatures. For each independent signature additional
32 bit per node have to be invested.

51

Prob. of Degeneracy @4

1.08 - 101
5.0-1079
2.35-10716

B~ W N~ ®»

Table 4.3: Probability of Degeneracy using Theorem 3.16 for s 32-bit Signatures

Figure 4.12: Comparing the Error Probability of Signatures(a) and Simula-
tion(b)

For determining, what is a sufficient number of signatures to operate with in our
package, we computed the error probabilities of degeneracy @, for an arbitrary
®-OBDD of very large dimensions: We considered a ®-OBDD P with |P| = 107,
defined over n = 100 variables, within the given finite Field GF'(2™), m = 31.
s denotes the number of independent signatures (see Table 4.3).

For all performed experiments s = 3 signatures were proven to be completely
sufficient to prevent any degeneracy (See chapter Ezperimental Setup for Test-
ing the Reliability of the Probabilistic Equivalence Test). Note that the given
error bound is a rather conservative one. In fact it is never the case that every
pair of ®-nodes displays the worst possible pathological interaction with respect
to the probability of pairwise degeneracy.

If we compare Boolean signature based verification with random Boolean simu-
lation, where distinct random bit vectors are serving as inputs and the achieved
outputs of the two designs to be verified are compared, we might get a better
insight into the achieved error bound. Using signatures for each input variable
z; € {x1,..., 2y} a log(|GF(2™)|) = m random bit vector is assigned to and
thus, we are using m - n bits. The random Boolean simulation should use the
same number of bits to be tested and thus, it performs m runs with random
bit vectors of length n. In the worst case, the two functions that should be
compared, differ exactly in one minterm and the probability not to select it
as one of the m input patterns is (1 — 2%)7” In fact we have to compare the
probabilities given in Fig. 4.12:

Because |GF(2™)| >> n and |GF(2™)| >> 2, under the same premises the
signature based approach results in a much higher reliability. For a better un-
derstanding of this argument we can use assignment tables, an analogon for a
truth table for an algebraic representation. The assignment table has |GF(2™)|"
entries, each giving a value of A[f] for a different possible input vector. Given
two functions fy and fi, a comparison of their function values compares corre-
sponding entries in their truth table. If fy # fi; we are guaranteed of only one

52

difference between the truth tables, and only a rather weak guarantee can be
given on the probability that a random comparison will find it. On the other
hand, by theorem 4.12 we know that the assignment tables of two inequivalent
functions must differ in at least (|GF(2™)| — 1)" entries. Thus, the difference
on a single entry in the truth table is greatly magnified to provide assignment
tables that differ in nearly all entries. It is this magnification effect that makes
signature based verification so attractive compared to Boolean simulation.
Finally, as an additional extension of the @-OBDD data structure let us remark
that the probabilistic equivalence test can also be applied to &-FBDDs that
generalize FBDDs in a similar way as @-OBDDs generalize OBDDs.

Definition 4.8 A ®&-FBDD is defined in the same way as a FBDD with ad-
ditional @-nodes that can be part of the data structure as in the case of @-
OBDDs. This means that a &-FBDD is a directed acyclic graph that consists
out of branching nodes, labeled with a Boolean variable xz; € {z1,...,z,}, ®-
nodes, and the sink nodes. On every path from a root node to the sinks, each
variable must occur at most once.

As in the case of FBDDs, we can extend the definition of &-FBDDs also to
type consistent @&-FBDDs (7-&-FBDDs). As &-OBDDs, &-FBDDs are not
a canonical data structure. But, in order to make binary synthesis feasible

for ®-FBDDs, as in the case of FBDDs, we have to consider type restricted
@-FBDDs.

Definition 4.9 A &-FBDD P defines a ®-FBDD type Tp in a similar way as
FBDDs do. P is called type restricted, if it is possible to transform Tp into an
ordinary FBDD type Tp by means of a sequence of reductions.

In order to transform an @-FBDD type T into a FBDD type 7, we simply elim-
inate all ®-nodes starting from the sink and by applying deletion and merging
rule to the remaining type until no further reduction can be performed any-
more. Of course, the possibility of such an elimination of an ®-node does not
say anything about the redundancy of these nodes in the original &-FBDD.

Definition 4.10 Two &-FBDDs P, Q are called consistent, if they are type
restricted and if the corresponding FBDD types Tp and 7q are consistent.

But, &-OBDDs are not the main subject of this thesis and will not be considered
any further. In a next step to support efficient working with &-OBDDs, we focus
on &-OBDD synthesis.

4.5 Synthesis of &-OBDDs

For Boolean function manipulation by means of a representation like ®-OBDDs
we are in need of an efficient algorithm that is able to perform the application
of an arbitrary binary Boolean operator to two @&-OBDDs. For the creation
of a ®&-0OBDD based on a given circuit description, we are constructing the

53

@®-OBDD gate by gate starting with the circuit’s primary inputs in direction
to its outputs. For every single gate G of the circuit description and its inputs
GInN1,---,Grnm representing a Boolean operation G = Giy1 @ Giye @ ... ®
Ginm, a ©-OBDD PFg is constructed by applying the Boolean operator ® to
the ®OBDDs Pg,y,,---,Pa;y,, representing the inputs of G. Thus, Pg is
constructed by applying a synthesis procedure Pg = Q;~; Pg, ;-

As shown in [GM93] the result of the application of an arbitrary Boolean op-
erator ® to two @-OBDDs R and @ of the same variable ordering 7 can be
constructed in time O(|R| - |Q|). Even better, if ® € {®,=}, then the resulting
@-OBDD can be constructed in constant time.

But, before we describe the different synthesis procedures in detail, we have
to take care about necessary prerequisites that have also to be adapted for
®-0OBDDs synthesis.

4.5.1 Cofactor Creation

The already known synthesis procedure for OBDDs (ITE-algorithm) is work-
ing recursively based on the Boole/Shannon-expansion of the function f under
consideration w.r.t. its variables z; € {z1,...,z,}

=% fam+ @i fay.

For OBDDs, computing the cofactor w.r.t. the top variable of the OBDD is
quite simple. To compute f;;, with z; being the top variable of the OBDD Py,
we simply return the successor of the node representing f, where the 1-edge
is pointing to. To compute fz; we follow the other edge, respectively. This
operation can be performed in constant time O(1). Note that we only consider
the case of creating a cofactor fg, for the top variable z;. If the top variable
of f is another variable z;, j # ¢, then we assume that j > 7 according to the
given variable order 7 such that z; does not occur in the &-OBDD of f.

For the computation of a cofactor fs,(fz;) w.r.t. the top variable z;, for &®-
OBDDs we have to distinguish two different cases:

(1) The top node of Py is a branching node vp labeled with the variable z;,
or

2) the top node of Py is a @-node vg.
f ®©

For case (1), we create the cofactor fy,(fz;) in the same way as for regular
OBDDs, i.e. we return its 1-successor for f,; and its 0-successor for fz;, respec-
tively.

For case (2), the top node of f is labeled with a @-node. Its two successors vg;,
and vg, are denoting the functions f; and f,. If we want to compute fz,(fz7),
we have to create a new @-node vj, that has to be connected with the cofactors
flm,-(fla) of fi and f;,. (fu—,-) of fr. But, v}, only has to be created, if the node
that is representing f,. does not already exist in the @-OBDD. If a successor
ve, (v,) of vg is a branching node, then we proceed as for cofactor creation of
regular OBDDs (1). Otherwise, if a successor vg,(vg,) of vg is a @-node, we

54

Input: ©-OBDD Py, a variable z;, and the assignment a
Output:-OBDD Py, or Py_.

cofactor (Py, x;, pol) {
if (top node of P; is branching node) {
if (top variable of Py is ;) {
if (a == 1) {
return(1l-successor of Py);
} else {
return(0-successor of Fy);
}
} else {
return(Fy) ;
}
} else { // top node of Py is a ®-node
new_left = cofactor(i-successor of Py, a);
new right = cofactor(0-successor of Py, a);
if (node(XOR, new_left,newright) exists) {
return(node) ;
} else {
node=create(X0R, new_left, new right);
return(node) ;

}
}
}

Figure 4.13: Cofactor Creation Algorithm for @-OBDDs in Pseudo Code

continue as for step (2) (See Fig. 4.13 for the cofactor creation algorithm given
in pseudo code).

Given a ©-OBDD P; that is representing f, w.r.t. a fixed variable z; €
{z1,...,z,} and an assignment a € {0, 1} the algorithm computes the &-OBDD
Py, (Py.) representing the cofactor fz,(fz)-

For the case that the ®-OBDD Py does not depend on the variable z; and its
top node happens to be a @-node vg, no new ®-node has to be created, and
Py is returned. There are two possible ways to detect this particular situation,
dependent on the implementation of the &-OBDD data structure:

On one hand we might look for the first branching node among the successors
of vg, which is first w.r.t the given variable order w. But, for this solution,
if some of the successor nodes of vg also happen to be @-nodes, again all of
their successors have now to be tested, too. On the other hand, we also have
the possibility to label each @-node vg with the label of the first successing
branching node w.r.t. 7. If we choose the second approach, we can immediately
decide, whether P; is dependent of z;, also in the case, when the top node of
P; is a @-node. For the implementation of our @&-OBDD package we have

55

f, f, . f fs f

Figure 4.14: Cofactor Creation for @-OBDDs.

chosen this solution simply for reasons of efficiency, because cofactor creation
is one of the operations that have to be performed most frequently in symbolic
simulation.

Thus, the worst case time complexity of the cofactor creation algorithm for &@-
OBDDs is O(|P|), no matter for which variable z; € {z1,...,z,} the restriction
is computed. If we consider a worst case scenario and none of the cofactor &-
nodes to be created do already exist in the @-OBDD under consideration, they
all have to be newly created. See Fig. 4.14 for an illustrating example of this
situation. There, the &-OBDD of the cofactor f; and the @-nodes that have
to be newly created are denoted by dotted lines.

4.5.2 The Standard Apply Algorithm

The standard manipulation algorithm for &-OBDDs is based on the Boole-
/Shannon-expansion of the Boolean functions represented by the ©-OBDDs
to be combined. This algorithm, also known as standard apply algorithm can
be implemented recursively. But, for its application it is important that the
Boolean operator to be applied is distributive over the operations represented
by the &-OBDD nodes, esp. the distributivity over the XOR operator.

Theorem 4.18 Let Py, P, be two ©-OBDDs representing the Boolean func-
tions f,g:{0,1}" = {0,1} and let ® be an arbitrary Boolean operator. P;® P,
can be computed by recursive application of the operator ® on the successors of
P; and P,.

Proof: To show the required property for an arbitrary Boolean operation ®,
it is sufficient to show that the property holds for a complete Boolean operator
basis, e.g. {AND,XOR} = {-,®}. We have to distinguish two different cases:
the top node of Py and P, can either be a branching node or a @©-node. First, let
the top node of Py and P, be a branching node labeled with z; € {z1,...,2,}.

56

For ® = {AND} it holds that
f-g T+ fu; + i v f77) (Ti Gus + Ti " Ga7)

Ti - fa i Go) + (Ti - [T 937)

Ti - fo; - Ti - Go;) 0+ 0+ (T3 - fz7 - Ti - 977)

~ o~~~

and for @ = {XOR} it holds that

(@i Goi +Ti - 9z7)
('Ti'ng'@l‘_i'gw_i)
(@i - f& @ Ti - 977)
(fa © 977)-

fog = (@i fo,+7 f5)®
(@i [z, ®Ti - f77) ®
= xi'(fmi@gmi)"{_x_i'

Note that for the Boole/Shannon expansion f = z; - fz, + T; - fz; the two parts
of the sum are disjunctive. Therefore, it is possible to substitute '+’ by '@’
without changing the function’s result.

Now, let the top node of one of the two &-OBDDs be a ®-node, w.l.o.g. let
f = fi® fr (the other case is symmetric).

For ® = {AND} it holds that

f9 = (hi®f) (@ 9e + 7 9z;)
= fi- (i gu; +Ti - 957) @ fr - (T Go; + Ti - 977)

and
fo&g = (i®fr)® (x5 9oy +Ti - 977)
= fl@(xi'gwi+$_i'gw_i)®fr®($i'gwi+x_i'gz_¢)-

Thus, the computation of an arbitrary binary Boolean operator applied to two
@-OBDDs can be performed by its recursive application to the cofactors of the
@-OBDDs. O

Based on this theorem we can define a simple algorithm for applying an arbi-
trary Boolean operator ® to two @&-OBDDs, further denoted as standard-apply.
First, ® has to be expressed in terms of the complete Boolean operator basis
{AND, XOR}. Then, for the AN D-operator the AN D-synthesis procedure
is called, while for the X OR-operator simply a new @-node is created and
connected to the two operands.

The AN D-synthesis procedure is working in the following way:

If one of the ®-OBDDs Py, P, is a 1(0)-sink, the computed result of f -1 =
f(f-0=0) can be directly returned. If the top node of P; or of P, is a @©-node,
w.lo.g. let v be the top node of P, labeled with @, then, we create a new
@-node and connect it with the results of (f - v;) and (f - v,) (see Fig. 4.15 for
an illustration). If the top nodes of Py and P, are branching nodes that are
labeled with the variable x, then we create a new branching node that is labeled
with z and connect it with the result of Py, - Py, and Py_- P,_.

To avoid redundant recursive calls we can make use of cache table T'[z,y] of the
size | P| x | P|, which contains possible partial results of Py - P;. All entries of

o7

1 \\\\0
/ f-g
A

o] Or

Figure 4.15: AN D-Synthesis with the standard-apply Algorithm for &-
OBDDs.

T are initialized with zero. Before a new node is ceated, the table T is tested,
if this node has been already computed. If the node is found in T', then we can
directly return the node. Otherwise, the node is created according to the given
procedure and afterwards, it is stored within 7. See Fig 4.16 for an outline of
the standard-apply algorithm for @-OBDDs in pseudo code.

For the implementation of the complementation f of the Boolean function f
we can take advantage of the rule f = f @ 1, i.e. we create a new @-node and
connect it with the top node of the &-OBDD representing f and with the 1-sink.
The correctness of the algorithm follows from the easily provable correctness of
each of its recursive steps. Since the number of recursive calls is bounded by the
size of T', the time complexity of the standard — apply algorithm is bounded
by O(Py| - |F,)).

Instead of using {AND, XOR} as a basis for the ®-synthesis-procedure we
might also adapt the well known I7T E-algorithm that is applied in most OBDD
packages of commercial relevance, because of its efficiency.

4.5.3 The ITE-® Algorithm

When adapting the ITE-algorithm for OBDDs to be used for &-OBDDs, we
have to take care about the following major differences:

(1) The @-operation can be directly mapped to the creation of a new @-node,
and

(2) for recursively calling the ITE-procedure the cofactor creation has to be
adapted for &-OBDDs.

The standard ITE-algorithm for OBDDs is based on the ternary operator ITE:
ite(fagah) :fg+7h

58

Input: &-OBDDs Py, P,, and an arbitrary Boolean operator op.
In a preprocessing step op is mapped to the complete basis {AND, XOR} and the
operands Py and P, are adapted, respectively.

Output:@-OBDD Py, representing the Boolean function h = f op g.

standard-apply (P, P,, op) {
L2 (T[Py, P, £ 0) {
return (T[Py, By));
} else {
if (op == @) {
if (node(®, Py, P,) does not already exist) {
create node(®, Py, F,);

T[P¢,P;] = a pointer to node(®, P, P,);
return(node(®, Py, Fy));
} else {
if (Pj or P, is a 1l-sink) {
T[P;¢,P,] = a pointer to the other ®-0BDD;
return the other @-0BDD
} else if (Py or P, is a 0O-sink) {
T[P¢, Py] = a pointer to the 0-sink;
return the 0-sink
}
if (root of Py or P, is a @-node) {\\here w.lo.g. source of P,
new_left = standard-apply(F;, P, , op);
new_right = standard-apply(Ps, P, , op);
if (node(®,new_left,newright) does not already exist) {
new = create node(®, new_left, new.right);
}
T[P¢, P,] = new;
return(new) ;
} else {\\roots of P, P, are branching nodes
label = min(1(root node(F%)),1l(root node(F,)));
new_left = standard-apply(Py,,..5 Foiupers» OP);
new_right = standard-apply(Pf ... FPguses OP);
if (node(label,new left,new.right) does not already exist) {
new = create node(label, new_left, new right);

T[Pt, Py] = new;

return(new) ;

Figure 4.16: standard-apply Algorithm for &-OBDDs.

59

and the algorithm can be recursively computed based on the Boole/Shannon
expansion:

ite(faga h) = (‘Ta ite(f;c,gz, hw)a’bte(ffa 9z, hf))

The adapted ITE-algorithm - from now on denoted as ITE-@-algorithm - is
working in the following way: Let P,, P, be two &-OBDDs representing the
Boolean functions a,b : {0,1}" — {0,1}, and let res = a ® b be the Boolean
function to be computed, which in a preprocessing step is transformed into a
call to ite-®(Py, Py, P,). Let 7 be the variable order of P,, Py, Py, Py, and P.
If ® = XOR, we simply create a new @-node, connect it with the two operands
P,® Py, and return the new @-node as the result. Note that this step is identical
to the standard-apply algorithm. For reasons of efficiency we also maintain
a unique table that is implemented as a hash table with collision lists for pre-
venting the creation of nodes that do already exist. In the same way as the
regular I'TE-algorithm, I'TE-® requires three ©-OBDDs Py, P, and P, as input
parameters. In addition to the unique table we are maintaining a computed
table that is structured like a hash based cache for storing already computed
results of the ITE-® operation. If the result of ITE-®(Py, P, P) is already
present in the computed table, we simply return the stored result. Otherwise,
we are recursively calling ITE-&(Py,, Py, , Py,) and ITE-®(Py_, Py, P,_) with
the cofactors of Py, P, and P} for computing the two new successors of the
resulting node res. The node res is labeled with z, which is the top most
variable of Py, Py, and P, w.r.t. w. Then, if all successors of res have been
recursively determined and if res does not already exist, it has to be newly
created. At last, we store the new node res and the operands Py, Py, and P,
in the computed table.

The algorithm terminates, if the first of its parameters is a terminal node or
another terminal case of the standard ITE-algorithm is accomplished. See
Fig. 4.17 for an outline of the IT E-®-algorithm in pseudo code.

For a more efficient implementation and for increasing the hit rate of the main-
tained cache, the triple (Pf, Py, Pp,) is transformed into a standard form and
reordered in the same way as in the original ITE-algorithm, so that the &-
OBDD with the top most root variable according to « is first in the triple.
If the implementation supports complemented edges, the algorithm also takes
care that no 1-edge of a branching node will be complemented.

The implementation of the computed table as a hash based cache requires en-
tries of the form ((Pf, Py, P)|Pres). Note that the identification of the @-
OBDDs (Py, P, Py) is achieved via Boolean signatures, while P,..s is the mem-
ory address of the resulting &-OBDD.

Due to the use of the computed table the time complexity of the ITE-&®-
algorithm is bounded by the size of the participating @-OBDDs O(|Py| - |Py| -
|Py|). But, if we translate an arbitrary binary Boolean operator P, ® P into
its ITE-equivalent, one of the three parameters of ITE-@® will be a Boolean
constant. Thus, the time complexity reduces to O(|P,| - |FP|). Even better,
if ® € {®,=}, then the synthesis can be computed in constant time, because

(f=g)=(fogol).

60

Input: &-OBDDs P,, P,, and an operator op.
(P, op P,) will be preprocessed in PRE-ITE-®
Output:®-OBDD P,s representing the Boolean function h = f op g.

ITE-&(Py, P,, Py) {
transform to_standard triple(P;, FP;, P);
if (terminal case(P;, Py, Py)) {
return(Pre) ;
}
reorder triple acc to variable order(FP;, Py, P);
check rules for complemented edges(Pr, P, Py);
if (in computed table(Ps, P;, P,)) {
return(P,..,) ;
} else {
x = top-variable(P;, Py, Py);
new left=ITE-® (P, P, , Py,);
new right=ITE-®(Pr., Py, Pp);
if (signature(new left)==signature(newright)) {
Pres=new_left;
} else {
P,c.s=create node(x,new_left,new right) ;

}

insert_in computed table(Pr, Py, Py, Pres);
}
find or add in unique table(Pes);
return(Pres) ;

}

PRE-ITE-@ (P, Py, op) {

if (op == XOR) {
P,cs=create node(®, Py, Fy);
find or add in unique table(F,);

} else {
transform (Pf, Pg) into ITE triple (Pf, Pg, Py);
Pres=ITE-O(Py, Py, Py);

}

return(Pres) ;

}

Figure 4.17: The ITE-@® Algorithm for &-OBDD Synthesis.

61

4.5.4 Extending the Synthesis Algorithm

In symbolic synthesis by applying the I'TE-@-algorithm we are translating all
gates of a given circuit description via its ITE-@-equivalent into a &-OBDD
starting from the primary inputs to the circuit outputs. Each gate that is
representing the Boolean function f € {=,®} in the circuit description will be
directly mapped into a @-node or into its complement. But, for every other
gate that is representing a Boolean function f ¢ {=,®} the ITE-®-algorithm
is working exactly in the same way as the regular ITE-algorithm for OBDDs
and thus, no new additional ®-nodes will be introduced into the &-OBDD.
So, what if a given circuit description does not contain any gate that is rep-
resenting f € {=,®}? The ITE-®-algorithm will work like the regular ITE-
algorithm and an OBDD will be created instead of a &-OBDD.

Thus, we have to find new ways of introducing additional ®-nodes into the
@®-OBDD that is to be synthesized. One way of doing this independently of
the function being represented as an @-OBDD is deploying decompositions for
Boolean functions, which, in difference to the used Boole/Shannon decompo-
sition are explicitely using the ®-operator. These @-operators can be directly
mapped into new @-nodes in the &-OBDD. The two alternative function de-
compositions under further consideration are the positive and negative Davio
decomposition (expansion) (pDE/nDE):

pPDE: f=fr@z-(fz0 fu)
nDE: f:fzeaj(ffeafz)

Other decomposition types can be neglected, as it is shown in [BD95]. If we
consider the application of an arbitrary binary Boolean operator ® to two
Boolean functions f,g: {0,1}" — {0,1}, h = f ® g, we can expand h with one
of the above given function decompositions by the variable z € {z1,...,z,}.
W.lo.g. we will use pDE:

h=f®g= (fﬂ®%)@$z((fﬂ®%)@(fm ®gwi))

Now, we are able to extend the standard-apply algorithm for &-OBDDs that is
based on Boole/Shannon decomposition to Davio decomposition, where we are
able to introduce two new @-nodes with each decomposition step (see Fig. 4.18).
Note that it is also possible to use the Boole/Shannon-decomposition based on
the XOR-operator

f=mi [, 07 fzm

or to map every possible Boolean operator of the circuit description to the
complete bases (AND, XOR). But, the usage of the Davio decompositions has
been proven to be more efficient.

The extended apply-algorithm for @-OBDDs - from now on denoted as apply-
@ - differs only the synthesis part. Further, w.l.o.g. we will consider pDE. First,
we call the algorithm recursively for the positive and negative cofactors of the
operands Py, = apply-®(Py,, Py,,op) and Py, = apply-®(Py., Py, 0p). Then,
a new @-node is created and connected to Py, and Py,.

62

f=frox (hok)

Figure 4.18: Transformation from pDE-Formula to &-OBDD.

Next, the apply-® algorithm is called for computing the product z - (fo & f1),
which forms the ®-OBDD P,. The last step is the creation of a second @-node
that is connected with Py and P,. Note that new nodes are only created, if
they do not already exist and that also a computed table is maintained for
avoiding redundant computations. See Fig 4.19 for an outline of the apply-®
algorithm in pseudo code.

For each recursion step we introduce at most two new @-nodes. Obviously
many of the @-nodes that are created in this way are redundant and reduction
rules can be applied.

Note that in Fig. 4.19 we have mapped the Boolean operator to the complete
basis (AND,XOR). Otherwise, we have to support caches for each single
operator, or we have to use an extended cache table T'[Py, Py, op] for storing
already computed results.

As we will show in the upcoming chapter that is dedicated to the minimiza-
tion of ®-OBDDs, number and placement of @®-nodes within the &-OBDD are
important factors that determines size of the resulting &-OBDD. We have the
possibility to combine all different synthesis algorithms given so far and thus,
we are in control of how often pDFE or nDE will be applied for &-node creation.

4.6 Basic Manipulation Tasks for &-OBDD

We have shown the advantages of the @-OBDD data structure in comparison to
other decision diagram types and have pointed out the existence of exponential
gaps in their representational power. But, for working efficiently with this
new data structure the algorithms that are performing the basic manipulation
tasks have to be of polynomial complexity. As mentioned before, by being a
non canonical data structure some of the manipulation tasks for @-OBDDs, in
particular those that are related to testing the equivalence of two &-OBDDs,
are not simple to perform. In the following theorem we have summarized the
already mentioned results of the complexity evaluation of basic manipulation
tasks for @-OBDDs:

Theorem 4.19 Let G, Gy, and Go be ®-OBDDs ordered w.r.t. a variable

63

Input: @-OBDDs Py, Py, and an operator op € {AND, XOR}
Output:®»-OBDD P}, representing the Boolean function h = f op g.

apply-®(Pr, P,, op) {
if (P; or P, is a sink) {
res = directly computed result of op;
T[Py, Py] =res;
return(res);
}
if (TP, Py) #0) {
return (T[Pf, P,]);
} else {
if (op == @) {
if (node(®, Py, P;) does not already exist) {
create node(®, Py, P,);
}
res = a pointer to node(®, Py, Fy);
TPy, Py] = res;
return(res) ;
} else {
x = top variable of (P, Fy);
new,= apply-®(FP,, Py, , op);
newz= apply-®(Pr, Py, op);
if (node(®, new,, newz) does not already exist) {
create node(®, new,, news);
}
cof = node(®, new,, newg);
P, = ®-0BDD representing the variable z;
left = apply-®(F;, cof, AND);
if (node(®, newy, left) does not already exist) {
create node(®, newgy, left);
¥
res = node(®, newsz, left);
T[Pf, Py = res;
return (res);

Figure 4.19: apply-® Synthesis Algorithm for &-OBDDs Based on pDE.

64

ordering m representing the Boolean functions g,g1,92 : {0,1}" — {0,1}, let
z; € {z1,...,zn} be an arbitrary variable, and let ¢ € {0,1} be a binary Boolean
constant.

(1) The evaluation of G can be performed in time O(|G|).

(2) Replacement of an arbitrary variable x; in G by a constant ¢, Gy~ can
be computed in time O(|G|). The resulting graph G' is again ordered by
m and it holds that |G'| < |G|.

(3) Equivalence of G1 and G can be decided probabilistically in time O(|G1|+
|Ga|). Note that testing the equivalence of two Boolean functions g1 and
go is equivalent to the satisfiability problem for g1 @ gs.

(4) Satisfiability of G can be tested probabilistically in time O(|G|), simply by
testing the equivalence of G and the constant function 0.

(5) Boolean synthesis G1 ® Ga, with ® being an arbitrary binary Boolean
operator can be computed in time O(|G1| - |G2|).

(6) Complementation of the Boolean function g can be computed in constant

time O(1).

(7) Universal quantification Vx; : g and ezistential quantification 3z; : g can
be computed in time O(|G|?).

(8) Composition of G1 by replacement of an arbitrary variable z; with Go
(91]z;=g,) can be computed in time O(|G1|? - |Ga).

Proof: (1)-(6) have been shown in the previous chapters.

(7) By computing Vz; : g = g4, - gz; and 3z; : g = g4, + gz; with (5) we are
achieving the assumed result.

(8) Since restriction of a @-OBDD by a partial variable assignment can be
computed in linear time (2) we can compute the @-OBDD for g1|,,—g, with the
Boole/Shannon decomposition as

91 lzi=gs =92 Gz + 9291, = ite- @ (g2, 1o, glﬁ)'

and yield a time complexity of O(|G1|? - |Ga). O

4.7 Applying ©&-OBDDs in Symbolic Simulation

For demonstrating the efficiency of &-OBDDs a programming package that
realizes the basic tasks of symbolic simulation based on &-OBDDs has been
developed. Before the package could be deployed for experiments in symbolic
simulation, the reliability of the used data structure had to be proven, because
@-OBDD based symbolic simulation is relying on the application of a proba-
bilistic equivalence test. Thus, we had to investigate, how many signatures of
which length were sufficient for avoiding the possibility of errors.

65

G G .
| TE-G al gori thm
Ginm \

APPLY-E&al gori thm

Circuit (b-0BDD

Figure 4.20: Symbolic Simulation with &-OBDDs.

X— MUX

1)

)

fx fz

fx fx

Figure 4.21: Equivalence of Branching Node and Multiplexer Gate.

4.7.1 Experimental Setup

The basic task of symbolic simulation is the translation of a given circuit de-
scription into a specific data structure, which can be utilized for further manip-
ulation tasks to be computed on the circuit description. The circuit description
usually is specified in an appropriate design language in form of a text file.
It contains identifiers for the circuit’s primary inputs (PI), the gates, all the
interconnections, and the primary outputs (PO). For sequential circuits, loops,
feedback lines, and latches are broken into separate inputs and outputs. Then,
starting with the PIs, each successing gate is translated into the target data
structure - here, a &-OBDD. To translate the gate G, depending on the m € N
inputs Grn1, ..., GiNm and computing the Boolean function G = Q7 Grni,
successive calls to one of the introduced synthesis operations (ITE-@, apply-®)
have to be performed (see Fig. 4.20).

But, working with &-OBDDs and thus, depending on a probabilistic equivalence
test necessitates the possibility to proof the reliability of the approach. For
that reason, the constructed &-OBDD again was retranslated into a textual
circuit description. This retranslation can be performed by regarding every
node of the @-OBDD as either a multiplexer element (see Fig. 4.21), if the
node is a branching node, or as a @-gate, if the node is a ®-node, respectively.
Then, this new circuit description Cq_oppp can be verified against the original
given circuit description Cgjreuit With a standard verification tool, as e.g. VIS
[VIS96]. The verification tool is translating both, Co_oppp and Ceireyit into
an internal symbolic representation and the equivalence of both is tested. If,
during the construction of the &-OBDD the probabilistic equivalence test is
working without any errors, the result of the verification tool must be positive.
See Fig. 4.22 for an illustration of this approach.

66

original -OBDD package
circuit S P 9
description symbolic synthesis

symbolic synthesis
(VIS)

O symbolic synthesis
8 . VIS
AV)

OBDD MUX-circuit

Figure 4.22: Experimental Setup for Testing the Reliability of &-OBDDs.

of signatures 1 2 3 4
correct/ # total circuits || 32/42 | 42/42 | 42/42 | 42/42

Table 4.4: Testing Signature Reliability.

4.7.2 Experimental Results

For our experimental setup we have chosen a subset of the benchmark sets
of LGSynth’93 [LGS]. The benchmark set consists out of combinatorial and
sequential examples of wide variety in size and functionality. All experiments
were computed on an Intel Pentium IIT 500 MHz based Linux system. Memory
size is limited to 200 MB and computation time to two cpu hours. All circuits of
LGSynth’93 that could not be computed within the given resource limits have
been excluded. Also excluded are circuits that can be simulated by OBDDs or
@-OBDDs of less than 100 nodes. For a comparison, all benchmark circuits are
tested with a regular OBDD package - here, the CUDD package- and with our
@®-OBDD package. In this first round of experiments we are working with fixed
variable orders that were computed from the given circuit topology.

The first experiment should give an answer to the question “How many signa-
tures are necessary” for achieving reliable results when working with &-OBDDs.
We did symbolic simulation of the combinatorial circuits of our complete bench-
mark set with an increasing number of 32-bit signatures, while verifying the
results in the way we have described.

In Table 4.4, for different numbers of signatures the number of circuits that
were computed correctly in relation to the total number of benchmark circuits
is given.

As a result of this experiment we have fixed a number of n = 3 signatures that
have been proven to be more than sufficient for all circuits of the benchmark
subset. While using only n = 1 32-bit signature, 32 out of 42 circuits, all of

67

them creating ©-OBDDs larger than approximately 100000 nodes, contained
errors and defects due to signature degeneration. By using n = 2 signatures
instead, all of our combinatorial benchmark circuits are translated into error-
free ®-OBDDs up to a size of about 10° nodes. All further experiments with the
@-OBDD package have been computed with n = 3 signatures of 32-bit length
for reasons of security.

Now, in the second set of experiments we want to compare the efficiency of
OBDDs and @&-OBDDs for a given fixed variable order in symbolic simulation.
In Table 4.5 significant results for combinatorial and sequential circuits are
listed. For the complete results of the benchmark set see Table A.1 and A.2 in
the Appendix A.

Many of the circuits in the chosen benchmark set do not contain any XOR-gate.
Thus, a plain simulation based on the standard apply-@-algorithm or ITE-&®-
algorithm results only in an OBDD of size equal to the result of the OBDD
package. Therefore, we also conducted all the experiments for the extended
apply-@-algorithm with exclusive application of nDE and pDE, respectively.
The results of these experiments denoting the size of the data structures are
given in number of nodes. Note that for @-OBDDs branching nodes and also
@-nodes have to be counted. For @-OBDDs the first number gives the total
size, while the number in braces gives the number of included ®-nodes, if there
are any.

In Table 4.5 the first column denotes the circuit name. The second column
gives the size for OBDD simulation, and column 3 to 6 denote the @-size for
exclusive application of ITE-®, and apply-® with pDE and nDE, and also
for the standard apply-@ algorithm. The last row contains the overall sum
of nodes, computed for the whole benchmark set of 39 combinatorial and 28
sequential circuits. Note that the sum is only given, when all circuits could be
computed within the given resource limitations.

Among all 67 circuits there are only a few that contain explicit XOR gates. But,
sometimes these few XOR gates are heavily affecting the size of the resulting ®-
OBDD. E.g., if we consider the combinatorial circuits my_adder, adder16, C499,
and multi6a. These circuits contain about 30 XOR-gates, but the reduction
capability results in @-OBDD sizes that are ranging from 15% to 80% of the
original OBDD size. The most impressive result here is C499, where the OBDD
size of 45922 nodes is reduced to a @-OBDD size of only 7030 nodes, containing
only 32 @-nodes. In all other cases for the ITE-@-algorithm the &-OBDD size
is almost equal to the OBDD size, because in most circuits no new @-nodes are
created.

Similar is the situation for the standard apply-@-algorithm. There, for the
circuits my_adder and multl16a the original OBDD size could be reduced to a &@-
OBDD size of 70%-80%. C499, adder16, and also 10 other circuits of the combi-
natorial benchmark set could not be completely computed with standard-apply-
@, because of the given resource limitations. The results for these circuits
are denoted by a dash in the table. Compared to the ITE-@-algorithm, the
standard apply-®-algorithm requires more recursive calls and its cache effi-
ciency is worse. In the case of the circuit pair the result of the standard
apply-@-algorithm requires up to three times the size as the original OBDD,

68

size

circuit OBDD @©-OBDD
ITE | (&) nDE () pDE (®) stan (@)
vda 4345 4345 1954 (1399) 1895 (1276) 4345
my_adder 327677 || 262188 | (30) 589831 | (327674) 524297 | (262139) || 262188 | (30)
mux 131071 || 131071 217 (184) 217 (173) || 131071
i9 2278 2278 8754 (5132) 10258 (6509) 2278
i2 335 335 317 (a7) 851 (581) 335
frg2 6471 6472 | (1) 5031 (2655) 7246 (4451) 6461
apex1l 28336 28336 8901 (6002) 10545 (6930) 28336
adder16 327812 || 262310 | (32) 606303 | (376808) 589904 | (360409) -
€499 45922 7030 | (32) 13699 | (10074) 13704 | (9829) -
C432 1733 1733 | (1) 4913 | (3154) 4589 | (2885) -
C1355 45922 || 45922 14162 | (10538) 14167 | (10293) || 45922
multi6a 360442 || 262188 | (31) 655125 | (392968) 655077 | (392920) || 262188 | (31)
5820 2651 2651 552 (328) 718 (418) 786
s713 1352 1352 3554 (2114) 3122 (1626) 1056
$510 19076 || 19076 636 (433) 739 (503) 1038
5420 262227 262227 732 (431) 471 (201) 250
53384 748809 748809 1142383 | (781005) 1139458 | (762028) 748809
5208 1033 1033 186 (105) 141 (67) 80
51512 18896 18912 10941 (7295) 7148 (3499) 2621
51269 48176 48177 39922 (27974) 33418 (23231) 37459
% 5.688.571 n.a. 6.353.061 5.002.668 n.a.
100% 111.7% 87.9%

Table 4.5: Comparing OBDD and @¢-OBDD Size for Fixed Variable Order -
Combinatorial and Sequential Circuits.

Overal Runtime
circuit OBDD ®-0OBDD
ITE nDE pDE | stan
combinatorial 76.16 n.a. | 2440.5 | 1818.47 n.a.
sequential 22.86 n.a. 962.5 1033.0 n.a.
b 99.02 n.a. 3403 | 2851.47 n.a.
normalized 1 34.4 28.8

Table 4.6: Comparing OBDD and @&-OBDD Overall Runtime in CPU-Seconds

for Fixed Variable Order - Combinatorial and Sequential Circuits.

69

while the &-OBDD created with ITE-® is about the size of the OBDD.

More interesting are the results for the extended apply-®-algorithm using pDE
and nDE. For the simulated circuits the achieved @-OBDD sizes are ranging
from almost 0% to 450% of the original OBDD size. In detail, there are cm150a,
mux, and s420 with an OBDD size ranging from 100000 to 200000 nodes that
can be represented with &-OBDDs of only a few hundred nodes. Also for the
circuits s510, mm9a, mm9b, alu3d2, and alu3d2r the achieved &-OBDD size is
less than 10% of the original OBDD size. Here, the usage of @-nodes reduces
the size of the representation by several orders of magnitude and thus, shows a
dramatic impact.

But, also if we compare the results for the exclusive application of nDE and
pDE only, we can spot out significant differences. For 42, 19, and also frg2 the
resulting size of the ®-OBDDs for nDE and pDE differs from 118% up to 268%
for each pair. Also in the sum over all circuits nDE and pDE differ from 87.9%
to 111.7% of the original OBDD size. In each recursive step of the extended
apply-® algorithm up to two new @-nodes are created. By considering the
differences in size for nDE and pDE, we can conclude that not only the number
of included @-nodes, but also their placement seems to be significant for the
@®-OBDD size.

For i2 the extended apply-@® algorithm with nDE computes a &-OBDD of
94% the size of the original OBDD, while with pDE the @-size is 254% of the
original size. For nDE, 15% of the nodes of i2 are @-nodes, while for pDE, 68%
of all the nodes are @-nodes. Here, the difference in size for sure is related to
the portion of @-nodes in the -OBDD. If in the extended apply-® algorithm
pDE and nDE are used exclusively, as it is the case, often too many &-nodes
are created and thus, affecting the ®-OBDD size sometimes also in a negative
way. Therefore, a more sophisticated algorithm should limit the use of @-node
producing decompositions during synthesis.

The computation time for symbolic simulation with &-OBDDs is difficult to
compare with the computation time of an optimized professional OBDD package
like CUDD. The factors that are responsible for that fact are the following:

e For every node that has to be created in the &-OBDD package a fixed
number of Boolean signatures has to be computed, because the node has
to be identified with these signatures.

e The cofactor creation for &-OBDDs is a much more complex task com-
pared to the creation of cofactors for OBDDs, because it requires recursive
calls and special treatment for ®-nodes. Note that the runtime complexity
of the cofactor creation for @-OBDDs is bounded by O(|G|) as mentioned
in the previous chapter, and that for OBDDs the cofactor can be com-
puted in constant time O(1), if we consider cofactor creation w.r.t. the
top variable of the OBDD (as it always is the case in OBDD synthesis).

¢ Optimized OBDD packages use a sophisticated memory management strat-

egy that minimizes the number memory allocation calls and influences the
runtime drastically.

70

As shown in Table 4.6 the overall runtime for @-OBDD synthesis ranges from
28.8 to almost 35 times the time required for OBDD synthesis with the state-
of-the-art OBDD package. For ite-® and standard-apply-@® the overall sum
is not available since not all computations could be finished within the given
resource limitations. For the circuits that always could be completely computed,
for ite-® the runtime is about the same as in the case for pDE and nDE, but for
standard-apply-® the runtime was even much worse in many cases. Due to the
factors mentioned above and due to the fact that up to now no optimization has
taken place a runtime comparison between the two packages is not really fair so
far. But, as for some circuits we could gain a reduction in size of several orders
of magnitude, their runtime also showed an advantage compared to OBDD
runtime. Up to now, it is important to state that although even no optimization
has taken place, ®-nodes might lead to a significant reduction in size of the data
structure. This gain in size gives &-OBDDs the advantage of being applicable
to circuits that are not manageable by standard OBDD methods, because they
might exceed the given resource limitations.

For a summary of the achieved results, we are able to give the following state-
ments that are motivating further research presented in the next chapters:

e The use of ®-nodes can have a dramatic effect on ©-OBDD size and often
leads to a reduction in size.

e Sometimes, the exclusive use of the extended apply-® algorithm leads to
the creation of too many @-nodes and thus, can also affect -OBDD size
in a negative way.

e Differences in &-OBDD size depending on nDE or pDE lead to the as-
sumption that besides @-node frequency, also ®-node placement is im-
portant for the &-OBDD size.

e Manipulation of ®-OBDDs is more time expensive than manipulation of
OBDDs.

The focus of the next chapter lies on the optimization of the &-OBDD data
structure.

71

72

Chapter 5

Minimization of $-OBDDs

In this chapter we show how to improve the efficiency of the &-OBDD data
structure. Improving the efficiency for @-OBDDs means, reducing their over-
all size. In difference to OBDDs, The size of a &-OBDD depends on several
factors: First, as for OBDDs, the chosen variable order is an important factor
for @-OBDD size. Additionally, the number of &-nodes in the diagram, and
also the placement of the @-nodes inside the &-OBDD play an important role.
Improving the variable order 7 alone is a NP-hard problem. Thus, taking into
account that @-node position and number has to be optimized separately, the
overall minimization of @-OBDDs is even more difficult and the only practical
way to solve the problem is the development of appropriate heuristics for the
single optimization tasks. First, we take a look on the influence of the number
of @-nodes inside a given @-OBDD, before we investigate the importance of
the placement of ®-nodes. Since, our goal is to achieve a small ®&-OBDD Py
for a given Boolean function f, we have to investigate the effects of both, the
number of @-nodes used inside a @-OBDD, and their placement, respectively.
While additional @-nodes can be introduced by using one of the alternative
function decompositions (pDE, nDE), their placement can either be decided by
determining a well suited point during @-OBDD synthesis for switching from
standard decomposition (BS) to a decomposition that is introducing additional
@-nodes (pDE, nDE), or the chosen positions of @-nodes can be adjusted af-
terwards by dynamic relocation of already created @-nodes inside the given
@®-OBDD, which will be the topic of the upcoming sections.

Questions of efficient implementation technique are risen and we present our
solution that is based on merging chains and trees of @-nodes into so called
meta-®-nodes. By using these meta-®-nodes, the exchange of adjacent variables
becomes much easier to implement and constitutes the basis of our version of the
variable reordering for @-OBDDs. Finally, we develop and evaluate heuristics
for &-OBDD optimization on the basis of these fundamental techniques.

73

5.1 @-Node Frequency

5.1.1 Prerequisites

By introducing functional operator nodes as in the case of @-OBDDs, the effi-
ciency of the OBDD data structure can be enhanced by simultaneously giving
up canonicity. If we consider a @-OBDD P; representing the Boolean function
f = fi® fr, this function can be directly translated into a &-OBDD by creating
a @©-node v and connecting it with the ®-OBDDs Py, and Py, for f; and f;.
Thus, the size of Py is bounded by merely O(|Py,| + | Py, |).

On the other hand, instead of introducing a new @-node, we can translate
f = fi® fr to a call of the ITE-algorithm.

[= _fleafr_
= (flfr) +Lfl'fr)
= ITE(flafTafr)-

By computing ITE(f;, fr, fr) without creating a new @®-node, the size of the
resulting graph is bounded by O(|Py,|-|Py,|). Thus, in theory we might achieve
up to a quadratic gain in size for each introduced @-node. Of course, this
result must not be generalized, since, ITE(fi, f;, f-) might be much smaller
than the given bound, because the sharing of subgraphs, and it also holds only
for functions, which are containing @®-operations. The @-operator alone does
not form a complete Boolean basis and therefore, not all Boolean operators can
be mapped to &.

For symbolic simulation with &-OBDDs, circuits that are containing &-/=-
gates automatically provide a certain number of @-operator nodes to be in-
cluded into the @-OBDD. But, there might also be implicit @®-/=-gates hidden
in the given circuit description. The simple equivalence

f1@fo=(f1- o)+ (f1- f2)

is encoding a @-function in an {A, V}-based circuit, which can also be translated
into a ®-node. For CMOS implementations most circuits are based on NAND or
NOR gates [McC86]. Here, we can also look for NAND/NOR based encodings
of &-/=-operations with the help of the following equivalences. First, we show
how to express = by using NOR gates only. For readability we start from a = b,
deriving a NOR-based expression:

a=b = (a-b)+

(a-b)+ (+ b)

= (a+(a+b)-(b+(a+b))
(a+(a+0)+(b+ (a+b))

On the other hand, we can express @ by only using NAND gates:

adb =

(@) (b)
Figure 5.1: NAND and NOR Realizations of @ (a) and = (b).

(See Fig 5.1 for an illustrating example).

This encoding scheme really occurs in the circuits of the benchmark set that we
have analyzed for our experimental work. E.g., the two combinatorial circuits
C499 and C1355 are functionally equivalent, while C'499 is utilizing @-gates
and C'1355 is utilizing the given NAND encoding scheme.

Now that we have given a first theoretical bound on @&-node impact on &-OBDD
size and possible encoding schemes for the ®-operator, we focus on the practical
impact of @-nodes in symbolic simulation of the circuits that are contained in
our benchmark set.

5.1.2 Experimental Setup

For an estimation of the influence of the number of @-nodes in an arbitrary
@®-OBDD we consider the following experimental setup. If we are working with
the &-OBDD package while using the extended apply-® algorithm exclusively,
in most cases too many @-nodes are created and thus, affecting &-OBDD size
in a negative way. To lower this effect, we merge the application of the ITE-®
algorithm and extended apply-@®, while limiting the usage of extended apply-®
to a fixed percentage. This approach gives way to include a fixed percentage of
additional @-nodes into the &-OBDD.

Now, for finding out what is the suitable number of @-nodes for a given circuit
we conduct symbolic simulation of our benchmark set with the following ratio
of extended apply-® usage: 50%, 20%, 10%, 5%, and 2.5%.

To achieve a more reliable result about the effects of @-node frequency, the
extended apply-® algorithm is executed several times at random, but with the
fixed rate given above. For every single benchmark circuit and for every given
proportion we perform 10 single test runs. Thus, for evaluating the results of
the experiments we have computed minimum, maximum, and average number
of nodes per circuit and per given percentage over all simulation runs.

In this way we have the possibility to analyze the influence of ®-node frequency
on @&-OBDD size, and also to gain some insight into the effect of @-node place-

75

ment by analyzing the deviation from the achieved average result.

5.1.3 Experimental Results

In Tables 5.1 and 5.2 we have listed the significant results of the described
experimental setup. For a complete overview of all test results, see Table A.3
in the Appendix. The first column of the tables denotes the circuit’s name,
while the second column for a comparison lists the size of a regular OBDD for
this circuit. The next five columns register the &-OBDD sizes for the circuit
under consideration with a ratio of 50%, 20%, 10%, 5%, and 2.5% of extended
apply-® usage, each. For every circuit there are 3 rows listed in the table. The
first row lists the minimal &-OBDD size that could be achieved within the 10
test runs. In the second row we have computed the arithmetic average -OBDD
size achieved in the test runs, and in the last row the maximum ®-OBDD size
is listed. The very last row in Table 5.2 contains the overall sum of the sizes
of the data structure for each group of experiments, also minimum, average,
and maximum, each. In Tables A.3-A.7 in the Appendix, for each circuit an
additional row, containing the standard deviation of the overall results of that
particular circuit in relation to the arithmetic average is given as a percentage.
For readability, the minimum achieved size for each circuit is denoted in bold
face.

For the analysis of the experiments, let us first consider the different aspects
that are to be investigated:

(1) What is the influence of a different @-node ratio on the &-OBDD size in
general?

(2) For a fixed @-node ratio, given that the @-nodes are placed at random
within the @-OBDD, are there significant differences in size? Leading
us to the question, what is the influence of @®-node placement on the
@-0OBDD size?

Considering these aspects, in the Tables 5.1 and 5.2 we have selected 22 circuits
out of our benchmark set of 61 circuits that were able to finish computation
under the given resource limitations, for which this experiment was conducted.

ad (1): Considering the @-node ratio within a &-OBDD, we can deduct the two
following opposite peculiarities: As, e.g. the circuits s510, s420, or muz,
there are circuits that seem to benefit of including a large fraction of
@®-nodes. The more @-nodes are part of the &-OBDD, the smaller they
become in size. In general, these circuits do always benefit from the
introduction of @-nodes.

On the other hand, there are also circuits as, e.g. 19, my_adder, or
multl6a, where the opposite holds. The less &-OBDDs are included
into the ®&-OBDD, the smaller they become in size. For 79 or bigkey the
original OBDD size without any @-nodes is the smallest. These circuits
in general seem not to benefit from the introduction of @-nodes in any
sense.

76

@®-OBDD size

Circuit || OBDD - size [50%] 20%] 10%] 5% 25%
sbe 3715 || min 4302 | 3658 | 3562 | 3531 3700
avg 4588 | 3987 | 3861 3806 3793

max 5038 | 4219 | 4274 | 3961 3993

$635 656 || min 655 655 656 655 656
avg 659 656 656 655 656

max 663 659 657 656 659

s510 19076 || min 704 712 | 19016 | 19020 | 19076
avg 6272 | 17251 | 19077 | 19071 19078

max | 19198 | 19119 | 19149 | 19095 | 19085

$420 262227 || min 495 | 139219 | 131472 | 131474 | 254754
avg || 107602 | 236890 | 210778 | 249153 | 261480

max || 254760 | 262244 | 262239 | 262236 | 262233

5208 1033 || min 140 624 623 624 1031
avg 610 993 914 992 1033

max 1043 1040 1039 1034 1038

51423 98454 || min || 93909 | 93909 | 97702 | 98557 | 97836
avg || 104907 | 100641 | 101243 | 100175 | 98919

max || 116530 | 106276 | 107074 | 104556 | 100470

dsip 13921 || min || 13175 | 13487 | 13676 | 13832 | 13873
avg || 13432 | 13683 | 13795 | 13869 | 13910

max | 13733 | 13858 | 13902 | 13933 | 13971

x3 2760 || min 1804 | 1526 | 2665 | 2789 2604
avg 2799 | 2755 | 2836 | 2852 2775

max 3365 | 3022 | 3020 | 2991 2862

my_adder 327677 || min || 297773 | 262222 | 262190 | 262192 | 262188
avg || 390205 | 310440 | 285503 | 292756 | 264034

max || 465113 | 369380 | 361218 | 348200 | 266310

mux 131071 || min 217 | 131071 | 131071 | 131071 | 131071
avg || 91814 | 131071 | 131071 | 131071 | 131071

max || 131071 | 131071 | 131071 | 131071 | 131071

i9 2278 || min 5263 | 3431 2789 | 2506 2380
avg 5757 | 3717 | 2992 | 2633 2451

max 6215 | 3962 | 3367 | 2790 2564

example2 469 || min 479 467 456 466 468
avg 499 483 475 475 472

max 516 496 485 483 482

cm150a 131071 || min 207 207 207 | 131071 | 131071
avg || 39466 | 117984 | 117984 | 131071 | 131071

max || 131071 | 131071 | 131071 | 131071 | 131071

booth8x8 6386 || min 7486 | 6636 | 6120 | 5975 5964
avg || 10410 | 8489 | 6851 6380 6404

max | 12550 | 10752 | 9040 | 7252 7648

apexl 28336 || min || 15504 | 24051 | 21372 | 21508 | 26536
avg || 23346 | 28374 | 26521 | 27338 | 28095

max || 28972 | 30908 | 30095 | 28740 | 28728

Table 5.1: Influence of @-Node Frequency on &-OBDD Size (Part 1)

7

@®-OBDD size

Circuit || OBDD - size I 50% | 20% | 10% | 5% | 2,5%
alu32r 189266 || min 63974 96157 153622 170621 162704
avg 92939 146516 167093 182239 182294

max 136123 174227 188298 189982 190099

alu32 12194 || min 5192 8003 10096 10799 11679
avg 6877 9839 11022 11572 12004

max 8403 10831 11886 12211 12321

adder16 327812 || min 320025 285085 262411 | 262310 | 262310
avg 420763 342228 287074 275827 264098

max 537425 455693 398660 356718 273939

C499 45922 || min 7425 7150 7036 7030 7030
avg 10190 7683 7846 7100 7080

max 13254 8652 13308 7260 7272

bigkey 6170 || min 8051 7157 6639 6417 6253
avg 8139 7310 6770 6479 6322

max 8225 7426 6862 6555 6369

rot 166674 || min 202102 170609 170856 167104 | 163410
avg 217670 188105 178755 172378 167767

max 235279 215030 189352 177577 175387

mult16a 360442 || min 408863 279404 265291 262190 | 262188
avg 509929 330139 309691 311544 280296

max 605804 376504 451340 451611 328478

z 2.406.120 || min || 1.723.875 | 1.810.664 | 1.842.396 | 2.003.041 | 2.125.959
avg || 2.386.097 | 2.326.164 | 2.200748 | 2.254.635 | 2.186.692

max || 3.114.133 | 2.686.855 | 2.678.278 | 2.589.747 | 2.278.346

Table 5.2: Influence of @-Node Frequency on &-OBDD Size (Part 2)

78

ad (2): For each circuit and for each given ratio we conducted 10 independent
experiments, for evaluating the achieved node size for &-OBDDs with
a random placement of @-nodes at a fixed ratio. For determining the
significance of the different @&-node placement in each group, we have
computed the standard deviation

of the 10 experiments from the computed average value. n denotes the
number of experiments, x; the node size achieved in experiment ¢, 1 <

n
1 < n, and T is the arithmetic average T = % -y @
i=1
The deviation for each circuit and each fixed ratio is included in the Tables
in the Appendix.

In general, circuits that benefit from the introduction of @-nodes do have
a larger deviation in size for ratio = 50%, compared to the deviation of
the circuits belonging to the opposite group. For smaller ratio < 50% of
@-nodes, also the deviation becomes smaller. A very significant example
is s420, where the minimum achieved size is 495 nodes, while with the
same ratio the worst achieved result computes to 254760 nodes. A similar
behavior can be found for mux or ecm150a.

Considering the overall sum of nodes, the results for the minimum achieved
sizes range from 71% to 88% of the original OBDD size, where larger ratio is
producing smaller results. The opposite holds for the sum of the average and
the maximum results. There, with a smaller ratio, the achieved sizes become
smaller, meaning that the possible worse effects of @-node introduction are
balanced, when ratio is becoming small. Nevertheless, the average sizes are
ranging from 44% to 91%, while the maximum sizes are ranging from 129% to
even 95%. This signifies that even if we are only considering the worst case
behavior in the experiment, we are able to gain some profit against regular
OBDDs.

Secluding our analysis we are able to state the following results:

e There are circuits that do seriously benefit from the introduction of &-
nodes in general.

e For most of these circuits it holds that many @-nodes within the &-OBDD
result in a smaller overall &-OBDD node size.

e In the average, the smallest overall &-OBDD sizes could be achieved by
introducing only a small percentage of @-nodes into the &-OBDD.

e Due to our results summarized in (2), we can conclude that the place-
ment of ®-nodes also seriously effects the resulting &-OBDD size. Thus,
motivating further research on that particular subject.

79

5.2 @-Node Placement

As we could see in the previous experiments, not only the number of &-nodes
deployed in a &-OBDD, but also their placement is an important factor that is
severely affecting the final size of the data structure. But, how can we find out
about the best suited placement for @-nodes, and can we possibly change the
position of a @-node in an already constructed diagram?

When dealing with symbolic simulation, the first thing is to reflect on the
given circuit topology. There, every @-/=-gate or every gate combination that
is identified to represent a @-/=-operation can be directly translated into a
@-node. From the placement inside the given circuit description we might
conclude that introducing @-nodes right at the point where they are occurring
in the circuit netlist should be an appropriate place. But, this approach is only
working for circuits that really do contain @-/=-operators. For circuits, which
don’t comprise that operation, it is much more difficult to find an appropriate
place for inserting a @-node. Also for other tasks like sequential verification or
other optimization problems that can be solved with the help of &-OBDDs it
is difficult to find a qualified insertion point.

5.2.1 A Simple &-Node Placement Heuristic

As an indicator, whether the introduction of a @-node at a specific place into the
@®-OBDD might be useful or not, we might consider the following assumption:
If the introduction of a @-node is useful, then its introduction must result
in a ®-O0OBDD of smaller size. Now, we might place ®-nodes randomly into
the already constructed @-OBDD and decide, whether to keep them or not
according to their effect on the &-OBDD size. But, this approach requires the
construction of the complete ®-OBDD first, before we have the possibility to
start the improvement of its size. Thus, we could think of constructing only
a part of the ®&-OBDD, introducing a satisfactory number of @-nodes, and
afterwards, continue with its construction.

By following this concept, we end up in a dynamic approach, which in each con-
struction step of the &-OBDD compares its size with and without introduced
@-node at the place under current consideration. In symbolic simulation of a
combinatorial design this means, for each single gate GG, we construct the com-
plete &@-OBDD Pg representing the function fg of G. First, we use the ITE-®
algorithm and construct P;_;., and additionally, we perform the same com-
putation with the pDE(nDE)-Apply algorithm, resulting in Pr_,pr (Pr—ppE)-
Next, we compare the two distinct ®-OBDD sizes and decide, which &-OBDD
to keep. If ‘Pf—ite‘ > |Pf—nDE| (le—pDEDa then, we keep Pf—nDE (Pf—pDE)
and vice versa.

Thus, locally we always try to make use of the smallest possible @-OBDD. But,
of course this is only a local minimum. Another disadvantage is that we always
have to construct both versions of the &-OBDD with the two synthesis proce-
dures. To increase the efficiency of the approach, we limit the construction of
the alternative &-OBDDs to the case, only when the regular ITE-® algorithm
computes a &-OBDD that is passing a certain fixed threshold. Thus, the ad-

80

Input: ©-OBDD Py, P,, and operator ®
Output: &-OBDD P, representing res = f ® g

local greedy_synthesis(Py, P,, op) {
res-ite = ITE-PLUS(P;, P;, ®);
if (size(res-ite) > threshold) {
res-alt = APPLY-& (P, P,, ®);
if (res-alt < res-ite) {
res = res-alt;
delete res-ite;
} else {
res = res-ite;
delete res-alt;
}
}

return(res) ;

}

Figure 5.2: Locally Greedy Heuristic for &-OBDD Optimization.

ditional construction of @-OBDDs is limited to the cases, when an alternative
representation will be of major advantage. For an outline of this locally greedy
algorithm see Fig. 5.2.
An important factor for the efficiency of this heuristic is the proper choice of
the threshold value. For the conducted experiments, we have chosen from the
following possibilities:

e Forget about the threshold value, construct the &-OBDD both for ITE-&®
and APPLY-®, compare their sizes and choose the smaller one.

e Set the threshold value to the maximum size of the two operands multi-
plied by a constant c, thus ¢t = c- max(|Py|,|Py|) (MAX).

e Set the threshold value to the sum of the sizes of the two operands mul-
tiplied by a constant c, thus t = c¢- (|Pf| + |P,;|) (ADD).

In Table 5.4 the results of these experiments are put together. For different
constant factors 0.6 < ¢ < 2.0 we have listed the overall size achieved for all
benchmarks for the methods denoted as MAX, with application of nDE/pDE,
and as ADD, as referred in the list above. Note that compared to the stan-
dard synthesis of the previous chapter, only 63 out of the 67 circuits of the
benchmark set were able to finish the computation within the given resource
limitations Additionally, we have tried to reverse the decision criteria for the
heuristic, i.e. we use Apply-® as default function decomposition and only in the
case, when the given threshold value is exceeded by the resulting &-OBDD, we
switch to the ITE-@ algorithm with the regular Boole/Shannon-decomposition.
For this strategy (further denoted as pDE-first/nDE-first), where much more

81

OBDD-size ®-OBDD size
OBDD % pDE % | nDE %

[4.468.873 100 | 3.261.714 73 [4.4687.023 104.9 |

Table 5.3: Reference Table for OBDDs and @-OBDDs with pDE/nDE.

®-OBDD size
c MAX (pDE) % | MAX (nDE) % | ADD %
0.6 3.634.456 81.3 3.216.892 72.0 3.214.424 71.9
0.7 3.633.394 81.3 3.215.694 72.0 3.212.698 71.9
0.8 3.469.411 77.6 3.212.683 71.9 3.218.253 72.0
1.0 3.213.905 71.9 2.997.931 67.1 | 3.008.490 67.3
1.2 3.000.038 67.1 2.999.501 67.2 3.009.105 67.3
1.5 3.000.179 67.1 3.009.641 67.3 3.011.906 67.4
2.0 3.013.619 67.4 3.015.341 67.5 3.016.222 67.5
[¢ [MAX (pDEfirst) % | MAX (nDE-first) % | ADD % |
[1.0] 4.029.754 90.2 | 4.202.453 94.0 | 4.208.246 94.2]

Table 5.4: Locally Greedy Heuristic for @-Node Placement.

@-nodes are created, in general the achieved overall sizes are worse compared
to the original approach and only the results for the best choice of the threshold
parameter ¢ = 1.0 are listed for that case. This fact confirms the previously
achieved result that a small number of @-nodes placed at well chosen positions
inside the @-OBDD provides the best overall effect in the average. For a ref-
erence in Table 5.3 the overall sizes for OBDDs and for exclusive application
of pDE and nDE are also listed. The values given in percentages are always
referring to the OBDD size, which is denoted as 100%. For ADD we have only
listed the achieved sizes for nDE, because for pDE the results are only slightly
different. For a complete overview of the achieved results see Tables A.8 to
A.11 in the Appendix.

By comparing the overall achieved size, the first thing to mention is that the
exclusive application of pDE results in 27% gain in size, compared to a 5% loss
for nDE, if related to the original OBDD size. By applying the locally greedy
heuristic with different constant parameter 0.6 < ¢ < 2.0, the &-OBDD size
becomes minimal for choosing the parameter ¢ =~ 1.0. There, we are able to
achieve an up to 33% win for the overall size, which is much better compared
to the exclusive application of nDE or pDE. In their general behavior the two
approaches MAX and ADD produce only slight differences in size.

For circuits that benefit from the introduction of @®-nodes, the exclusive ap-
plication of nDE/pDE is often better than the proposed heuristics. But, for
circuits that don’t benefit from the introduction of &-nodes, the heuristic is of-

82

Overal Runtime
OBDD ®-0OBDD
pDE | MAX(pDE) || nDE | MAX(nDE) | ADD(nDE)
c=1.2 c=1.0 c=1.0
z 86.57 2562 2528 2961 3099 3160
normalized 1 29.6 29.2 34.2 35.8 36.5

Table 5.5: Overall Time Requirement for Locally Greedy Heuristic.

ten producing much better results than the exclusive application of pDE/nDE.
For the circuit multl6a, e.g the heuristic is always producing a smaller result
compared to OBDD size or the exclusive application of nDE/pDE. But, on the
other hand, for ¢m150a, the heuristic is not able to reproduce a result of simi-
lar quality compared to the exclusive application of pDE/nDE. For all methods
and all parameters the achieved ®-OBDD size is approximately of the size of
the OBDD or better.

Thus, in general our heuristic is able to keep the benefits of both decompositions,
BS and nDE/pDE.

For the locally greedy heuristic the runtime still is not comparable to the OBDD
performance of the CUDD package. But, if we compare the runtime of synthesis
with and without the heuristic, if the heuristic is applied, the runtime increases
in the average of less than 10% (see Table 5.5). For the first method MAX(pDE),
the runtime of the synthesis algorithm together with the additional heuristic
is even faster, which is due to the fact that in that case in the average the &®-
OBDDs are about 50% smaller than without the heuristic applied. Considering
the general reduction in size, spending a little overhead of time is certainly
worth while.

5.2.2 Using Linear Combinations

Another — maybe a more sophisticated — way of determining an appropriate
position for introducing a @-node can be derived from linear algebra.

It is convenient to regard the space B, = {f|f : {0,1}" — {0,1}} of Boolean
functions of n variables as an algebra over the two-element field Zs, ie. a
2"-dimensional vector space with an additional multiplication operation. The
product of f, g€ B, which corresponds to coordinate-wise conjunction, is de-
noted by f-¢ and the sum, which corresponds to coordinate wise XOR, by f+g.
In this context, the variable z; is taken to represent the projection from {0,1}"
to the ith coordinate and z; as the according complement.

Now, let P be a &-OBDD representing fp € B,. The Boolean function fp can
be regarded as the Boolean function assigned to the top node v of P and can
be defined inductively on i = n + 1,n,...,0, where ¢ denotes the level of P to
which the node v belongs:

(i) 4 =n+1: v is sink, f, =1/0.

83

(ii) v is a node in level i, 1 < i < n: let f! be the function computed by v’s
1-successor and f the function computed by its 0-successor, respectively.

Then f, = ;- fL +7i- 9 .

If it is possible to express the function under consideration as a linear combi-
nation of already computed functions,

m
[= Z fiy m €N,

=1
we are able to represent this function as a tree of m — 1 ®-nodes connected to
the m @&-OBDDs representing the already computed functions f;, 1 <1 < m.
Unfortunately, for testing the possibility of an existing solution containing the
functions that have already been computed, all possible linear combinations of
@®-OBDDs represented in the unique table have to be tested and thus, making
this approach not viable in that way, because too much time is required.
In the already mentioned model of POBDDs, this concept is utilized by con-
structing new POBDD nodes out of linear combinations of base vectors of the
underlying vector space, where the according linear combination can be derived
by the solution of a system of linear equivalences.

5.2.3 Dynamic ©&-Node Placement

Another possible approach is the insertion of additional @&-nodes into a &®-
OBDD either at random or by some heuristic. Then, after the construction is
finished, the @®-nodes can be moved around to find a better and more suitable
positioning for them. For realizing this concept, we have to find out, if it is
possible to move a single &-node efficiently by exchanging it with an adjacent
node. But, for this task, first, we have to consider an efficient way for the
implementation of @&-nodes.

The first question that we have to answer is how to integrate @-nodes into
the approved implementation of the OBDD data structure. Considering single
nodes of a &-OBDD we can use the same data structure for @-nodes as for
regular branching nodes. The only difference to OBDD nodes is that besides
labeling a node with a given variable, we have to denote, whether the node is
either a branching node or a @-node. This can be done by a single spare bit
within the integer data field denoting the variable that the node is labeled with,
e.g. we use the most significant bit representing the sign of that integer value.
As mentioned in a previous chapter, for OBDDs, branching nodes are stored
in different hash tables according to the variable that the node is labeled with.
This implementation is chosen to ensure a fast access to all the nodes that are
labeled with this specific variable. Fast access to nodes that are labeled with
the same variable is rather important for the dynamic exchange of adjacent
variables to improve a previously given variable order.

For efficient storage of @-nodes also efficiently, we have to consider different
possible solutions and to analyze their effects:

(1) Create one additional hash table Hg that is serving as a container for all
@-nodes in the &-OBDD.

84

As we have already mentioned in a previous section, it is advantageous, if we
label each @-node with a reference to the variable of the successor branching
node that is first w.r.t. the given variable order w. This method implies the
following two additional possibilities:

(2) For every variable xz; € {z1,...,z,} in addition to the already existing
hash table, create another hash table H;,_g, which contains all ®-nodes
that are labeled with a reference to this variable z;.

(3) Use the already existing hash table H,, that is containing the branch-
ing nodes labeled with z; and hash all @&-nodes that are labeled with a
reference to x; also in Hy,.

Approach (1) benefits from the fact that all @-nodes are hashed within the
same table. Thus making all those accesses faster, where it is necessary to
reach all @-nodes together as fast as possible. On the other hand, for accessing
only those @-nodes that are labeled with a reference to a given variable z;, all
@-nodes of the &-OBDD have to be examined.

To prevent this disadvantage, one of the alternative solutions would be prefer-
able. In approach (2), for every single variable z; we have to create a new
additional hash table that is containing only @-nodes with a reference to z;.
Thus, on the one hand giving fast access to all @-nodes of the &-OBDD and, on
the other hand, giving fast access to only those @-nodes, which have a reference
to a fixed variable x;.

But, why should we create new hash tables at all? Dynamic reordering oper-
ations, where @-nodes and branching nodes are exchanged between adjacent
tables would become much more complicated, because transitions of nodes to
and from the additional hash tables H;,_g have to be considered. Since, all
@-nodes contain the reference to a given variable z;, we can hash these ®-nodes
also within the same hash tables as all other branching nodes that are labeled
with the same variable z;, as it is proposed in approach (3).

There, it is also easier to determine, whether a new node that is to be created
does already exist, because only one hash table H,, has to be accessed for that
operation. Because of the missing canonicity for &-OBDDs, there might be
@-nodes vg_ ¢ representing the same Boolean function f as being represented
by some different branching node v,_s. Before a new branching node v that is
labeled with the variable z; can be created, in approach (1) the hash table Hy,
and the hash table Hg have to be examined, whether a node with the same
functionality does already exist. The same holds for the insertion of a new
@-node that is labeled with a reference to z;. And also solution (2) necessitates
the access to both the two hash tables H,, and H,, g for the decision, whether
a new node does already exist. Therefore, approach (3) has been considered to
be the most efficient approach and has been preferred for the implementation
of our &-OBDD package.

If we consider the case that the given @&-OBDD is completely constructed
first and if its size should be improved without changing the given variable
order m, we must have the possibility to move @-nodes inside the &-OBDD
data structure up and down. With the help of the following equivalences an

85

Figure 5.3: Exchange of @&-Nodes and Branching Nodes.

exchange of a @-node with an adjacent branching node can easily be imple-
mented. W.l.o.g. we consider a @-OBDD P; representing the Boolean function
f:{0,1}" — {0,1} with a @-node vy at the top. wv; is connected to two
successing branching nodes vy, and vy,, both labeled with the same variable
z; € {z1,...,2,}. vy, and vy, are connected to fi1, fo, and f3, f4, respectively
(see Fig. 5.3). Note that according to our implementation all three nodes vy,
vy, and vy, reside in the same hash table H,,.

f = hefh
= (i fio, +Ti fii) ® (@i - fro, + T frg)
= (@i fu, ®Fi fi) ® (@i fr,, OTi - o)
= (@i fio, ®Ti- fro) © (@i fi7- ©Ti - frr)
= :L-Z(flwl ®frmi)+$_i(flw—i®frﬂ)

Thus, the ®-node on top of P; can be moved down by one position without
changing v;’s functionality. Note also that the implementation of this node
exchange also benefits from the method we have chosen for hash table arrange-
ment concerning the storage of @-nodes in the previous section, i.e. node vy
remains in the same hash table and at the same position while changing from
a @-node into a branching node.

By moving move vy down by one position in Py, the following operations take
place:

e The node vy changes its identity into a branching node labeled with x;.
This means that the node v; does not change its functionality and there-
fore, its signature. It remains in the same hash table at exactly the same
position.

e Then, vy is connected to two new successors vy, and vy_. The node vy,
is a @-node connected to f1 and f3, while v o which is also a ®-node, is
connected to fo and fy. If v fo; @nd vg_ do not already exist in Py, they
have to be newly created. '

e The references to the old successors vy, and vy, are deleted and their
reference counter is decremented by one. If no other node is pointing to
vy, and vy, anymore, i.e. if their reference counter is decremented to 0,
the nodes will be put in a separate list for garbage collection,

86

See Fig. 5.4 and Fig.5.5 for an outline of the @-node exchange algorithm in
pseudo code.

In the case of fi = f3 we can immediately reduce vy, to the 0-sink, because
fe; = [1® f3 = 1 ® fi = 0. The same holds for fo = fi. Then, vy, (vfx_i)
does not have to be created, but vy is directly connected with the 0-sink via its
1-edge (0-edge) (see Fig. 5.6).

When the exchange is taking place in the opposite direction, i.e. the &-OBDD
P¢ under consideration with a branching node v; at the top labeled with z;
being exchanged with its successing @-nodes vy, and v Faro then the following
reduction is possible: If fo = f3, then the right successor vy, of vy, now being
a @-node can directly reduced to fs. On the other hand, if f; = f4, then the
left successor vy, of vy can be directly reduced to f; (see Fig. 5.7).

If complemented edges are used, then we have to take special care only for
those edges that are connecting vy with vy, and vy,. The complements on the
other edges, i.e. on all edges pointing to vy and those pointing from vy, to fi,
f2, and from vy, to f3, f4 are not affected by the node exchange. So, if the
edge from vy to vy, is inverted, then this situation can be managed by applying
the equivalence rules for inverted edges on branching nodes. Thus, after the
node exchange, the edge directed to vy_ is not complemented, while the edges
pointing to f3 and f4 will be complemeﬁted (See Fig. 5.8).

Whenever complemented edges are used, additional possibilities for reductions
have to be taken into account. If fo = f4, then the according edge leaving v I
can be directly connected to the 1-sink, because of the equality fz; = fo® fa =
fo ® fo = 1. The same holds for f; and f3 (See Fig. 5.9).

Because ©-OBDDs are not canonical, considering uniqueness rules for comple-
mented edges are not useful in the same way as in the case of OBDDs. But,
for improving cache efficiency and simplifying the implementation, we can nev-
ertheless avoid the inversion of 1-edges in case of branching nodes, respectively
the inversion of left-edges for &-nodes.

But, the important question is, how does the exchange of &-nodes and branch-
ing nodes affect the ©-OBDD size? Let us first take a look on a &-OBDD Py,
where we are exchanging a branching node vy labeled with z; with its successor
@®-nodes vy, and Ve (see Fig. 5.10 from left to right), resulting in a &-OBDD
Pj'f. In the worst case, for each branching node in level i two additional new
branching nodes vy, and vy, have to be created. For simplicity, whenever we
refer to the exchange operation for ®-nodes and branching nodes, in the case
when a branching node is to be exchanged with its @-node successors, we will
denote the exchange as the swap-up operation.

Thus, in the worst case for the swap-down operation, the size of Pji is bounded
by 2-|Py|. In the best case, if w.l.o.g. fi = f3, then for each branching node in
level 7 one new branching node might be created, but it may already exist in
level 4, while the old successor nodes v fos and v far become obsolete, because no
other node does have a reference to them. Thus, in the best case, the size of P}'
must be greater or equal than ‘%ﬂ and we can conclude the following theorem:

Theorem 5.1 Ezchanging all branching nodes of a given variable x; in a ®-

87

Input: ©-OBDD P; with top node vy
Output:@-OBDD Py with top node and successor nodes being exchanged

swap(Py) { //(a) vy is ®-node
if (vy is @-node) {
label = min(l(vy,vy,));
if (I(vg,) == label) {
J1 = vy .1-succ; f = vy .0-succ;
} else {
fi=fo=vy;
}
if (I(vy,) == label) {
fs = vy, .1-succ; f4 = vy, .0-succ;
} else {
fa=fa=vy;
}
l(vf) = label;
if (fi == f3) {
vy.1l-succ = 0;
} else if (f1 == f3) {
vy.l-succ = 1;
} else {
vp.1-succ = find or createnew(®, f1, f3);
}
if (fo== fa) {
vy.0-succ = 0;
} else if (fo==f1) {
vy.0-succ = 1;
} else {
vp.0-succ = find or createnew(®, f2, f4);

}

decrement refcount of vy and vy, ;

Figure 5.4: Algorithm for Exchange of ®-Nodes and Branching Nodes (part 1).

88

else { //(b) vy is branching node labeled with z;
if (I(vf.1-succ) == @) {
f1 = fz;.1-succ; fo = fz,.0-succ;
} else {
fir=f2 = fois
}
if (I(vy.0-succ) == @) {
f3 = fz;-1-succ; fi = fgz;.0-succ;

} else {
f3=fa= fz;

}

it (fi==13) {
vp.1-succ = fi;

} else {

vp.1-succ = find or createnew(z;, f1, f3);

}

if (fa==/f A{
vp.0-succ = fa;
} else {
vp.0-succ = find or createnew(z;, fo, f4); }
l(vf) = @;
decrement refcount of f; and fz;; }
return(vy) ;

}

Figure 5.5: Algorithm for Exchange of &-Nodes and Branching Nodes (part2).

Figure 5.7: Reduction while Exchanging &-Nodes and Branching Nodes (2).

89

Figure 5.8: Exchanging @-Nodes with Complemented Edges.

{ ot (1

Figure 5.9: Reduction for Exchanging @®-Nodes with Complemented Edges.

Figure 5.10: Swap-Up Operation of &-Node.

90

Figure 5.11: Swap Down Operation of &-Node.

OBDD Py with their successing ®-nodes, i.e. performing a swap-up operation
for all branching nodes labeled with x;, results in a ®-OBDD PJ,('; with size
bounded by

||
<P <20 |Pyl.

For the case of the exchange of @-nodes with their successing branching nodes
that are located in the same hash table, different bounds will hold. To dis-
tinguish this case from the former situation, the operation of exchanging a
branching node with its successing @-nodes, will be denoted as swap-down op-
eration (see Fig.5.11). Note that it is only suitable to perform a swap-down
operation between nodes that are located in the same hash table. The @-node
is labeled with the variable of its first successor w.r.t. the given variable order.
An exchange of that @-node with a branching node that is labeled with a dif-
ferent variable is not directly possible, because this also necessitates a change of
the variable order and thus, also structural changes for the rest of the @-OBDD
are required.

While the upper bound for the swap-down operation is the same as for the
swap-up operation, the lower bound changes.

For the case that fo = f4 (fi = f3 can be treated in the same way), the new
0-successor f far of vy computes fz; = fo® f4 = 0 and thus, the entire subgraph
rooted by vy_ turns to the O-sink (if fo = fi, then vy_ will be the 1-sink,
respectively). ‘See Fig.5.12 for an illustration of this effect.

If no other node is referencing f7, this reduction might affect the size of Py dra-

matically in the sense that up to % [BHR95], i.e. a complete sub-OBDD
rooted by fo will become superfluous in the best case for a single swap-down
operation. The other successor branch of vy cannot simultaneously collapse,
because otherwise, f would have been previously recognized as being the 0-sink
for fi = f3 A fo = f1 (I-sink for f; = f3 A fo = f4) or the projection function
of z; for fi = f3 A fo = fi (or its complement for fi = f3 A fo = f1).

Thus, it is difficult to give a lower bound, for exchanging all &-nodes labeled
with a given variable z;, because the collapse of one successor of all new branch-
ing nodes labeled with x; has to be considered. Also, for this reason the effects
of the swap-down operation are not local anymore and affect the nodes beyond
that level.

91

Figure 5.12: Reduction in Swap Down Operation.

Theorem 5.2 Exchanging all ®-nodes of a given variable x; in a ®-OBDD Py
with their successing branching-nodes, i.e. performing a swap-down operation
for all ©-nodes labeled with x;, results in a ®-0OBDD PJ,(', with size bounded by

MINg_ospp(f) < |Ppl <2 |Pyl,

where MINg_oppp(f) denotes the minimal &-OBDD representation size for
the function f for a given variable order.

But, this property also shows the power of the &-operation and the importance
to find an appropriate place, where to position the @-nodes within the &@-
OBDD. We also see that this property can cause an assymetric behavior that has
to be further considered for optimization heuristics in the upcoming sections.

5.2.4 Meta-d-Nodes

If, for further improvement of the &-OBDD size, we want dynamically adjust
the given variable order w, we are facing the problem that between two adja-
cent variables that are to be exchanged, one or even more @-nodes might be
positioned. Before an exchange of two adjacent variables can be performed, all
@-nodes between these variables have to be removed by exchanging them with
neighbored branching nodes. If more than only a single @-node is positioned
between two branching nodes that are labeled with adjacent variables, remov-
ing these @-nodes might lead to a significant blow up in size. Also, all these
@-nodes might be placed in different hash tables, what might also be a source
of new ambiguity.

The situation is much simpler, if only one single @-node is located between
two branching nodes that are to be exchanged. Then the implementation of
the variable exchange operation will become feasible. One possibility to ensure
that there is at most one @-node between any two branching nodes that are
labeled with adjacent variables is to combine all @-nodes between these two
branching nodes to a single meta-®-node that serves as a container for all
successor branching nodes of these binary @-nodes (see Fig. 5.13).

Definition 5.1 Let k € N. A meta-@®-node is a ®-node within a ®-OBDD with
an arbitrary number of successors. In a given ®-OBDD all ®-nodes vg,, ..., Vg,
on a path between two branching nodes labeled with adjacent variables can be

92

Figure 5.13: Combining Single @-Nodes to a Meta-@®-Node.

summarized into one meta-®-node vg. The k + 1 branching node successors of
V@ys-- - Ve, Will be the direct successors of veg.

How can meta-@-nodes be implemented efficiently? Up to now, in our imple-
mentation branching nodes and binary @-nodes are differing only by a single
bit. But, for the implementation of meta-®-nodes, an arbitrary number of suc-
cessors has to be stored within the meta-®-node. One possibility to do this is
to maintain the old data structure as a wrapper and thus, it is possible to work
with binary @-nodes and meta-®-nodes simultaneously without introducing a
new data structure and thus, keeping the ®&-OBDD implementation homoge-
neous. The only thing that is changed for meta-®-nodes are the two pointers
to the left and right successor node. For representing meta-®-nodes, we mark
the node with a spare bit in the data structure and use the pointer to the right
successor for storing the number of successing nodes. The left successor will be
a pointer to a successor array that is allocated separately, comprising only as
much space as necessary and containing pointers to each single successor (see
Fig. 5.14).

One of the advantage of using meta-®-nodes is the possibility to apply more
sophisticated reduction rules. If we consider a tree of n € N binary @-nodes
the n + 1 potential successing branching nodes representing f, ..., fr4+1 are all
connected by a XOR operation, f = @?;11 . Thus, if 35,k € {1,...,n+1}:
fi = frx or fi = fx, and f;, fi are not necessarily connected to the same binary
@-node, this possible point of reduction is rather costly to detect in our standard
implementation with binary @-nodes, because the complete @-node subtree has
to be accessed in a recursive way. For meta-@-nodes we have the possibility to
order all successors in the pointer array during insertion time. Thus, we only
have to scan the ordered pointer array and can easily detect possible reduction
points without stepping through a tree of binary ®-nodes in depth-first-search
(dfs) manner.

If w.lo.g. fn = fn+1, then

n+1

n—1 n—1
f=fi=Pfi e0=0p fi
i=1 i=1 i=1

93

binary ©-node

f

-index

le right

contains:-index
-left
-right

meta- ©-node

-index

successors

pointer array to successors

contains:-index
-# of successors
-pointer array to succerssors

Figure 5.14: Implementation of Meta-®-Nodes.

|

Figure 5.15: Additional Reductions for Meta-@®-Nodes.

94

node to be added
decrement refcount

new or existing node

Figure 5.16: 2nd-Level-Reduction for Meta-®-Nodes.

Otherwise, if w.l.o.g. f, = fn41, then

n+1

n—1 n—1
f=@fi=Pfie1=
i=1 i=1 i=1

(see Fig. 5.15). It is important to avoid the situation of inverting the incoming
edges of f, because for this operation all nodes above the current variable level
would have to be accessed and tested. This problem can be solved by inverting
the first successor of f instead of inverting f itself, since if f = f1 @ fo, then
f=hHhef.

Additionally, we have to take care of another important type of reduction that
was already introduced for binary @-nodes in the previous chapter(see Fig. 4.8
and Fig. 4.9). This reduction has to be tested, whenever a new successor node
is put into the successor list of the meta-@®-node v. Consider a branching node
vp that is supposed to be put into the successor list of v. Let v, be labeled
with the variable z and let vy, be its 1-successor and vy, be its 0-successor.
N suce denotes the actual number of successors of v. If now, any of the nodes v;,
1 <4 < ngyee that are already listed in the successor list of v, is labeled with
the same variable z, then the following equivalences have to be tested:

Let v;, be the 1-successor of v; and v;, the 0-successor of v;, respectively. Then,
if vp, = vj,, v; can be substituted by its successor v;, and instead of v, another
node v} labeled with variable z, with v;; as 1-successor and vy, as 0-successor
has to be put into the successor list of v. In the best possible case, this node
does already exist in the hash table and no new node has to be created. The
reference count of the old nodes v, and v; is decremented and if no other node
in the &-OBDD is referencing them, they become obsolete and are not required
anymore. The case for v,, = v;, has to be computed in the same way. See
Fig. 5.16 for an illustration of this 2nd-level reduction for meta-@®-nodes.

In general, if we want to employ meta-@-nodes, this necessitates a fundamental
change in the &-OBDD data structure. Up to now, the number of successors
of a node was fixed. But from now on, when dealing with a variable number
of successor nodes, the data structure has to be adapted accordingly and the

95

manipulation algorithms have to be adapted. In principle, there are two possible
different choices of when to introduce them:

(1) After synthesis: Sum up all binary branching nodes after synthesis is
completed.

(2) During synthesis: Perform synthesis with meta-®-nodes directly right
from the start.

Solution (1) can be easily implemented. Consider an already constructed @-
OBDD P. Starting from the root, we are traversing P levelwise. Note that
this is possible since the hash table that is containing all the nodes is organized
by levels. Each @-node represents the possible root of a tree of ®-nodes. This
tree is traversed in depth-first-search manner and all successing branching nodes
will be put in the ordered successor list of the transformed root node, while the
reference counter of all binary @-nodes of the tree is accordingly decremented.
Finally, the number of successors is determined and the new meta-@-node is put
into the appropriate unique table. Note that it is possible that the root node
that has been transformed into a meta-®-node has to be put into a different
hash table, because reductions might have changed the reference to the next
successing branching node variable. See Fig. 5.17 for the algorithm in pseudo
code.

In order to realize approach (2) the entire synthesis procedures including the
cofactor creation has to be reimplemented. A potential problem that might
occur during the adjusted synthesis, if we are using meta-@®-nodes right from
the start is that meta-®-nodes possibly have to switch between different hash
tables. This situation can occur each time when a new successor vpe, is put
into the successor array of the meta-®-node v. If this new successor vpe, is
labeled with a variable index that is smaller than all other variable indexes of
the nodes in the successor list [(vpew) < 1r<nii<nn(vsucc[z']), then, the @-node v has

to be relabeled and it must be put into the according hash table. But, if a node
v with the same functionality f, does already exist in the other hash table, we
have two different nodes v and v’, both representing the same Boolean function
fo = fur- To get rid of one of them, we would have to redirect all incoming
edges of one of these nodes, what might cause that synthesis becomes a non
local procedure, because all predecessors of the node that will be substituted
have to be accessed.

Fortunately, for symbolic simulation, the &-OBDD for a given circuit netlist
description is constructed starting from the primary inputs by computing the
corresponding &-OBDD for every gate until all primary outputs are reached.
In the synthesis procedure - independent from the chosen decomposition rule to
be applied - a meta-®-node that is to be created does only depend on already
computed nodes. After its construction the node will never be a subject of
change, because all nodes that still have to be created will not be in the tran-
sitional fanin of that particular node. Thus, if all predecessors are completely
determined, a new meta-® can be created and be put into its corresponding
hash table, without being changed anymore. This means that &-OBDD synthe-

96

Input: ®-OBDD Py with binary @-nodes.
Output: &-OBDD PJ’c with meta-®-nodes.

assemble meta_xor(Ps) {
step through all nodes v of Py levelwise {
if (I(v) ==a) {
Unew = transform_to_meta_@®-node (v);
Unew -0 = create_successor_1ist (v,ey.succ_list, vpew) ;

}
}

return(Fy) ;

}

create_successor_1ist (vpey,.succ_list, v) {

// step in dfs order through tree rooted by v

if ((v)==@) {
n = create_successor_list (v, .succ_list, v.1l-succ) +

create_successor_list (vpey.succ_list, v.0-succ);

} else {
put v into vpey .succ_list;
n+ +;

}

return(n) ;

Figure 5.17: Algorithm for Transformation of Binary @-Nodes to Meta-®-
Nodes.

97

Figure 5.18: An Example for Meta-®-Node Transformation in a &-OBDD.

sis based on meta-@®-nodes is feasible, because all required operations remain
local.

See Fig. 5.18 for an example of transforming an arbitrary &-OBDD with binary
@-nodes into a ®-OBDD with meta-®-nodes. The number inside the meta-®-
nodes denotes the number of successors.

@®-OBDD Synthesis with Meta-®-Nodes

When the &-OBDD synthesis procedure is adapted for the use of meta-®-nodes,
independently of the chosen function expansion the following two important
tasks have to be considered:

(1) the creation of cofactors for @-OBDDs with meta-@®-nodes as root nodes,
and

(2) the creation of new meta-@-nodes in the synthesis procedure.

The creation of cofactors is the essential operation of the synthesis algorithm,
because all the algorithms that are considered in this thesis are based on recur-
sive procedure calls with the input function’s cofactors as required parameter.
For regular binary synthesis, the case of a tree of @-nodes constituting the top
of the &-OBDD under consideration has to be taken special care of, because
the situation requires the recursive application of the given binary cofactor al-
gorithm and - as shown in the previous chapter - sometimes it also requires the
duplication of several nodes of the @-node tree.

The cofactor creation algorithm can be simplified for the usage of meta-®-
nodes. If the cofactor Py, has to be created for a &-OBDD P representing the
Boolean function f w.r.t. the top variable z, and the root node of Py happens
to be a branching node vy, the algorithm is not changed at all and one of the
successor nodes of v, will be returned.

98

Figure 5.19: Cofactor Creation for a Meta-@-Node.

f fx

fp fy f

Figure 5.20: Cofactor Creation for a Tree of Binary @-Nodes.

1

fl f2 f3 f4 f5 f6 6

For the case that the top node of Py is a meta-®-node vg, the algorithm works
in the following way: By utilizing the concept of meta-@®-nodes, we requested to
follow the rule of never deploying more than one single meta-@®-node on a path
between any two branching nodes that are labeled with adjacent variables.
Thus, all successor nodes that have to be considered for the algorithm are
directly located in the successor list of the meta-@-node under consideration.
The algorithm steps through the successor list and each node that is labeled
with will be replaced with its successor according to the chosen restriction
x = 1(0) (see Fig.5.19. For a comparison see Fig.5.20 showing the same situation
with binary @-nodes). Of course P; has to be maintained and thus, for Py,
one new meta-®-node has to be created, unless it does not already exist in
the @-OBDD. See Fig. 5.21 for an outline of the simplified cofactor creation
algorithm for &-OBDDs with meta-®-nodes.

Furthermore, if one of the successor nodes that are to be replaced happen to
be a meta-®-node, the vg has to be merged with that meta-@-node and the
successor list of vg has to be adapted accordingly for maintaining the required
rule that between any two branching nodes of adjacent variables, there must
be at most one single meta-®-node.

The recursive algorithms for &-OBDD synthesis also have to be adapted for
meta-@-nodes. Since, all described algorithms depend on a recursive call of
themselves with the cofactors of their input functions, the recursion can remain
unchanged, because we have already adapted the cofactor algorithm to meta-
@-nodes. Only, if the application of the algorithm necessitates the creation of

99

Input: &-OBDD P; with meta @-nodes, variable z, assignment a € {0,1}.
Output: ®-OBDD Py, _,.

meta_cofactor(Pr, z, a) {
if (top node of P; is branching node) {
if (top variable of Py is z) {
if (a==1) {
return(1l-successor of Fy);
} else {
return(0-successor of FPy);
}
} else {
return(FPy) ;
}
} else { // top node of Pf is meta-®-node
for all successors Py, of Py do {
if (top variable of Py is z) {
if (a==1){
new[i] = 1-successor of FPj;;
} else {
new[i] = O-successor of Py;;
}
if (new[i] is meta-®-node) {
merge -nodes (P, new[il);
¥
} else {
new[i] = Py,;
}
}

if (node(META-XOR, new) exists) {
return(node) ;

} else {
node=create (META-XOR, new) ;
return(node) ;

}
}

Figure 5.21: Cofactor Creation Algorithm for a &-OBDDs with Meta-@®-Nodes.

100

a new @-node vg, then, not a binary @-node, but a meta-®-node has to be
initialized. If, one of the designated successors of vg is a meta-®-node, then
the two nodes have to be merged as described in the transformation algorithm
of Fig. 5.17. In this way, the synthesis algorithms can be adapted to meta-®-
nodes in a very simple way, unless the required transformation algorithms and
the cofactor creation algorithm do already exist.

Experimental Results for ®-OBDDs with Meta-®-Nodes

Now, for giving the proof that the introduction of meta-@-nodes gives any
advantage for &-OBDDs, besides its possibility of developing simpler algorithms
for their optimization, we have to compare @-OBDD sizes for both models,
when using binary and meta-@-nodes. But, the plain node count is not a
suitable measure for comparing these two variants anymore, because meta-
@-nodes that have more than two successors cannot be counted as a single
node only. Thus, we have to refine the node count measurement. Here, for
a better comparison, although implementation dependent, we have chosen the
real size of the computed data structure in Bytes for measurement. The relation
between the node count and the real size of @-OBDDs using meta-®-nodes can
be computed in the following way:

Given a @-OBDD P, let V} be the set of branching nodes and Vg the set of
meta-®-nodes in P. Let size, the size of the node data structure and let size,
be the size of a pointer to a memory address in our implementation. succ(v)
denotes the number of successors of node v. Then |P|, the size of P can be
computed by

|P| = (Vo] + |Va|) - size, + Z succ(v)) - size,
vEVY

By comparing |P| for @-OBDDs of both variants, we can estimate the benefit
of the additional reduction possibilities. In Table 5.6 a comparison of $-OBDD
sizes with binary @-nodes versus meta-®-nodes for an arbitrary selection of cir-
cuits of our benchmark set is given. See Tables A.12 and A.13 in the Appendix
for the results of the complete benchmark set.

In the first column the name for the benchmark circuit is given that should be
subject of symbolic simulation with &-OBDDs, while in the second and the third
column |V| for the case of binary and meta-®-nodes is listed. For this set of
experiments the variable order given inherently with the circuit description was
used and as decomposition method we have chosen exclusively pDE, because
many @-nodes should be created (for nDE the results are rather similar).

As we can see in the table, the size of the &-OBDD when using meta-®-nodes,
ranges from 24% up to 146% of the original size, by an average reduction to
87%. This reduction in size can be explained because of the following two facts:

(1) With binary @-nodes, for realizing an XOR-operation over m € N ad-
dends, we have to create a tree of m —1 @-nodes and thus, creating a pos-
sible overhead of administration information. The same XOR-operation
can be realized by a single meta-@-node with m successors and thus, we

101

circuit ®-OBDD size [Bytes]
binary @-nodes meta-@-nodes
s499 23040 24128 [104%]
s444 14040 11136 [79%]
$1488 47376 34332 [72%]
s1423 4824288 3935156 [81%]
$1269 1437192 1101680 [76%)]
comp 30959568 27142104 [87%]
mm9a 19213452 14583716 [75%]
mux 7812 1960 [25%)]
cm150a 7920 1960 [24%)
apex1 320436 197496 [61%]
alu32r 670644 460920 [68%]
C880 11861424 8576036 [72%]
C499 493164 670188 [135%]

| & [181.114.668 | 158.147.088 [87,3%] |

Table 5.6: Effects of the Meta-®-Nodes and Additional Reduction Rules on
@®-OBDD Size.

only require m additional 32-bit addresses for each successor instead of
creating m complete binary nodes.

(2) The second reason for the possibility of achieving smaller &-OBDD sizes
by using meta-® nodes lies in the potential of performing additional re-
ductions on meta-® nodes with m > 2 successors, as we have already
mentioned in the previous section.

But, 7 out of the 65 benchmarks for meta-@® nodes are producing a slightly larger
result. This effect can also be explained easily. The just described memory
saving does only occur for a tree of m binary @-nodes, if non or only a small
number of its intermediate nodes is referenced from other nodes of the &-OBDD.
For each referenced intermediate node, an additional meta-® node has to be
created and thus, additional memory has to be utilized. In some cases, as e.g.
for C'499 this results in a &-OBDD that is 35% larger than the original one.
But, all in all, the use of meta-® nodes results in an average reduction of &-
OBDD size to 87% of the original size.

For a comparison, we also did symbolic simulation of the benchmark set, where
meta-®-nodes where enabled during synthesis already. As expected, the achieved
results did not differ very much from the results achieved, when meta-®-nodes
are introduced, after synthesis has finished. The difference is caused by pos-
sible reductions that can already take place during synthesis and cannot be
found in the binary version. These additional reductions might cause that the
represented function will be constructed out of subfunctions that are differ-
ent from the representation of the same function with binary @-nodes. The

102

achieved sizes are comparable or even sometimes slightly better compared to
the first method. Also the computation time of both methods is almost equal.
Although for method (1) the creation of meta-@®-nodes requires an additional
walktrough, this extra time is also necessary for the more complex reduction
rules in approach (2). Compared to the synthesis time for ®-OBDDs, the ad-
ditional time required for the transformation of @-nodes into meta-@-nodes is
neglectible. See Table A.14 A.15 and in the Appendix for an overview of the
achieved results for synthesis with meta-@®-nodes.

Dynamic Placement of Meta-®-Nodes

Now, that we have shown the effects of meta-@-nodes on the size of &-OBDDs,
again the question of how many meta-®-nodes should be employed and where
should they be positioned within the &-OBDD has to be answered. While on
the one hand we can directly transfer our results from the benchmark testing
with binary @-nodes for determining an appropriate number of @-nodes to be
introduced, on the other hand for finding the right position of the meta-®-
nodes, we have to show that it is also possible to move meta-®-nodes up and
down by one position efficiently in the &-OBDD.

First, let’s start with moving a meta-®-node downwards. Given a &-OBDD
P representing the Boolean function fp, with the meta-®-node v as the root
node. P is ordered following a given variable order 7 and for the variables z;,
zj, T it holds that z; < z; < ;. W.l.o.g. let v be a meta-®-node with n = 3
successors. The given swap routine holds for an arbitrary number n € IN of
successors. Let the three successors v1, vo, and vy of v be branching nodes
labeled with z;, z;, and zj, respectively. Now, we exchange the meta-®-node
v with its successor z;, which comes first w.r.t. the variable order .

For an efficient implementation, v itself is only relabeled and transformed into
a branching node that will be labeled with x; and connected to its two new
successors vy, and Vs both being meta-®-nodes with n = 3 successors each,
at least if no reduction rule can be applied. vf,, is connected with the 1-
successor of v1, or in the arbitrary case with every 1-successor of a former
successor of v that is labeled with z;, and with v and wv3, i.e. every other
former successor of v that is not labeled with x;. vy_ then is connected with
the O-successors of all former successor nodes of v that are labeled with x; and
with all other former successors of v that are not labeled with z;. For a better
understanding of the meta-®-swap-down procedure see Fig. 5.22 and a sketch
of the algorithm in pseudo code is given in Fig. 5.23. For simplicity reduction
procedures and rules for working with complemented edges have been left out.
When working with complemented edges and one of the successors v; of v that
are labeled with the same variable z; is inverted, then this inversion will be
passed to both the successors of v; according to the complement equivalence
rules for branching nodes (see Fig. 2.6). If any other successor of v is inverted,
this inversion will simply be kept (see Fig. 5.24) .

But what, if a successor node of the branching nodes v; that are labeled with
the variable to be exchanged is a meta-®-node? By performing the regular
exchange routine, we would end up with two meta-®-nodes on a path between

103

new nodes

exchangf‘
\% %

N V(Z'

f

Figure 5.22: Meta-®-Node Swap Down Operation.

Input: ©-OBDD Py with top node v
Output:@®-OBDD P; with top node and successing nodes being exchanged

swap_down(Py) {
if (v is meta-@®-node) {
nsucc = v = n;
label = min(l(vyf,),--- 1V 000))) s
create meta-@®-nodes v;, v2 with nsucc successors;
for all successors i do {
if (I(vy,) == label) {
fi = vy, — then; fo = vy, — else;
} else {
fi=fo=wy;
}
if (f; is meta-@®-node) {
merge meta-@-nodes v; and fi;
} else {
put fi in successor list of meta-@®-node wi;
}
if (fy is meta-@®-node) {
merge meta-@-nodes ve and fo;
} else {
put fo in successor list of meta-@®-node wv9;

}
}

decrement reference count of vf,..., V5, 0003

}

return(v) ;

}

Figure 5.23: Sketch of the Algorithm for Downward Exchange of Meta-®-Nodes
and Branching Nodes.

104

flxil fir flxi | flxi r fﬂi

Figure 5.25: Extended Meta-®-Node Swap Down Operation with Comple-
mented Edges.

two variables. This does not fit the given requirement of not allowing more
than a single meta-@-node between two variables on any given path in the &-
OBDD. Thus, the exchange procedure has to be extended by joining meta-®-
nodes automatically that occur as being adjacent after an exchange operation.
See Fig. 5.25 for the extended meta-®-node-swap-down operation.

If we are working with complemented edges, for those complemented edges
pointing to meta-@®-nodes the complement is passed to the first successor of the
meta-®-node under consideration due to the complement equivalence rules for
@-nodes (see also Fig. 5.25).

For exchanging a meta-@-node with an adjacent branching node upwards, other
special cases have to be considered. First, assume that we want to exchange
a meta-@-node vg with its predecessor branching node v that is labeled with
variable z;.

W.lo.g. let us assume that vg is the 1-successor of v. If vg has i € N successors,
then v is transformed into a meta-®-node and additional memory for ¢ possible
successors is allocated. Then, for each node v, 1 < k < 7 of these ¢ potential
successor nodes, the 1-edges are connected to the k-th successor of vg, which
will be denoted as vg,. If the 0-successor of v is also a meta-@-node vg,, then
the number ¢ of possible successor nodes of v computes to the maximum of

105

Figure 5.26: Meta-®-Node Swap Up Operation.

the successors of vg and vjy, ¢ = max(vg.n, vg.n). Only in that case the
0-successors of the 4 new nodes v; are connected to the successors of vg,.

If vg.n > vg.n, then we will run out of successors for vf;. For those new
branching nodes v that are affected by this case and that don’t have received a
0-successor from vy, the 0-edge will be connected to the 0-sink. For v{y.n > vg.n
the same procedure has to be carried out for the 1-successors of vy, respectively.
See Fig. 5.26 for an illustrating example of the meta-®-node swap-up operation.
A simplified sketch of the algorithm in pseudo code is given in Fig. 5.27 and
Fig. 5.28.

If complemented edges are used, the same equivalences as for the swap down
procedure are applied (see also Fig. 5.26 for an example).

Note that the routine that is taking a new successor v into the successor array
of a meta-®-node v takes care of possible reductions and adjusts dynamically
the value v.n, the number of successors of v.

Another exception for the case of swapping a meta-®-node upwards occurs, if
the initial branching node v that should be exchanged with its successor meta-
@-nodes, itself is the successor of some meta-@®-node v4,,. Due to the fact that
v keeps the same variable label also after the node exchange, also its predecessor
Vsup does not have to change its hash table position. But, after the exchange, v
has become a meta-®-node, while being the successor of another meta-®-node.
To maintain the property that between any two adjacent branching nodes on a
path in the &-OBDD, there must be at most one meta-@®-node, we have to join
these two meta-@-nodes. This is done by simply merging the successor array
of v into the successor array of vy, and by decrementing v’s reference count.
But, v may also be referenced by other branching nodes and thus, the original
node v has to be kept in the &-OBDD (see Fig.5.29 for an illustration). Note
that after merging v,,, and v the operation is not reversible anymore.

To perform the swap operation for &-OBDDs with deploying meta-®-nodes, it
is necessary to scan all predecessors of v to find out, whether there is a meta-
@-node among them. For reasons of efficiency and to avoid that this operation
has to be repeated for every single swap up operation for a complete variable
level, the merge operation is only performed once after all meta-@-nodes of that
level have been swapped.

The merge operation traverses the &-OBDD in a dfs manner, but, only down

106

Input: ©-OBDD Py with top node v
Output:-OBDD Py with top node and successing nodes being exchanged

swap_up (Pf) {
if (v is branching-node labeled with z;) AND
((v.1-succ is meta-@-node) OR
(v.0-succ is meta-@®-node) {
Nithen = # succ of w.l-succ;
Nelse = # succ of v.0-succ;
n= max(nthen > nelse);
transform v to meta-@-node with n successors;
for all n new successors v; of v do {
if (v.l-succ is meta-@®-node) {
if (@ < ngpen) {
then = (v.1-succ).succ;;
if (v.1-succ is complemented AND (i ==1)) {
then = complement node(then);
¥
} else {
then = O-sink;
¥
} else {
then = (v.1-succ);

}

Figure 5.27: Sketch of the Algorithm for Upward Exchange of Meta-®-Nodes
and Branching Nodes (Part 1).

107

Input: &-OBDD Py with top node v
Output:@®-OBDD P; with top node and successing nodes being exchanged

if (v.0-succ is meta-@®-node) {

if €0 < negge) {
else = (v.0-succ).succ;;
if (v.0-succ is complemented AND (i ==1)) {

else = complement node(else);

}

} else {
else = O-sink;

}

} else {
else = (v.0-succ);

}

if (then == else) {
v; = then;

} else {

v; = create_new node(then, else, z;);

}

put v; in successor list of wv;

}

decrement reference count of v.l1-succ;
decrement reference count of v.0-succ;

}

return(v) ;

}

Figure 5.28: Sketch of the Algorithm for Upward Exchange of Meta-®-Nodes
and Branching Nodes (Part2).

Figure 5.29: Joining Meta-®-Nodes After Swap Up Operation.

108

fs

Figure 5.30: Non Reversible SWAP Operation.

to variable level ¢ — 1. Then, all meta-®-nodes vg,, are considered that include
a pointer to a meta-®-node v in their successor array, which must be of level 4.
vsup and v are then subject to the merging procedure. For avoiding additional
time overhead during construction, successor nodes of @-nodes can be marked
by setting a spare bit in the data structure of the node. If this particular bit is
not set for a node being involved in a swap-up operation, none of its predecessors
have to be scanned.

5.2.5 Jiggling - A Simple Heuristic for ®-Node Placement

Now that we are able to perform the exchange of the position of already in-
troduced meta-®-nodes in the @-OBDD data structure in an efficient way, this
@-node swap algorithm can be further utilized for &-OBDD minimization. A
heuristic for @-OBDD minimization should make use of local effects achieved
by considering the swap of a single &-node. If this swap operation results in a
positive effect, i.e. does it decrease the @-OBDD size, then this swap operation
should be confirmed or reversed, otherwise. But, is it really necessary to per-
form that expensive swap operation in both directions, if it is possible that no
benefits will be achieved by its application?

On the other hand, if we keep the fixed rule that between two adjacent branching
nodes, there must be at most one meta-®-node, the situation that two meta-
@-nodes happen to be adjacent after performing a swap operation can only be
resolved by merging them to a single meta-@-node. Note that this merge oper-
ation is also necessary for achieving all reductions possibilities. But, if, after a
successful merge operation no reduction in &-OBDD size can be achieved, the
split of two already merged @-nodes will be difficult, because additional infor-
mation about the former state of the two meta-®-nodes has to be memorized.
Thus, in principle, this operation is not reversible, if we don‘t store some copy
of the original meta-@-nodes. See Fig. 5.30 for an illustration: After a swap-up
operation for meta-®-node v (1) the resulting meta-®-node v’ (2) has to be
merged with the predecessor meta-®-node w above (3). For considering any
changes in size, reductions have to be carried out and thus, information on the
sub-@-OBDD rooted by node u is lost.

The simple solution of that problem could be a simulation of the swap operation,
without really performing it’s effects on the involved nodes. By only simulat-

109

ing this operation, we are able to compute the &-OBDD size after the swap
operation and only if the achieved result is smaller compared to the previous
size, the swap operation finally can be performed, because now, the expenses
in terms of additional computation time are worth while.

By performing only swap operations that are really leading to some reductions
in size, we have designed another simple greedy heuristic for achieving some
local minimum in &-OBDD size by changing the position of already created
@-nodes. The efficiency of the algorithm can be adapted by using a threshold
parameter « that decides, whether a swap operation will be carried out or not.
Let | Ppew| denote the size of the &-OBDD after a possible swap operation and
let | P,q4| denote the original size, respectively. Then, the proposition that has
to be fulfilled for performing a swap operation is

do swap, if |Ppew| < a - | Pyl

If « = 1, then the original designed greedy algorithm is carried out. If o < 1,
then a swap will only be performed, if the achieved reduction in size is more
relevant. Otherwise, if @ > 1, the algorithm is no longer greedy anymore and
also swaps that don’t directly lead to a reduction in size will be carried out.
This gives way for designing an algorithm that is also able to leave an already
achieved local minimum again, but, on the other hand, the &-OBDD might
also grow in size again.

The algorithm presented in this section is called jiggle-algorithm. This is due
to the fact, that for each meta-@-node of the &-OBDD we try to find a better
position by jiggling the node up and down by one position. The jiggle-algorithm
receives the threshold factor a as an input parameter and steps through each
level ¢ of the @-OBDD starting at the root level. For each meta-®-node v in level
i a swap_up operation is simulated and if the computed resultant size | Pyl
is smaller than the original size |Pyq| multiplied by the threshold factor a, the
swap_up operation really will be carried out for v. Otherwise, a swap_down
operation is simulated for v and also will only be carried out, if the resultant
size |Ppew| is smaller than the original size |P,;4| multiplied by the threshold
factor a. See Fig.5.31 for an outline of the jiggle-algorithm in pseudo code.
For our experimental setup, first, we constructed the @-OBDD from the given
circuit description and in the next step we applied the jiggle algorithm for the
entire graph until no further improvement could be achieved. Usually after 3
or 4 rounds, no further improvement could be achieved anymore.

In Table 5.7 selected results of the jiggle heuristic applied to our benchmark set
are listed. The first column denotes the circuit’s name, in the second column
the circuit’s OBDD size is given for a reference. The starting point for the
experiments was the circuit’s @-OBDD representation based on exclusive ap-
plication of pDE with meta-@®-nodes. The size of this ©-OBDD is given in the
third column. Column 4,5, and 6 list the achieved @&-OBDD sizes for the appli-
cation of the jiggle heuristic for one, two, and three rounds. The upper part of
the table contains results for sequential circuits, while the lower part comprises
the results for combinatorial circuits. The last row gives the overall sums of
the achieved representation sizes. The percentage of the overall sums for each

110

Input: ©-OBDD P; with top node v and threshold factor «
Output:®-OBDD PJ’c

jiggle(Pr, a) {
for all levels i do {
for all nodes v in level i do {
if (v is meta-@®-node) {
new = size of P; after simulated swap_up(v);
if (new < a-actual size of Pj) {
swap_up (v) ;
} else {
new = size of P; after simulated swap_down(v);
if (new < a-actual size of Pj) {
swap_down(v) ;

}
}
}
}

return(Fy) ;

}

Figure 5.31: Sketch of the Jiggle-Algorithm for &-OBDD Minimization.

column are given w.r.t. the achieved exclusive pDE @&-OBDD representation
size given in column three. See Tables A.18 and A.19 in the Appendix for the
complete results for all combinatorial and sequential circuits of the benchmark
set.

A dash inside a cell of the table denotes that for this round the jiggle heuristics
did not achieve any further improvement. Note that due to the given resource
limitations for the following six circuits the jiggle heuristic could not finish
successfully: C880, comp, rot, mm9a, mm9Yb, multiba.

In the average the first application of the jiggle heuristics results in a 9.3%
gain in the representation size. The next round of the jiggle algorithm wins
additional 5.1%, while the last application is only able to contribute an addi-
tional gain of less than 0.1%. Thus, the overall improvement in size comes to
14.4% in the average. While for single circuits as s499 the improvement of the
first application of jiggle is up to about 50%, for most of the other circuits the
improvement is much less.

Due to the strictly greedy nature of the algorithm the search space for posi-
tioning the @-nodes is rather limited. Also the exclusive pDE &-OBDD rep-
resentation as a starting point is not necessarily the best choice for achieving
the smallest possible result that can be achieved by jiggle. If we start with a
@-OBDD representation based on the local greedy algorithm from the previous
section, the final &-OBDD sizes are much smaller, but the improvement that

111

Circuit @®-OBDD size [Bytes]

OBDD | pDE-meta [Jiggle (1) | Jiggle (2) | Jiggle (3)
sbc 133740 135892 117584 117220 -
5635 23616 64692 42688 - -
5499 12096 24128 12964 - -

5420.1 9440172 19932 16436 16412 -
51494 36576 36196 31068 29688 -
51423 3544344 3938476 3360020 3341752 -
8085 4242276 2614032 2255804 2253144 2253004
x3 99360 76232 64520 - -
my_adder 11796372 18873336 16252724 13369124 -
mux 4718556 2240 1896 - -
i8 157176 404896 283212 202136 -

i4 15156 37320 22920 15164 -
frg2 232956 142604 119036 - -
count 8424 10068 8836 - -
cm150a 4718556 2280 1876 - -
bw6x6 29880 96592 87752 86652 -
apexl 1020096 197656 187108 185164 -
alu4 42552 53772 40064 38108 34448
alu32r 6813576 460920 334264 - -
adsb32r 19008 47448 41624 38072 -
adderl6 11801232 21629848 21238784 - -
C432 62388 184080 83044 - -
C1908 1296252 1163384 1129004 1109496 1108708
P 72.843.732 59.273.572 | 53.788.556 | 50.719.284 | 50.712.344
122.9% 100% 90.7 % 85.6% 85.6%

Table 5.7: Jiggle Heuristic for Dynamic

@-Node Placement

Overal Runtime
circuit OBDD ®-0OBDD
pDE-meta | Jiggle & pDE-meta
% 66.9 1813 2509
normalized 1 27.1 37.5

Table 5.8: Time Requirements of the Jiggle Heuristic

is gained in addition by the jiggle algorithm is much less. This is due to the
fact that the local greedy algorithm already computes well suited positions for
the employed @-nodes and jiggle is not able to obtain a significant additional
reduction.

If we take a look at the time requirements for the jiggle heuristic, it is clear
that if it is applied after the synthesis process is over, the time for the heuristic
adds to the time required for synthesis. If we compare the time required for
@®-OBDD synthesis with and without applying the jiggle heuristics afterwards,
the required time overhead is 38.5% in the average (see Table 5.8). Note that
with the additional jiggle algorithm, the computation of 7 circuits of the original
benchmark could not be finished due to resource limitations. Also note that
synthesis, if performed while using meta-@-nodes is slightly faster compared to
synthesis with binary @-nodes.

112

Certainly, proceeding in this way is not rather suitable. But, the experiment
could show that already introduced @-nodes can be repositioned for achieving a
smaller representation size, although the achieved improvement in size is in the
average only about 14.4%. Although this improvement obtained by the jiggle
algorithm is not really significant, it might be rather useful if it can be applied
during synthesis in the same way as dynamic variable reordering. In this way,
peak memory sizes can be avoided that are exceeding given resource limita-
tions, otherwise. For applying the heuristic dynamically during the synthesis
procedure, certain prerequisites have to be followed that will be summarized in
the upcoming chapter.

Another possibility for achieving smaller @-OBDD sizes, while on the other
hand showing a more significant effect of the jiggle heuristic might be the ran-
dom insertion of a certain fraction of @-nodes, as already performed in a previ-
ous section of this work. Then, the positions of these randomly inserted &-nodes
can be improved by the jiggle heuristic afterwards.

Dynamic Jiggle Algorithm

One way of further using the concept of the jiggle algorithm is employing the
algorithm dynamically during &-OBDD synthesis. The purpose of applying the
jiggle algorithm during synthesis is to enable the construction of @-OBDDs that
can not be computed in the regular way within the given resource limitations.
By reducing the size of the already constructed part of the @-OBDD under
consideration, we are able to continue synthesis beyond the previously stated
resource limits.

In principle the concept of the dynamic jiggle algorithm can be defined in the
following way:

Let P be the &-OBDD that is to be constructed and let & € N, o > 0 be a
fixed threshold value.

(1) Start regular &-OBDD Synthesis of |P|.

(2) If |P| > « interrupt the synthesis procedure and start the jiggle algorithm
for optimizing |P|.

(3) Continue the synthesis procedure for |P|, chose a new threshold value
a' > a, and continue with step (2).

To enable the jiggle algorithm for being utilized dynamically use some prereq-
uisites have to be fulfilled:

e Synthesis:
The &-OBDD synthesis algorithm has to employ meta-®-nodes right from
the start. If we are working with binary @-nodes in synthesis, the trans-
formation algorithm for meta-@-nodes would have to be called, before the
jiggle algorithm can take place and afterwards a retransformation from
meta-@-nodes into binary @-nodes would be necessary. To avoid this
additional overhead, the synthesis algorithm is utilizing meta-®-nodes

113

right from the start. After the jiggle algorithm has been successfully ap-
plied, the caches for storing already computed synthesis results have to
be cleared, because during the optimization of the &-OBDD memory ad-
dresses of single nodes can be changed and the result stored in the cache
is no longer valid.

e Jiggle Algorithm:

Before the jiggle algorithm can be performed, a garbage collection has to
be conducted to get rid of dead nodes that are not used any longer in
the current @-OBDD. It would be of no sense to include these nodes into
the jiggle algorithm, because a change of their position does not affect
the actual size of the @-OBDD under consideration. Before starting the
synthesis again, we have to take care that all rules concerning the usage
of meta-@-nodes in &-OBDDs are really fulfilled. I.e., possible merges
of meta-®-nodes that happen to be adjacent after the application of the
jiggle algorithm have to be carried out and all meta-@®-nodes have to be in
the correct variable table according to the reference to their first successor
branching node.

Following these prerequisites it is possible to apply the jiggle algorithm during
the synthesis procedure. For the successful application of the dynamic jiggle
algorithm the chosen value for the threshold value « is also important as well
as the question of how to change « after the threshold value has been exceeded.
Here, we follow the usual strategy that is deployed during dynamic variable
reordering for OBDDs [Som96]. In dynamic variable reordering for OBDDs, if
the threshold value is exceeded, for the next round of synthesis, the threshold
value simply is multiplied by a factor ¥ = 2. Thus, for each round %, 7 > 0 of
the &-OBDD synthesis, the threshold value a; changes in the following way:

o = o1 - k,

while ag € N is chosen arbitrarily before the synthesis starts. Other variants as
e.g., the addition of a constant factor or the multiplication with a value k£ > 2
are not as efficient the multiplication by & = 2. More sophisticated strategies
concerning the behavior of the threshold factor and the effect on @-OBDD size
and computation time are subject to further research.

See Table 5.9 for selected results from the benchmark set for the application
of the dynamic jiggle algorithm (For an overview of the complete results see
Tables A.18 and A.19 in the Appendix). The first column denotes the circuit
names, while in column two, as a reference, the OBDD size for the circuit is
listed. Column three lists the size of the &-OBDD for the given circuit achieved
with the dynamic jiggle heuristic applied during &-OBDD construction. For
all the experiments the threshold seed value was fixed to ap = 100000 and the
threshold factor was set to k = 2. For further optimization the regular jiggle
algorithm is applied and the results are given in the columns four to six. In
the last row the overall sums for all combinatorial and sequential circuits are
given and the percentage in relation to the original OBDD size. Note that
OBDD- and @&-OBDD-sizes are both given in Bytes. A dash in a cell of the

114

Circuit @®-OBDD size [Bytes]

OBDD || pDE-DynJiggle | Jiggle (1) [Jiggle (2) | Jiggle (3)
sbc 133740 135452 120152 119400 -
5635 23616 69032 46092 - -
5499 12096 24128 12964 - -

5420.1 9440172 19932 17812 - -
51494 36576 36068 32028 31856 -
51423 3544344 3937408 3622180 3561860 -
8085 4242276 4376740 4242916 4187524 -
mm9a 26487648 21406700 21405004 - -
mm9b 30540926 24485432 24482980 - -
mult16a 12975912 23822712 19286296 - -
x3 99360 77636 71184 71064 -
my_adder 11796372 18854096 14486324 14486056 -
mux 4718556 1960 1896 - -
i8 157176 404736 283040 283804 -
i4 15156 37320 23864 23704 -
frg2 232956 139140 120532 120292 -
count 8424 10068 8836 - -
cm150a 4718556 1960 1876 1876 -
bw6x6 29880 95752 90616 90252 -
apexl1 1020096 201152 182324 - -
alu4 42552 53740 38904 38712 -
alu32r 6813576 460920 364968 - -
alu32 438984 31628 28464 - -
adsb32r 19008 47448 39692 - -
adder16 11801232 21467152 20836304 20823676 -
C432 62388 186136 175592 - -
C880 12456 10571900 10291912 10170540 10085944
C1908 1296252 1162736 1240312 - -
comp 16513128 19746056 19663748 18741360 18741216
rot 36166674 7705076 7112688 6918432 -
2 194.146.880 168.593.280 | 156.974.776 | 155.555.840 | 155.461.524
100.0 % 86.6 % 80.9 % 80.1 % 80.1 %
Table 5.9: Dynamic Application of the Jiggle Heuristic.
Overal Runtime
circuit | OBDD ®-0BDD

pDE-meta pDE-meta pPDE meta pDE meta

& Final Jiggle || & Dyn Jiggle & Dyn Jiggle

& Final Jiggle

by 91.87 2563 - 2508 3463

norm 1 27.9 (37.5) 27.3 37.7

Table 5.10: Time Requirements for Dynamic Jiggle Heuristic.

115

table denotes that no further improvement by applying the jiggle heuristic was
possible anymore.

Now, the six circuits C880, comp, rot, mm9a, mm9b, multiba that could not be
fully computed with the regular jiggle algorithm can be computed with the dy-
namic jiggle approach within the given resource limitations. This confirms the
obvious assumption that applying the optimization routine during construction
of the ®-OBDD decreases the required peak memory sizes.

On the other hand concerning the final achieved size the results of the appli-
cation of the dynamic jiggle algorithm are almost comparable with the regular
jiggle algorithm. Because the optimization already did take place during con-
struction of the @-OBDD the achieved sizes are related to the OBDD size and
here the overall reduction in sizes ranges from 13.4 % up to 19.1 % in the
average for dynamic jiggle with further optimization by regular jiggle.

If we compare the time requirement for synthesis with and without the appli-
cation of the dynamic jiggle heuristic (see Table 5.10), we observe that almost
no additional time is required, compared to the standard synthesis. Note that
only one circuit of the original benchmark set could not be computed due to
resource limitations. The avoidance of memory peaks and the related loss in
management overhead is responsible for that result. If less nodes have to be
managed by the &-OBDD package, runtime also decreases and the additional
time required for the jiggle heuristic does does not affect the runtime behavior
compared to the regular synthesis procedure. Of course, if we apply a Final
Jiggle step, after the synthesis procedure has ended, the overall required time
is comparable to the experiments in the previous section, where we did regular
synthesis and final jiggling. Again, the runtime is still not comparable to the
runtime achieved for OBDDs with the CUDD package.

The major advantage of the dynamic application of this techniques comes due
to the fact that it is now possible to apply the algorithm to circuits that could
not be successfully computed before, because huge peak memory sizes can be
avoided during the synthesis procedure.

5.2.6 Applications of Dynamic ¢&-Node Placement

By using the procedures for moving @-nodes we are able to design a simple
algorithm to transform any @-OBDD into a regular OBDD. For this trans-
formation all @-nodes, starting from the root level are moved down towards
the sink. As soon as at least one successor of a @®-node is a terminal node, it
can be replaced by the result of the @-operation. Thus, each @-node that is
moved down can be replaced and in the end the result will be a regular OBDD.
The algorithm traverses the @-OBDD levelwise starting from the root. In the
traversal all @-nodes of the current level that are encountered will be moved
down by one level, before we proceed with the next level. If one of the new
successors of the moved @-node v is a terminal node, the swap-down procedure
automatically applies possible reduction rules. A @-nodes v can be replaced, if
at least k — 1 of its k£ successors are terminal nodes. All @-nodes are replaced,
if the algorithm has finished the processing of the last level of the &-OBDD.

Note that the size of the decision diagram might grow exponentially while mov-

116

Input: ©-OBDD Py
Output: OBDD Py

transform to_0BDD(Pf) {
// traversal
for each variable table T;, 1 <i<mn do {
for each node v € T; do {
if (v is ®-node) {
swap_down(v) ; // reductions are automatically applied
}
}
}

return(FPy);

}

Figure 5.32: Transformation of a @-OBDD into a OBDD.

meta- P-node

shared OBDD

Figure 5.33: XOR-SOP Represented as &-OBDD.

ing down all @-nodes. See Fig. 5.32 for a sketch of the algorithm in pseudo
code.

On the other hand, if we simply reverse the algorithm by moving up all &-
nodes of a ©-OBDD Py to the root variable level, the result of this operation
is equivalent to the representation of a XOR-SOP, i.e. a 3-level representation
of the function f represented by Py (see Fig. 5.33). This representation of a
XOR-SOP can be used for further minimization, e.g. by applying the regular
sifting algorithm to the branching nodes of all levels.

5.3 Dynamically Changing the Variable Order

In this section we are to investigate the effects of changing the variable order
7 for ®-OBDDs dynamically. Of course the improvement of the variable order
to decrease @-OBDD size is an NP-hard task. Thus, we are depending on
heuristics, which are limiting the huge search space of n! possible variable orders
to a manageable amount of orders that are considerably simple to manage. But,

117

if we are to exchange adjacent variables z; and x;41, which should be the basic
task for dynamic variable order improvement, we have to take care of meta-®-
nodes, which might be located between these variables. As possible solutions
for this problem there are two approaches to consider:

(1) Move the meta-@-nodes out of the way, so that there are none of them
between the two variables that are to be exchanged, and apply a regular
variable exchange procedure then.

(2) Perform the variable exchange operation around meta-®-nodes that are
possibly located between the two variables that are to be exchanged.

Based on these two strategies we are able to adapt already known optimization
heuristics that have proven to be successful for OBDDs and apply them to
@-OBDDs.

5.3.1 Adapting OBDD Minimization Heuristics

If we are going to implement the approach listed in (1), several difficulties will
occur. By moving the @-nodes out of the way for enabling the regular OBDD
variable exchange procedure, the &-nodes possibly are moved away from a previ-
ously well suited position and the size of the &-OBDD might grow dramatically,
if this procedure is carried out for an entire level in the &-OBDD. Thus, after
the variable exchange has been performed successfully, the transferred ®-nodes
again have to be moved in a potentially better position, what can be achieved
by applying the jiggle-algorithm to the involved levels. But, the two drawbacks
of this approach remain:

e the algorithm is rather time expensive, because for each single variable
exchange it requires several computation and optimization steps, and

e the achieved peak sizes during the computation might prevent the algo-
rithm from its successful application, because given resource limits might
be exceeded.

Another drawback in general lies in the fact that the variable exchange accord-
ing to method (1) is not symmetric. This is caused by possible reductions and
merges that are not reversible again, as it has been pointed out in the previous
section for the jiggle algorithm. Thus, the adaption of the sifting algorithm for
@®-OBDDs, where for each position of a variable within a given variable order
the achieved BDD size is memorized and finally, the variable is placed in the
level with the smallest size, will fail if we chose approach (1), because for &-
OBDD sifting it might be impossible to achieve the memorized best size ever
again.

5.3.2 The Swap In Place Algorithm

In difference to the technique presented in the last section, we have the possi-
bility to keep the @-nodes in the place where they are, while exchanging the

118

branching nodes that are connected to them and that are adjacent in the vari-
able order. An efficient implementation of this algorithm is possible, because
we have introduced the concept of meta-®-nodes. The usage of meta-®-nodes
guarantees that between any two branching nodes there must be at most one
single meta-®-node. Because of that rule, we have achieved a standardized
setting for adapting the variable exchange procedure of OBDDs for &-OBDDs:
Let the variables to be exchanged be z; and z;41. The -OBDD under consid-
eration has the root node v labeled with z;, and the two successors v;; and vg;.
If vz, and vz; are branching nodes, then the regular variable exchange procedure
for OBDDs takes place.

Now, let us consider that v, is a @-node that is labeled with a reference to
the variable z;,1, i.e. the successor of vz that is first w.r.t. the variable
order is labeled with ;1. Let n; be the number of successors of v;,, and let
Ug;l,---,VUg;n; De the successors of vg;.

For the exchange, v is simply relabeled with the variable z;,; and connected
to two successing @-nodes vy, and vzz7 that have to be newly created. The
number of successors of v, ,, and vz7 is computed to be the maximum of the
number of successors of v, and vz; that we will denote as npqz; = max(ni,ng).
The successor nodes of v, , and vz77 that are denoted with Uii pre e s Ugias
and 'u;iT, e ,vgﬂ“lz, will be new branching nodes that are labeled with the
variable z;.

A successor node vl , i < min(ng,ng), if the original successor v’ is labeled
i+1 - 1

with 241, will have (v%.)4;,, as aleft successor and (v;—) ;41 @8 a right successor.
Otherwise, if the original successor vy is not labeled with x; 1, then the left
successor will be vf” itself. The same holds for ’Ui—i, respectively.

For n1 < i < Nypqq the left successor will be the 0-sink. Otherwise, if n1 > no,
then, for no < 4 < Nyesx the right successor will be the 0-sink.

If one of the two nodes v,, and vg; is a branching node, while the other is a
meta-@-node, we proceed in the same way, while considering the number of
successors of the branching node as n; = 2. See Fig. 5.34 and Fig. 5.35 for
two illustrating examples and Fig. 5.36 for a simple outline of the algorithm in
pseudo code.

The algorithm given in Fig. 5.36 only gives a short outline of the idea behind the
swap algorithm. In fact, the swap-in-place algorithm for -OBDDs differs from
the variable exchange algorithm for OBDDs in the sense that several special
cases for the implementation have to be considered. For the OBDD variable
exchange algorithm only the cases listed in Fig. 5.37 have to be considered,
where a branching node v;, labeled with the variable z; has to be exchanged
with its successor nodes that are labeled with the variable z;1;. Either both
of vs,’s successors are labeled with z; 4 (a), only one of the successors might
be labeled with z; ;1 (b), or even none (c). Additionally, there might be nodes
labeled with ;41 that don’t have a predecessor in the level labeled with z; (d).
These four cases are treated in in the following way:

(a) This is the default case. The root node v has to be relabeled with z; 1,
two new successor nodes v, v of v have to be created or retrieved from
the hash table labeled with z;, with v, having successors fi, f3, and Ué—i

119

Figure 5.34: Example (1) for Swap-In-Place Operation for &-OBDDs.

Figure 5.35: Example (2) for Swap-In-Place Operation for &-OBDDs.

120

Input: &-OBDD P, with root node v, I(v) = x;.
Output: &-OBDD P’ with variables z; and z; 1 exchanged.

swap_in place(v) {
vy = v.l-succ; vz = v.0-succ;
if (vz, and vg; are both branching nodes) {
v = obdd_swap_regular(v);
} else {
Nmaez = Max (v, .nsucc, vz;.nsucc);
prepare empty @®-nodes vg; ,, Uzgy
for kK = 1 t0 Nypee do {
if (k < vy, .nsucc) {
if ((vf,) ==ip1) {

vi¥l.1—succ = vgi.l—succ;
k _ = ok 0= .
Vg 1-succ = vy, .0-succ;
} else {
k _ - k.
Uy - 178UCC = vy 5
k - = k.
Vgr- 17succ = vg,;
} else {
vﬁHJ.i—succ = (-sink;
vE__.1-succ = 0-sink;
i+1

if (k < vg.nsucc) {

if (l(’l]l;—l) == Tiy1) {
k k

Vg4, -07SUCC = vz, 1-succ;
k _ = nk - .
UW.O succ vw—i.O succ;
} else {
k _ = k.
Vg, -0-sUCC = vg-;
k - = k.
val.O succ = vz
} else {
k _ = (—as .
Vg4, -0-succ = O-sink;
vz—.0-succ = (-sink;
i+1
k = createmnewor find (v*);
Ti+1 T ?4-1 ’
Vg = createnew_or_find (VreT);]c
Ug,,, = insert_in successorlist (vy,);
- 4 : . k .
Vzizr = insert_in successor list (vz—);

}

v.1l-succ = vy, ;
v.0-succ = vzy;
I(v)

}

return(v) ;

= Tit1s

}

Figure 5.36: Sketch of the Swap-in-Place Algorithm for &-OBDD in Pseudo
Code.

121

' ! ' !

Y T e
o f, f, f, f, f, f £,of f, f f f,

@ (b)

i+1 \\\ g
\“ N \‘
fZ f 1 f 2

(c.d)

i+l
f

4

Figure 5.37: Implementation of Variable Exchange for OBDDs.

having successors fa, fi. The reference counter of the old successors vy,
and vz; is decremented.

(b) The two cases for v having only one successor labeled with z;;1 are sym-
metrical. W.l.o.g. let v, be labeled with z;;. Also two new successor
nodes vy, v are created or retrieved from the hash table labeled with
x;, with vy having successors f1, f3, and vi- having successors fa, f3.

(c,d) If none of the successors of v is labeled with x;11 then v is simply trans-
fered to the hash table of the next variable level. The same holds for case
(d), where v is labeled with z;11 without having a predecessor in level i.
There, v is simply transferred to the hash table of level ¢

Note that already transferred nodes or newly created nodes have to be marked
such that they are not affected by the ongoing exchange procedure. This can
be achieved by either using spare bits of the data structure for setting marks or
by using temporary hash tables, which will substitute the old hash table after
the variable exchange procedure has finished.

Now, for the swap-in-place algorithm for &-OBDDs, even more different cases
have to be considered. Additionally to the cases listed for OBDDs, it has to be
taken under consideration that the successing nodes of v;, might be @-nodes.

e In the same way as in the four cases above, both successing nodes can
be labeled with z;,1, while at the same time both successor nodes are
@-nodes (al), only one of the successing nodes might be a @-node (a2)
or none (a).

e If only one successing node is labeled with z;;, this node might be a
@-node (bl) or a branching node (b).

122

Figure 5.38: Merge During the Swap-in-Place Procedure.

Then, of course none of the successing nodes of v;;, might be labeled with
Ti+1 (C)

Now, vy, itself might be a @-node labeled with a reference to z;, i.e. at
least one of it’s successors must be a node labeled with z;. Then, we have
to distinguish between the case that v,; also has a successor labeled with
the adjacent variable z; ;1 (d1) or not (d2).

e The last case denotes a @-node vy, that possesses a successor node

labeled with x;41, but which does not have any predecessor labeled with
z; (e).

These five cases are treated in the following way:

(a)

If none of the successing nodes is a @-node, then the situation is equivalent
to OBDDs and can be solved as (a) stated in the previous enumeration. If
both successing nodes are @-nodes, both labeled with z;;; (al), we have
the standard situation as described in algorithm 5.36 (see also Fig. 5.34)
Also, for the case that only one of the successing nodes is a @-node,
but both successors are labeled with z;11 (a2) the case is similar to the
previously described standard situation (see Fig. 5.35).

A special situation that has to be taken care of is the following:

While creating new successor nodes v’;i, 1 < k < nypgy it is possible that
a node to be created does already exist in the hash table of z;. But,
according to our requirement concerning meta-@-nodes, v’j:i should be a
branching node. If the already existing node ’U’;i from the hash table is a
@-node, we have to merge v’aﬁi with it’s predecessor meta-@-node vy, , (see
Fig. 5.38) according to our rule that is mandatory for efficient variable
exchange for &-OBDDs.

In the case that only one of the successors of v is a @-node labeled with a
reference to ;1 the processing does not differ from the previous case, but
the following exception will become obvious, when reversing the operation:

123

Consider the situation given in Fig. 5.39. In the &-OBDD P the two vari-
ables z; and x;41 are to be exchanged, while the top node v has only one
successor being a @-node labeled with z;11 (1). After the first variable
exchange one of the two &-OBDDs P; (2a) or Pj (2b) is computed. Note
that both @-OBDDs represent the same Boolean function, but have a
different structure. This is due to the fact that in the two cases, the order
of the @-node successors is changed (see dotted box in Fig. 5.39). Up to
now, the order of ®-OBDD successors could be neglected for &-OBDD
manipulation. But, in that particular situation, there is an important
difference between the two results of the backtransformation, when the
swap-in-place algorithm is applied again to the two variables (see (3a)
and (3b)). Again, both ®-OBDDs, P and Py represent the same Boolean
function. The 0-successor of the top node in Pj' represents also the func-
tion f4, as for P, but in our implementation, we don’t have a chance to
realize that equivalence in an efficient way. This is, because for Py, the
@-node depends on the variable z;1. In P, the 0-successor depends on
a variable z;, j > i+ 1, or it is simply a sink. Thus, both are residing in
different hash tables and their equivalence will not be realized.

A situation like that can be avoided either by the application of the ex-
tended reduction rule for ®-OBDDs given in Section 4.3 for meta-®-nodes.
See Fig. 5.40 for an example of the application of the extended reduction
rule for reducing Py into P.

But, if we always apply this reduction rule, this also implies the possibility
of new non symmetrical situations, because the extended reduction rule
tries to find an optimal combination of all 0- and 1-successors of nodes
in the successor list of a @-node labeled with the same variable. The
reduction also implies the usage of already computed nodes, and then,
again merges of adjacent ®-nodes are possible. After the reduction and
merging, the application of the swap-in-place algorithm is not capable to
restore the original situation because of the given reasons.

Therefore, we have to restrict the application of reduction rules and the
usage of already computed nodes, for keeping the variable exchange op-
eration for -OBDDs symmetrical.

This case is equivalent to item (c) in the previous list.

Let’s first consider case (d2). In the @-OBDD P with root node v being a
meta-@-node, connected to some node v; that is labeled with the variable
x, none of v’s successors is labeled with z; ;. Here, the variable exchange
only takes place between v; and its successors (see Fig. 5.41). wv itself
changes its label, but can remain within the same unique table. Note
that in general for a variable exchange in the case of @-OBDDs as well as
in the case of OBDDs only nodes that are labeled with the variable z;11
have to be put into a new table. One possibility is to use a temporary table
for this purpose, because already processed nodes should not be mixed
up with nodes that are still to be processed. Another implementation, as
e.g. in CUDD, first empties the table of variable z; by transferring all

124

Swap back

5«4—44“““—““«“

v
i fa

)

- (3b)

Figure 5.39: Non Symmetrical Situation for the Swap-in-Place Operation.

125

94——4““0—.““«/

1
h fa

Figure 5.40: Keeping Symmetry by Adapting the Extended Reduction Rule to
Meta-@-Nodes.

126

Swap

(d1) (d2)

Figure 5.41: Considering Predecessor Meta-®-Nodes in the Swap-In-Place Al-
gorithm (1).

Swap

Figure 5.42: Considering Predecessor Meta-@®-Nodes in the Swap-In-Place Al-
gorithm (2).

nodes that have to be processed in some way into a separate temporary
linked list.

For (d1), the situation is similar. v remains completely unchanged, be-
cause after the variable exchange it will still be connected to successors
that are labeled with both x; and z;;1. The actual variable exchange
takes only place for v’s successors (see also Fig. 5.41).

(e) Here, v is labeled with a reference to x;11. None of v’s successors is
labeled with a reference to z;. While all successors labeled with ;1 are
relabeled with z;, also v has to be relabeled accordingly (see Fig. 5.42).

5.3.3 Adapted Sifting - A Heuristic for &-OBDDs Minimization

In the previous section we introduced a basic operation for any dynamic variable
reordering technique for &-OBDDs - the swap-in-place operation. Now, for
designing a suitable heuristic for @-OBDD minimization that uses the swap-in-
place operation, we have to consider the following two different cases:

(1) the swap-in-place operation is symmetric, i.e. applying this operation

127

twice to the same variable level must result in a @-OBDD that is isomor-
phic to the original OBDD, or

(2) the swap-in-place operation is not symmetric.

For adapting the well known sifting-heuristic of OBDDs to &-OBDDs, the basic
operation must be symmetric. For, a distinct variable z;, 1 < ¢ < n is chosen
from the given variable set of the OBDD P. Usually, the variable related to the
level with the most nodes in it and that has not already been processed is chosen.
With successive variable exchange operations, the variable z; is transferred to
every position within the variable order and for each position, the actual node
count P¢; is stored. In a final processing step, z; is transferred to level k, where
P, < P;, Vi. This operation is repeated for every variable and finally, a local
minimum for the size of P is achieved.

To implement the sifting heuristic for @-OBDDs, the basic operation, the vari-
able exchange must be symmetric. In the previous chapter, we realized that
there are several situations, when the exchange does not meet this requirement:

(1) The reuse of already existing nodes during the exchange procedure. The
exchange operation requires new nodes to be connected into the successor
list of a @-node between two adjacent variable layers. If the node to be
reused from the hash table happens to be a ®-node and not a branching
node, a merge operation is required, because no two @-nodes are allowed
to be adjacent. The merge alone is not reversible again. The situation
gets worse, if reductions are also applied.

(2) Also applying the extended reduction rule for meta-@-nodes leads to non
reversible exchange operations. This reduction rule only takes place for
branching nodes in the successor list of a @-node that are labeled with
the same variable. There, the 1- and 0-successors can be combined in the
way that the least number of nodes is required. Of course, the result is
functionally equivalent. But, if we try to reverse the variable exchange
operation, we will gain a structurally different &-OBDD.

If we keep all possible reduction and merging rules, we have to think of a
different type of minimization heuristic. This can be a greedy heuristic that
at least only memorized the entire affected node levels before and after the
exchange operation. If there is some gain in size achieved by the swap operation,
we keep the swap, otherwise we switch back to the memorized starting situation
and try a swap in the other direction. After all possible minimizing swap
operations for a single variable, we switch to the next variable in order and
continue.

But, in this work we put the emphasis on finding a way of how to find a way
to adapt the regular sifting algorithm, because this algorithm has proved to be
a simple and one of the best heuristics for OBDD minimization.

The rule to keep the swap-in-place operation symmetric is quite simple:

(1) Renounce the application of the extended reduction rule for meta-®-
nodes, and

128

(2) Don’t use existing @-nodes from the hash table, when branching nodes
are required to maintain the meta-®-node rule.

But now, to proceed with the sifting heuristic, we have to consider the follow-
ing requirements: if (1) is maintained and the extended reduction rule is not
applied, a potentially smaller &-OBDD for the represented Boolean function
and for the same variable order might exist. This is an important issue, since,
for the sifting heuristic, it is important to place the variable under considera-
tion to the best place within the variable order, i.e. the place where the size
of the entire ®-OBDD is the smallest for that particular variable. If we don’t
apply the extended reduction, we don’t know, whether the actual position of
the sifted variable is the best or not. To prevent that problem, we must keep
track of potential reductions that might take place. For every hash table h;, in
the ©-OBDD P, we maintain a counter r,, that stores the number of possible
reductions taking place during a variable exchange operation. To calculate the
actual node count P,.q;, the number of possibly reduced nodes is subtracted
from the number of counted nodes |P|: P,q = |P| — ;. Note that the hash
table associated with the variable z; keeps this association, while it switches
the level in the ®-OBDD. To take into account all possible reductions, the ex-
tended reduction rule for &-OBDDs is simulated for every node in the level and
a separate data structure keeps track of the actual reference count of each node.
Additionally, duplicate nodes that have been created in accordance to rule (2)
do not have to be counted. First, we must take care that duplicate nodes,
usually a branching node v, and a @-node vg, both labeled with the same
variable z;, are managed correctly. Both nodes reside in the same hash table
hz; and occupy the same slot of the table. The hash table is organized to
maintain ordered collision lists. Thus, both nodes, v, and vg, are adjacent in
the collision list, while one of them will be marked with a temporary single
bit flag as being a duplicate. Note that e.g. the nezt-pointer of the node,
connecting the node with its successor in the collision list of the hash table is
also an address pointer and therefore, its least significant bit can also be used
as a flag bit. In addition to that, also a counter for duplicate nodes d, has to
be maintained to compute the real node count for the sifting heuristic. Thus,
the real size of P is computed Pyeq = |P| — (15, + dz,)-

Now, for each position of the variable z; in the variable order, we keep track of
the real size of the @-OBDD P. x; will be sifted into the position, where P,..q;
was minimal.

Once z; is in the correct position, a complete reduction step has to be per-
formed. First, all duplicate nodes will be eliminated. This can be achieved
rather simple by traversing P and redirecting all successor pointers of a node
that are referencing a duplicate node to the node next in the collision list.
The reference counter of the duplicate nodes is decremented and they will be
removed in a final garbage collection. Next, starting bottom up, all possible
applications of the extended reduction rule are performed for meta-®-nodes in
hash tables h;,, where r;, > 0. Now, P is completely reduced and the next
variable can be processed. After all variables have been processed, the sifting
algorithm is finished. See Fig. 5.43 for an outline of the sifting algorithm for

129

Input: ©-OBDD Py, with variable order TI, and growth factor .
Output: &-OBDD lec, PJI(- < Py with variable order II'.

mod2_sifting (P, 7) {
create ordered list of variables z;, 1 <1< n;
foreach variable z; {
repeat {
move z; through all levels j, 1 <37 <n, while
storing |P;|, the size of P with z; in level j
using the symmetric swap_in_place procedure;

until (|P;| > - |P| or all levels j have been accessed)
target = level j with |P;| = min(P;), 1<i < mn;

move x; to level target;

remove all duplicate nodes in P;

do complete extended reduction of P;

}

return(P);

}

Figure 5.43: Outline of the Sifting Algorithm for @-OBDDs in Pseudo Code.

@®-OBDDs in pseudo code.

To limit the growth of the &-OBDD during the sifting procedure, a growth
factor v € R similar as in the case for OBDDs is introduced, preventing the
sifting algorithm to proceed beyond a point, where no improvement seems to be
much likely. In practice, a growth factor of v = 1.2, as it is implemented as the
default growth factor in the CUDD package, has shown to be rather efficient.
Thus, we also chose v = 1.2.

The major difference in the sifting procedure between OBDDs and ¢&-OBDDs
is the lack of symmetry in the basic variable exchange procedure. For OBDDs,
this swap is always reversible including all possible reductions to be carried out.
This is due to the canonicity property of the OBDD and because the reductions
always lead to a canonical form of the function to be represented as an OBDD.
For &-OBDDs, for the same Boolean function, there might exist several struc-
turally different &-OBDDs and the possible reduction rules don’t guarantee a
canonical form. By preventing certain reductions for @-OBDDs during the vari-
able swap, we keep the swap operation to a fixed regular form, allowing possible
duplicate nodes and unreduced meta-@-nodes (unreduced w.r.t. the extended
reduction rule). These prerequisites have to be taken into account and after
successfully processing a single variable, we have to clean up redundant nodes
and unreduced subgraphs.

To apply the sifting heuristic efficiently in synthesis, it makes only sense to
apply the variable reordering algorithm already dynamically during the synthe-
sis process to prevent the @-OBDD from becoming too large. If the heuristic
is only applied afterwards, after synthesis has finished, the &-OBDD might al-
ready have become too large to be represent with the available resources. Thus,

130

during the synthesis process, the construction of the &-OBDD P is stopped,
after the size of P has exceeded a certain threshold bound «g. If |P| > g, the
sifting routine is called for the function that is already represented. Afterwards,
synthesis continues, until the next threshold value a1 = v - o is exceeded. As
for the dynamic jiggle algorithm, we chose v = 2. Thus, the threshold value
a;, © > 0 doubles after each iteration. When the synthesis of the &-OBDD has
finished, a final reorder process might take place to optimize the already found
variable order.

For improving the &-OBDD size, also the Jiggle algorithm can be called either
during or after synthesis. But, we should limit the number of its application,
because as shown in the previous chapter, this algorithm is rather costly and
has not necessarily a significant positive impact on &-OBDD size.

To show the efficiency of the heuristic, again we performed symbolic simulation
of the same benchmark circuit set. First, we compared OBDD sizes against
@®-OBDD sizes, both achieved with dynamic reordering enabled and sifting
as the designated reordering algorithm. The threshold value, when to start
variable reordering for ®-OBDDs, was adopted from CUDD and set to o, =
4004 nodes. The limiting growth factor for both cases was set to v = 1.2.
In the first round of experiments (1), we compared only sizes achieved by the
sifting heuristic, while in the second round (2), additionally the jiggle heuristic
for ®-OBDDs was applied to gain a further improvement of ®&-OBDD size.
Additionally, to demonstrate the optimization potential of the sifting algorithm,
for a comparison we also compared the size of @-OBDDs with the variable order
given by the circuit and the size of the @-OBDD for the same circuit with the
variable order achieved with the sifting algorithm (3). To get a suitable number
of @-nodes into the &-OBDD, the greedy heuristic for deciding, when to use
standard ITE or pDE, was applied.

See Table 5.11 for a an overview of some selected results for (1), (2), and (3).
For the results of the complete benchmark circuit set see Tables A.20 and A.21
in the Appendix.

In the first column the circuit name is given, while in the second column the
size of the OBDD achieved with the application of dynamic variable reordering
and the sifting heuristic is listed. The third column gives the size of the &®-
OBDD and the standard variable order given within the circuit description.
Synthesis in all cases for @-OBDDs has been performed with application of the
simple greedy heuristic in combination with the apply-@® algorithm based on the
pDE-decomposition. Column four shows the &-OBDD sizes for the application
of dynamic reordering with the extended sifting heuristic for &-OBDDs, while
column five lists additionally the sizes for @-OBDDs when dynamic @-node
relocation with the dynamic jiggle algorithm is computed.

In the upper part of the tables in the appendix, the sizes for all circuits is
given that have also been computed up to now within the given resource limi-
tations. Note that with the variable reordering heuristic enabled, it is possible
to compute additional circuits that are listed in the lower part of the tables.
Next, we proceed with the discussion of the results for the single experiments:

(1) Here, a comparison of OBDD size and &-OBDD size for synthesis with

131

Circuit OBDD-size ®-OBDD size [Bytes]
Sifting | pDE-meta | Sifting | + Dynamic Jiggle
pair 128664 3409992 106776 106376
my-_adder 4716 18873336 5868 5100
i7 14148 31172 20800 13928
i2 7380 10880 7344 7344
bw6x6 28980 95832 67940 67628
alu2 5832 9856 5768 5760
C499 958464 670188 196708 187892
C432 43560 184040 37160 36792
C1355 1064232 670024 1065340 1064196
comp 4608 27142104 3928 3796
i10 2446956 - 1906792 1904572
mm30a 3621276 - 3010564 3009244
C7552 296674 - 254196 254196
sbc 38052 135332 38556 35672
5820 8172 16532 7044 6264
s713 22644 115428 18408 17888
s641 22644 115360 16044 14660
5635 4716 64692 10364 3356
s444 5796 11136 1588 1340
51269 78804 1101680 79140 76328
mm9b 90936 18157936 74108 73292
mm9a 72828 14583716 57264 56472
mult16a 7380 23852212 8032 8032
s838.1 6444 - 6516 5984
53384 32616 - 40744 32432
by 13.701.388 - 12.700.536 12.535.556
100% 92.7% 91.5%

Table 5.11: Comparison of OBDD and @&-OBDD size for the Sifting Heuristic.

Circuit OBDD @-OBDD

Sifting | pDE-meta | Sifting | + Dynamic Jiggle
Eprevious 54.7 2687 526.3 677.8
NOrMprevious 1.0 49.1 9.6 12.4
Y 620 - 8308 12961
norm 1.0 - 13.4 20.9

Table 5.12: Runtime Requirements for the Sifting Heuristic for OBDDs and
@-OBDDs.

132

dynamic sifting enabled is conducted. If we compare the overall achieved
sizes, the results for OBDDs and &-OBDDs are quite similar, while for &-
OBDDs the overall achieved size with 92.6% of the OBDD-size is a little
bit smaller. The important thing to mention is that now, with the sifting
heuristic enabled, it is possible to perform synthesis of 14 circuits of our
benchmark set that were not computable within the given resource lim-
itations with the previous methods. If we distinguish the sizes achieved
for sequential and combinatorial circuits, with 92.6% of the OBDD-size,
@®-OBDDs perform better for combinatorial circuits compared to sequen-
tial circuits, where they come up to 96.3% percent in size. With a few
exceptions, the results achieved for &-OBDDs are always smaller or at
least comparable to OBDDs. These exceptions include circuits that also
previously have shown not to benefit too much from the introduction of
@-nodes. The worst case of these examples is bw6bz6, where &-OBDD
size is about 233% the size of the OBDD. But, there are also examples
of circuits that really do benefit from the introduction of @-nodes, as e.g.
C499 or s444. There the ®-OBDD size could be reduced up to 20% (27%)
of the OBDD size.

All in all, the impact of ®&-OBDD nodes is not as obvious as for not
optimized variable orders. The gain in size is less than 10%, if measured
over all circuits of the benchmark in the average. This shows that the
percentage of circuits that really do benefit from the use of ®-OBDDs, at
least in this particular benchmark set, is small.

(2) Here, additionally, for &-OBDD synthesis with enabled sifting heuristic,
also the dynamic jiggle heuristic was applied during construction and
compared with standard OBDD sifting. The overall improvement for all
circuits that could be achieved additionally to the sifting heuristic comes
only up to 1%. Thus, in the average, for most circuits the application
of dynamic jiggle during synthesis does not really fall into account. But,
there are some circuits, where huge improvements could be achieved, e.g.
$635 that could be reduced from 219% or the OBDD size to only 71%,
or i7, where a reduction from 147% to 98% was possible. But for the
major part of the circuits, only a small reduction could be achieved. If
we take the additional amount of time required for the jiggle algorithm
into account, its application is not really efficient.

(3) Finally, a comparison of &-OBDD size with and without application of
the sifting algorithm was performed. The results show the huge impact
of the variable order on the ®-OBDD size. First at all, there are 14
circuits that could not be computed with the variable order given within
the circuit file. The sifting heuristic was able to keep the computation
within the given resource limitations. The reduction in size for the sifting
algorithm is tremendous. The original &-OBDD is about 40 times larger
than the size achieved with the sifting heuristic.

After having shown, that the sifting heuristic is able to reduce &-OBDD size
in a similar way that for OBDDs, we have to evaluate its efficiency in terms

133

of computation time also. See Table 5.12 for the overall required computation
time for the application of the sifting heuristic. As in the previous table, the
second column lists the required time for OBDDs, while column 3, 4, and 5
lists computation time for @-OBDDs without sifting, with sifting, and with
additional application of the dynamic jiggle heuristic. The first row gives the
achieved results for those circuits only that were also able to be computed
previously without the sifting heuristic to have a suitable comparison. The
second row contains the results for all circuits in seconds, and the last row
shows the results normalized in relation to the time required by OBDDs and
the CUDD package.

Let us first compare the results for those circuits that have been already com-
putable with the previous method that are in the upper part of the table. Also
with dynamic variable reordering enabled, the CUDD package can defend its
leading position, but compared to the runtime requirements for the static vari-
able order given by the circuits, the &-OBDD sifting is capable of coming up
closer. Although now with sifting enabled, the runtime is up to ten times higher
compared to OBDDs, it is much faster compared to the static variable order
synthesis for @-OBDDs. This speed up is achieved by avoiding memory peak
sizes and avoiding the maintenance of huge node counts within the &-OBDD
package. If we take the other circuits that could not be computed previously
also into account, we notice a slow down compared to CUDD and the factor of
being slower is now about 13 times. This additional slowdown can be explained
easily. As we have shown before, the main reason for the &-OBDD package
for being so slow are the signature based equivalence test, the more complex
cofactor creation algorithm, and the not so sophisticated memory management
compared to CUDD. If now, larger circuits are processed the influence of the
memory management becomes much higher. On the other hand, the sifting
algorithm for @-OBDDs is more complicated compared to OBDD sifting. We
have to apply additional reduction steps before we can switch to the next vari-
able to be repositioned. Taking all these factors into account, this results in
the important slow down compared to OBDDs.

As for many other data structures too, smaller representation size can often
only be achieved by an increase of the complexity of the management algorithms
related to that data structure. The same holds for &-OBDDs. Although we
have shown that there is the possibility of exponential gaps between OBDD
and ®-OBDD representation size, it does not really have the same effect for the
circuits of our benchmark set. There, the decrease in size in the average comes
to not even 10% for the processing, when the optimization heuristic is enabled.
Unfortunately, this small win must be paid with a much larger loss in runtime.

5.3.4 Conclusions

Do &-OBDDs have any significant influence in practice, after the results of
this work being published? Certainly, for applications, where we are able to
perform dynamic reordering with OBDDs and where we have designs that can
be represented with OBDDs within the given resource limitations, there, most
likely they will not have any major relevance.

134

But, there are also cases in practice, where dynamic reordering is not suitable,
because the designs simply are too huge. There, a more or less well suited static
variable order is computed from the given circuit design and then, the circuit
is to be represented as an OBDD following that static variable order. There,
where the representation size is of upmost importance, there is the chance for
@-OBDDs also to be useful in practical applications.

And we should not forget that the achieved results are only the results on
a more or less small benchmark set and not necessarily representative for all
possible designs. It has been shown that there are exponential gaps between
the representation sizes of OBDDs and ©-OBDDs and certainly - as a few of
the given benchmark circuits also show - there must be designs, where this
advantage can be rather useful.

135

136

Chapter 6

Extension of -OBDDs to the
Discrete Domain

In this chapter we show how to extend the &-OBDD data structure from its
original binary domain to an arbitrary discrete domain. We distinguish bit-level
decision diagrams representing functions with Boolean outputs and word-level
decision diagrams representing functions whose outputs can be arbitrary inte-
gers. We do not consider extensions of BDDs that are based on the arithme-
tization of the decomposition rules like Binary Momentum Diagrams (BMDs)
[BCY5] or the introduction of multiplicative or additive edge values as for Edge
Valued Binary Decision Diagrams (EVBDDs) [LS92, LPV94] or Edge Valued
Binary Momentum Diagrams (*BMDs). The focus of this chapter lies on Mul-
tiple Valued Decision Diagrams (MDDs), where each decision node has more
than just two outgoing edges and is extending OBDDs to a finite domain. As
for OBDDs, also word-level DDs might benefit from the introduction of oper-
ator nodes. For this reason we are adapting the concept of MDDs to Mod-p
Decision Diagrams (Mod-p-DDs) that are a generalization of &-OBDDs.

6.1 Multiple Valued Decision Diagrams

In difference to Multi Terminal Binary Decision Diagrams (MTBDDs) [CFM+93]
that are also known as Algebraic Decision Diagrams (ADDs) [BFG+97], which
are representing functions of type f : {0,1}" — M, M C Z and allow a
compact representation of sparse matrices as they are used in the verifica-
tion of probabilistic systems, we consider another type of OBDD extension
for the representation of multiple-valued logical functions of type f : M™ — M,
M ={0,1,...,p— 1}, p € N. In order to achieve this, multiple-valued deci-
sion variables have to be introduced that are able to take an arbitrary number
p (p > 2) of different values. A decision diagram that is constructed out of

nodes that are representing multiple-valued decision variables is called Multiple
Valued Decision Diagram (MDD) [SKM+90].

Definition 6.1 A Multiple Valued Decision Diagram on the variable set X, =
{z1,...,2,}, where z; might take values from M = {0,1,...,p—1}, p € N is

137

representing a multi valued function f : M™ — M. Every non terminal node
of a MDD is labeled with a variable x; € X, and has p outgoing edges. An
input a = {a1,...,an}, a; € M activates a path starting in the source, choosing
the a;-edges at nodes labeled with x;, leading to one of the p terminal nodes
tj € {to,...,tp—1} that are labeled with one of the constants c; € M.

Note that in general it is possible to simulate a node v of a MDD P with p
outgoing edges by a binary decision tree of depth d = [log p] with 2¢—1 Boolean
branching nodes and 2¢ leaves. All Boolean variables that are constructed in
this way test only a fraction of a multi valued variable. Because of this binary
encoding, there are more possible variable orders and thus, there is the potential
of constructing a smaller data structure by using this transformation. But, if
the considered problem definition is given in terms of multi valued variables,
MDDs are rather useful.

In an arbitrary MDD P for each node v labeled with the multi valued variable
z; € X, the generalized Boole-/Shannon decomposition [MW86] is applied as
follows:

0 1 m—1
3 = i = = P i =m—
fo(@i, . 2n) =i fr=0+ Zi fo,=1+ ...+ Zi -fr;=m—1,

where f;,—; are cofactors of f, and '+’,’-” denote the multi valued operations

MAX and MIN, correspondently. & is the unary operation literal, which is the
multi valued generalization of the Boolean negation, and is defined by

i) p- 1 ifx=1

0 otherwise.
The cofactor of a multiple valued function f : M™ — M with respect to a
variable z; is the function resulting when z; is replaced by a constant value
b € M and is denoted by f|;—p or simply f,e:

fwg(ilil,. .. ,:En) = f(.']:l,. . ;~77i—1,b;~77i+1,--- ,.’L‘n)

Definition 6.2 Let X = {zg,...,zn_1} be a set of n multi valued variables
and let m: X —{0,1,2,...,|X| =n— 1} be a bijective mapping of the variable
indices. An Ordered Multiple-Valued Decision Diagram (OMDD) is a
MDD, where the order in which the variables occur is consistent with 7, i.e. if
there is an edge leading from a node labeled with x; to a node labeled with x;,
then m(z;) < m(x;) must hold. On each path from the root to a terminal node
all variables must occur at most once.

The concept of reduction that has been introduced with OBDDs can directly
be adapted for OMDDs:

Deletion rule: (simple reduction) If all outgoing edges of a node v lead to the
same node w, then eliminate v and redirect all incoming edges from v to
w.

138

Figure 6.2: Example of a 3-Valued OMDD.

Merging rule: (algebraic reduction) If the nodes v and v' are labeled with the
same m-valued variable z;, and for all of their successors it holds that
Vgp—k = Vh_y, Yk € {0,...p — 1}, then one of the nodes can be eliminated
while redirecting all incoming edges to the other node.

See Fig. 6.1 for an illustration in case of a p = 4 valued OMDD. If none of
the above reduction rules can be applied to the OMDD P, it is called reduced.
Reduced OMDDs are a canonical representation for multi valued functions, as
OBDDs are for Boolean functions. For multiple output functions f : M™ — M",
r > 1, we can represent these functions by a single graph with multiple root
nodes, a structure called shared OMDD.

See Fig. 6.2 for an example of an OMDD P; that is representing a function
f: M3 — M with M = {0,1,2}. f is defined by the following value table:

z3\z1z2 [00 01 02|12 11 10|20 21 22

0 1 2 0,0 0 0|0 0 O
1 2 0 11 1 10 0 O
2 o 1 2(2 2 2|0 0 O

For the synthesis of OMDDs, the well known ITE algorithm for OBDDs has
been generalized to the multi valued CASE-algorithm [Mil93] in the following
way: Let f and go,...,gp—1 be p+ 1 p-valued functions. The C'AS E-operator

139

is defined as

0 1 p—1
case(f, go, - - - 791)—1) :f 90+ f ‘g1 + -+ f *dp—1

As for the ITE-operator, with the CASE-operator every arbitrary m-valued op-
erator can be expressed. Thus, for an implementation we only have to maintain
a single operator cache, what is increasing the efficiency of the implementation.
Based on the generalized Boole-/Shannon decomposition w.r.t. the top variable
z of the OMDDs representing the involved functions, we are able to implement
the CASE-operator with the following simple recursion scheme:

case(f,go,-..,9p—1) = (z,case(f|z=0,90|z=0--+9p—1le=0),---
e 7ca’se(f‘w=p—1790|zc=p—1a .- agp—1|z:p—1)-

6.2 Mod-P Decision Diagrams

As in the case of OBDDS, OMDDs can not guarantee a concise representation
of an arbitrary multiple valued function. This deficit is motivating the need
of potentially more powerful data structures that can be achieved by extend-
ing the OMDD data definition. Also for OMDDs we have the possibility to
introduce operator nodes that are representing a distinct multi valued function
w: MP — M. In the case of OBDDs we have preferred to introduce @-nodes,
because the @-operation guarantees an efficient probabilistic equivalence test.
For a generalization, the @-operation we may also be considered as being the
arithmetic sum of the values represented by its successors modulo 2. Therefore,
for the p-valued case, we obtain the operator @®,, which computes the sum of
all its p successors modulo p, where p must be a prime.

Definition 6.3 Let X = {z¢,...,zn_1} be a set of n p-valued variables and let
m: X —{0,1,2,...,|X| =n—1} be a bijective mapping of the variable indices.
A Mod-p Decision Diagram (Mod-p-DD) Pj representing a multiple valued
function f : M™ — M s a rooted, directed acyclic graph Py = (V,E) with
the following properties: The node set V is containing two different types of
nodes: terminal and non terminal nodes. A terminal node vr is labeled with a
constant value c € M. A non terminal node v has as attributes either a variable
l(v) = z; € X (branching node), or the p-ary ’operation addition modulo p’, p -
prime, (®p-node). Each non terminal node has exactly p successors succi(v) €
V,ie M.

Definition 6.4 A Mod-p-DD is called ordered, when the order in which the
variables occur is consistent with ©, i.e. if there is an edge leading from a
branching node vy labeled with l(v1) = z; to another branching node vy labeled
with I(v2) = xj, then m(x;) < w(x;) must hold. On each path from the root to a
terminal node all variables must occur at most once.

However, by introducing functional nodes into MDDs, we have to give up canon-
icity. For a fixed variable order 7, a function f can be represented by several

140

Figure 6.3: Two Different Mod-p-DDs Py and Py, both representing the same
function f.

different, not isomorphic Mod-p-DDs P, Pyy, ..., Pys, consisting out of differ-
ent subfunctions.

As an illustration, consider the following 3-variable 3-valued function f : M3 —
M, M = {0,1,2} defined by the following table

z3\z1zo [00 01 02|12 11 10|20 21 22

0 i1 2 0)j0 0 0|0 0 O
1 2 0 11 1 170 0 O
2 o 1 22 2 2,0 0 0

Two different Mod-p-DDs Py, P5; representing the function f for the variable
order m = (1,2, 3) are shown in Fig. 6.3. The functional nodes are represented by
“@”. The edges leading to the three successor nodes of non terminal branching
nodes are labeled with 0,1, and 2. The Mod-p-DD on the right does not contain
any functional nodes, i.e. it is equivalent to the MDD of the function.

For Mod-p-DDs the set of reduction rules introduced for MDDs can be applied.
For every branching node v € V the deletion rule and the merging rule are
applicable. For &©,-nodes the set of reduction rules has to be extended. In
the following, consider a ®p)-node v of a Mod-p-DD P. v is connected to its p
SUCCESSOIs V1, . . . , Up.

(a) If all the successors vy, ..., v, of v are representing the same function and
thus, v1 = v = ... = vp, the function
P P
@p fo; :GBP f=p- f(mod p) =0.
i=1 i=1
is computed. Therefore, we can redirect all incoming edges of v to the
0-sink.
(b) Let the successors v1, ..., vy, of v represent the functions f,, = f, f,, = ¢,

2 <1 <p, ¢cg € M, with the property
P
@p C; = 0.
i=2

141

f CiC - G c

@ (b) (©
Figure 6.4: Three Extended Reduction Rules for Mod-p-DDs.

Then, v represents the function
P
Jo=1p (@p Ci) =fop0=f.
=2

Thus, we are able to redirect all incoming edges of v to its successor v;

(c) Let the successors vy, ..., v, of v represent the functions fv;) = ¢;, 1 <
1 < p, ¢; € M. Then v represents the function
P
EBPCi =ceM
i=1

All incoming edges to v can be redirected to the terminal node vy, that
is representing the constant function f(v;,) = c.

See Fig.6.4 for an illustration of the extended reduction rules for Mod-p-DDs.

Definition 6.5 A Mod-p-DD P is called reduced, if it contains no node v € V
with succ;(v) = succj(v) for all i,j € M,i # j, nor does it contain distinct
vertices v and v' such that the subgraphs rooted by v and v' are isomorphic.
Additionally, none of the extended reduction rules for ®p-nodes can be applied
to P.

The function f : M™ — M that is associated with the Mod-p-DD P is deter-
mined in the following way:

Definition 6.6 A Mod-p-DD P with root node v represents a function f :
M"™ — M recursively as follows:

(1) If v is a terminal node that is associated with the constant §; € M,i €
{0,...,p— 1}, then f, = ;.

(2) If v is a non terminal branching node labeled with [(v) = z; € X, then f,
is the function

0 1 p—-1
ey = 0 p— ’
fv(a;la wn) Ti fouce (v)+ Ty fsuccl('u) + T feuce 1(v)

where “+” and “” denote the multiple valued operations MAX and MIN,
correspondently.

142

(3) If v is a ®p-node, then f, is the function

fv(xla - al'n) = fsucco('u) Dp fsuccl('u) Dp - Dp fsuccp_l(v)a
where ®, denotes addition modulo p.

It is easy to see that MDDs are nothing else but a special case of Mod-p-DDs,
namely Mod-p-DDs without @,-nodes in the same way as OBDDs are special
®-OBDDs. Therefore, for a given variable order m, the size of a Mod-p-DD Py
for an arbitrary multiple valued function f must be always less or equal the size
of an OBDD Oy, |Ps| < |Oy|.

6.3 Probabilistic Equivalence Test for Mod-p-DDs
and Finite Functions

Since Mod-p-DDs do not provide a canonical representation of multiple valued
functions, testing the equivalence of two graphs becomes an essential problem.
In this section we show that the equivalence of finite functions given in terms
of Mod-p-DDs can be decided probabilistically in linear time by extending the
probabilistic equivalence test for &-OBDDs to the multiple valued case.

First, we introduce the concept of multiple valued signatures for testing the
equivalence of two multiple valued functions in a probabilistic way. We define
an arithmetic transformation A,,, m < p, which converts a multiple valued
function f : M™ — M into a polynomial A,,[f] : Z;; — Z, over a finite field of
integers Z, modulo p, for some prime p. This polynomial is used to generate
a hash code for f, by evaluating the value of Ap,[f](z1,...,zy) for randomly
chosen input values of z; € Z, i € {1,...,n}, because the explicit equivalence
test for two polynomials would not be feasible for real applications.

Since a polynomial is unique for a given function, if two hash codes are different,
then the functions are certainly not equivalent, A,,[f1] # An[f2] = f1 # f2- On
the other hand, the hash codes of two equivalent functions are always the same,
f1 = fo= Apnlf1] = Am[f2] and thus, the equivalence of two arbitrary multiple
valued functions can be computed with a known error probability, arising from
collisions of hash codes of non equivalent functions.

6.3.1 Definition and Properties of the Generalized A-transform

To define the transformation A,,, we associate a key polynomial with each of
the p" input assignments of a multiple-valued function f(z1,...,z,). Then,
all key polynomials of assignments producing the non-zero output value of f
are summed up and the result is interpreted as an integer valued function
Ap[fl(z1,...,2p) over Z,,.

The key polynomial for a given row of the truth table of an arbitrary multiple
valued function f is a product of terms, where each term is associated with a
particular input variable z;, i € {1,...,n}. If b; represents the value of z; in a
given row of the truth table, then the corresponding term w(b;, z;) in the key
polynomial is defined as follows:

143

Definition 6.7 For any prime m > 1> 1, w: Z, x Z, — Z, is defined by

m

w(b,:v):zl< H u H j—w).

i=0 \jem—{i37 ~ " jem—g3 7 T°

It is easy to see that]]'.%’;zlforb:iand]]'.%’;:Oforb#i.
jeEM—{i} jeM—{i}
Therefore, parameter b acts as a selector between the terms H Jﬁ for
jeM—{s}

different values of 1 € M, i.e.

o ’lU(O,.’L') = H '.;ua
jeM—{0}

o w(l,z)= [[4,

jeM—{1}

‘b.

[y

e and so on.

On the other hand, each of the terms H Jj%f, represents a polynomial,
jeM—{i}
which computes 1 for £ = ¢ and computes 0 for z € M — {i}. Thus, the

behavior of this polynomial is similar to the literal operator T

i | m-1 ifz=q,
0 otherwise,

except that for z = 4 the literal = evaluates to m — 1, and not to 1.
Since the definition of w(b, z) includes a division operation, it has to be shown
that the value w(b,z) always computes an integer w(b,z) € Z,. As shown

-b
above, the term H J -
jen—iy ~ "
has to be shown that H j, —:1-5 € Z,, what can be proved by the following
jem—ip) T

computes always 0 or 1, depending on b. Thus, it

Lemma.

j—x

Lemma 6.1 For any i € M and any x € Z,, H .

ez,
jem—apd

j—z

has the following

Proof: For any fixed i € M and any = € Z,, H
jem—iyd Tt
structure:
O0-z)-Q—2z)-...-((—1)—2x) . (t+1)—=z)-...-((m—-1) —x)
0—4)-1—=4)-...- (=1 —=2) (G+1)—i)-...-(m—1)—1)
Note that no term in the divisors can be 0 since, ¢ is fixed and j # i. If any of

the terms of the dividends is 0, the Lemma trivially holds. Thus, the case, if
none of the terms in the dividends is 0 has to be considered.

144

By multiplying all the terms of the first fraction by -1 and reversing their order,
we get:

(z-(G-1)-...-(¢-1) -2 (G+1)—a)-...-((m—1) —2)
1-2-...-(6—1)-4 1-2-...-((m—1)—9)

It is easy to see that

(a:—(z'—l))-...-(a:—l)-a::(a:)
1-2-...-(i—1)-4

and

(((+)—a)-...-(m—-1)—x) _ ((m—l)—z)
1-2-...-((m—1)—19) (m—1)—i

that are in known be integers, as long as z,i,(m — 1) — z, and (m — 1) — ¢ are
integers. Since, ¢ € M and = € Z,, z,i,(m — 1) —z and (m — 1) — 4 are always

-z
integers and therefore, H J, - € Z,. O

jem—ip)

The key polynomial Wy, for an assignment (bi,...,b,) € M"™ of n variables is
defined as the product of the w(b;, z;) terms, i € {1,...,n}:

Definition 6.8 For any n > 0 and and a prime p > 1, the key polynomial
Wy : Zg” — Zp s defined by

n

Wi(b1ye o by @1y, y) = H w(bg, x;).
i=1

For example, for m = 3:
1
WQ(O, 1,.T1,CE2) = 5(1 - .'L'1)(2 — $1)$2(2 — :EQ).

Similarly:
1
W2(1,2,$1,$2) = .T1(2 - Il)(_§x2)(1 - .TQ).

Now, we define the transformation A,, as the sum of the key polynomials W,
for all assignments (by,...,b,) € M™, each multiplied by the value of f for the
corresponding assignment. The given definition is applicable to general func-
tions Z;} — Z, over the field Z,. Note that since M C Z,, the multiple valued
functions fas : M™ — M are a subset of the field functions fz, : ZZ — Z,.
While a field function fz, is as well defined for inputs z; ¢ M, the values that
the function produces for such assignments do not participate in the defini-
tion. To distinguish between multiple valued and field functions, we use the
unsubscribed letters f,g for multiple valued functions of type M™ — M and
the subscribed letters fz,, gz, for field functions of type Z; — Z,,.

145

Definition 6.9 Given a function of type fz, : Z;, — Z, and m > 1, the
polynomial Ap[fz,] : Z, — Z, is defined by

An[fz)21, 2p) = > f2,(b1, b)) - Wi (b1,. .. b, T, .o, Tn).
V(b1,...,bn)EM™

For example, for p = 3 and n = 2, the polynomial A3[fz,](z1,2) is given by

Aslfz,)(m1,m2) = £(0,0)- 5(1—z1)(2 — x1)(1 — 72)(2 — x2) +
+ f(O,l) . %(1 - .771)(2 — .771).’132(— .772) +
+ £(0,2) - (1 —21)(2 — 1) (—22) (1 — 72) +
+ f(l,O)-$1(2—:I:1)(1—.’L‘2)(2—.’L‘2) +
+ f(1L,1)-21(2 = 21)x2(2 — 22) +
+ f(1,2) 21(2 — 21)(—22) (1 — 22) +
+ f(2,0)-%(—w1)(1—$1)(1—w2)(2—w2) +
+ f(2, 1) . %(—1‘1)(1 - .7,‘1)]72(2 - .’L‘Q) +
+ f(2,2) 5(—z1) (1 — z1)(—22) (1 — 22).

E.g. for the 3-valued function f(z1,z9) = MIN(x1,x2), the corresponding
polynomial computes to

Aslf](z1, z2) 21(2 — 21)72(2 — 22) + 1(2 — 1) (—22) (1 — 72) +
(=21)(1 — 21)22(2 — z2) + 2(—21)(1 — 1) (—22)(1 — z2)

5 2 2 1,.2,.2
5T1T2 — T1T] — T1T2 + 521%5.

I+

Note that the A-transform is defined only for assignments (b1,...,b,) € M™.
Therefore, if two field functions fz, and gz, have the same values for all
(b1,...,b,) € M", then they are treated identically by the A-transform. We call
these two functions to be m-equivalent, in correspondence to the A-transform
previously defined for Boolean functions:

Definition 6.10 The functions fz,9z, : Z, — Z, are m-equivalent if and only
if fz,(b1,...,by) = gz,(b1,...,by) for all assignments (by,...,b,) € M".

We write fz, z gz, to denote that fz and gz, are m-equivalent. If both f
and g are multiple valued functions of type M™ — M, then f = g is identical
to f =g.

By Definition 6.9, fz, = gz, implies Ap[fz,] = Am[fz,]. However, is it pos-

sible to conclude Ap,[fz,] # Amlfz,] from fz, ; gz,7 To answer this ques-
tion we have to examine the behavior of the polynomial A,[f] evaluated for
some assignment (by,...,b,) € M". It is easy to see that for any b,b' €
M, wb,b) =1, if b = b, and w(b,b') = 0, otherwise. Therefore, for any
(byewybn), (B, BL) € M™, W(by,... b, b,,...,bL) = 1, if b; = b for all
i€ {l,...,n}, and W(by,...,by,b},...,bl,) =0, otherwise. Using these facts,
the following theorem can be proven:

Theorem 6.1 For any function fz, : Z) — Zp, it holds that Am[fz,] £ [z,

146

Proof: By Definition 6.9, for any (b),...,b),) € M™ we have:

A [fz, (01, ..., b)) = > f2,(b1, ... by) - Wy(by, ..., by, b, .., b)),
V(b1 yeresbn) EM™

Since, W(b1,...,bp,b},...,b),) = 1 only if b; = b} for all i € {1,...,n}, and
W (b1,...,bn,bY,...,b,) =0, otherwise, this leads us to Ap,[fz,](b},...,b,) =
f(bh,...,b),) - 1. Since, this equation holds for any (b},...,b)) € M™, we get
Am[pr] = pr-

By theorem 6.1 we are able to conclude that, though applying the A-transform
to a multiple valued function f increases the domain of f from M™ to Z7,
the polynomial A,,[f] still yields the same values as f when evaluated for an
assignment (by,...,b,) € M™. Therefore, the polynomials for two different
multiple valued functions f and ¢ differ on all assignments (by,...,b,) € M™
for which f(b1,...,by) # g(b1,...,by). Consequently, f # g implies A,,[f] #
Amlg].

6.3.2 Efficient Computation of the A-transform

Computing A-transforms using Definition 6.9 is only feasible for very small
functions. For larger functions, we develop an alternative method, which is
described in this section.

Let fz,—; denote a subfunction of the f(z1,...,z,) with the variable z; being

fixed to the value j, i.e. fg,—; 4 flz1,...,Ti—1,7,Tit1,---,%pn). In the follow-
ing Theorem a decomposition of A,,[f] that expresses the polynomial of the
function f(z1,...,z,) in terms of the polynomials of the subfunctions fy,—;,
ie{l,...,n}, j€ M.

Theorem 6.2 Every polynomial Ay, [f], m > 1, can be decomposed with respect
to a variable z; of f, 1€ {1,...,n}, by

VITIIE S B | (i S)
vk k J

i=0 \vkeM—{j}

Proof: In order to simplify the exposition and w.l.o.g. the proof is shown for

147

the case of z; = z1:

Anlfl = > fbry-enyby) Walby, .. by, 21, .-,) {Dfn. 6.9}
V(b1,e.bm)EM™
m—1
= Z f(g by .oby) - Wy(4, b2, ... by, 1, ooy Ty) {re-grouping}
J=0 V(ba,....bn)EMn-1
m—1

[
™

> f(j,bQ,...,bn)-(11 kﬁl)-Wn_l(bQ,...,bn,xQ,...,xn)

0 V(ba,...,bn)EMP—1 vke M—{j}

J

{w(j,z1) = [] %%, Di. 6.8}

vkeM—{j}

-1
= (11 kk—w]l) - Ap[frr=5] {Dfn. 6.9}
\4

j=0 \Vke M—{j}

3

O
Next, a lemma is proven that demonstrates how the term H]Z%”;, jEM,

vke M —{j}
can be expressed by an m-equivalent polynomial in linear form.

Lemma 6.2 For any variable x € Z,, any fized j € M, and m > 2 the follow-
ing equation holds:

m—1)
> aipx’ if j =0,
=0

aj;5 + aj_ja™ I if j € M — {0} and j #m —j,

k—=x
II

veeM—{5} " 7

13

a;jz’ ifj €M —{0} and j =m — j.

where Vi,j € M, a;j = DT;J'—, with D and D;; given by

m—1 m—1
D= []#- [[i™",
=1 =1

(m—1 m—1
H Lk®pt _ H k(m—k)@pi ’Lf] =0,
k=1 k=1
m—1
LI ifj#0and j =1 and j £ m —1i,
k=1
Dyj =5 = Y . . oy
—W-Hkm* if7#0and j =m —1i and j # 1,
k=1
m—1 m—1
L <Hkk— Hkm—k> ifj#0and j =1 and j = m — i,
k=1 k=1
| 0 otherwise,

(6.1)
where ” @, " denotes addition modulo p and all other operations are regular
arithmetic operations in Z,.

2

148

Proof: We compute the coefficients a;;, i,7 € M, by solving the following
system of m linear equations with m unknown elements:

ag;j 0° + a;- 0! + ag; - 02 +... + a(p-1)j or—1 = by
aoj * 19 + aij - 1! + as;j 12 +... + Q(p-1)j 1p-1 = b
ag; - 2° + ag; -2 + agj-2° +..oo F apo1); . op-t = by

agj - (m—=1)° + ay;- (m—1)" + agj - (m—=1)> + ... + am-1); - (M—1)""1 = by

where Vi € M, b;= H ,’z—:; A system of linear equations like the given
vke M—{j}

one above can be described by matrices as X - a = b, where

0° 0! 02 o1
10 11 12 11
X = 20 2! 22 gm-—1 ,
(m-1)% (m-1) (m-1%2 ... (m-1)m!
ao; bo
aij b1
a—= a2j s b= bg
A(m—1)j b1

From linear algebra it is known that a system of linear equations as the one
given above always has a solution that is unique[BMT77].
We compute the ith element of a by applying Kramer’s rule, which says that,
for any ¢ € M, a;; is given by the formula a;; = ¢, where D is the determinant
of X, and Dy; is the determinant that is computed after the replacement of the
1th column of X by vector b.
Observe that the structure of matrix X is rather regular, namely for all i, 5 € M,
Tij = 7. Therefore, by applying standard rules for computing determinants
[BMT77], it is easy to show that D and D;; are given by the equation (6.1).
Examining the structure of D;;, the following properties of the elements of a;;
can be derived:
{ Dij Vi,7: such that j =0, ori =74, ori=m — j,
Q55 = (6.2)
0 otherwise.

Thus, the only elements a;; that can possibly have non-zero values, a;;! = 0,
are a;o for all i € M, and aj; and aj(,,—j) for all j € M — {0}. Therefore, the

term H ﬁ%? can be simplified to:
VkeM {5}

m—1)
Z G,Z'().’EZ ifj = 0,
=0

k — X m =
Vkey—{j} k—j) %% +ajmopa™ ifj € M —{0}and j #m —j,

a7’ if j € M —{0} and j =m — j.

149

a

As mentioned above, the behavior of H i%j is similar to the literal operator

VkeM—{5}

Z(m—-1)- H 2;_?, and thus, from Lemma 6.2, we can conclude that

VkeM—{j}

:%, except that for z = j the literal % evaluates to m — 1, and not to 1. Therefore,
J
x

m—1]
(m-1)- ZCLOZ'.’L‘Z ifj=0,
1=0

(m=1) - (aj537 + aj(m_jya™) if j € M — {0} and j # m — j,

Jm
Tr =

(m—1)-ajja’ ifje M —{0} and j =m — j.

Theorem 6.2 and Lemma 6.2 can now be used to derive another type of decom-
position of A,,[f] that will be used later to derive a canonical expansion for
Ap[f]- But first, we summarize some properties of A,,[f] that can be directly
related to Definition 6.9.

Lemma 6.3 For any field functions fz, and gz,, and any constant c € Z,, it
holds that

(¢) Amlc- fz,] = c- Anlfz,]-

(b) Anlfz, + 92,1 = Anlfz,] + Amlgz,]-

Theorem 6.3 Every polynomial An,[f], m > 1, can be decomposed with respect
to a variable x of the support of f in the following way:
case 1: if m is odd, then

Am[f] = aOOAm[fcc:O]‘l'

m—1

> ((@joAmlfomol + ajjAmlfomi] + @iy Amlfr=p—5]) - @)

Jj=1
case 2: if m is even, then

Am[f] = agplnm [fz:0]+

m—1

Z ((ajOAm[fzzo] + 0 Am[fo=5] + @j(m—j) Am[fo=m—j]) - 27+
PRhptyA

+ (a%OAm[fw:O] + a%%Am[fw:m/Q]) ’ xm/Z)

where Vi,j € M, a;; = &, and D and D;; given by (6.1).

150

Proof:

3

Anlf] = {Theorem 6.2}

<
Il
o

-1
(H 12—?) . Am[fmiZk]
j VkeM—{j}

azowi : Am [fm:0]+

3
L

[
' M

SRS
Ll
o

(aj527 + ajp—jaP7) -
= [fx 0]

(aJOAM[fw o] +ajjAm[fz=]]+a'_7(m 7)

Am [fz:j] {Lemrna 6.2}

<.
Il
—

MSO

m[fzczm—j]) -

1

<.
Il

{reordering}
a

Let F' be the vector of coefficients of the truth table of the function f and A™
be a transformation matrix, defined as follows:

Definition 6.11 The m™ x m™ matriz A" is defined defined inductively by:

[ago 0 0 0 0 i
aig all 0 0 a (m—l)
(1) Al g aso 0 a9 A2(m—2) 0
A(m—2)0 0 A(m—2)2 A(m—2)(m—2) 0
L G(m-1)0 G(m-1)1 0 A(m—1)(m—1)

where Vi,j € M, the coefficients a;; are given by (6.2).
(2) A» L Al g an-?
where ” @ 7 denotes the Kronecker product of two matrices [BM77].

Clearly, if Theorem 6.3 is successively applied to the polynomials Ay, |[fz,=x] of
subfunctions f;,—j for all the remaining variables, an expression can be derived,
in which A,,[f] is expanded in all the variables of f:

Theorem 6.4 Every polynomial Ay, [f], m > 2, of an n-variable p-valued func-
tion f can be expressed in the following canonical form

Am[f] =

where (i1%2 . .. 1) is the m-ary expansion of i, with z'1 being the least significant

digit, and the coeﬂiczents ¢; are given by the vector C

. cpn—1] computed
as C = A"-

[COCI

151

Proof: By induction on n. We show the proof only for the case of m being
odd. For m being even p the proof is similar.

(1) Let n = 1. According to Theorem 6.3, any polynomial A,,[f] of a function
f(z) of one variable z can be decomposed with respect to z as:

Anlf] = ao_ol' A [fr=0]+
> (ajo - Amlfo=0] + ajj - Am|fo=j] + @jm—j) - Alfo=m—j]) - 27,
7j=1

where f,—r = f(k). According to Lemma 6.3, A,,[c] = ¢ for any constant
¢ € Z,. Thus, the expression above can also be written as:

m—1

Anlf]=ao0- f(0) + > (ajo- £(0) +aj; - f(4) + ajpy) - f(m—34)) - 27

=1
which can be re-written as

m—1

Am[f] = Zciwia
i=0
where o = ago - f(0) and ¢; = ajo - f(0) + aj; - f(j) + ajm—j) - f(m —j), for all
j € M — {0}. By examining the structure of the matrix A!, one can conclude
that C = A' - F.

(2) Hypothesis: Assume the result for n. According to Theorem 6.3, any A, [f]
of a function f of n + 1 variables can be decomposed with respect to 41 in
the following way:

Anlf] = aopAm [f$n+1:0]+

m—1

> (ajoAm[fe=0] + ajj Am[fo=j] + Gj(m—i) Am[fe=m—j]) cad .
=1

By the induction hypothesis, we can express each A, of the subfunctions of
n variables in the canonical form. We use the notation cf to denote the ith
coefficient of the canonical form of the subfunction f;,,,—x and Fj, for the truth
table vector of f;, ,—x. To simplify the exposition we also use the abbreviation

X to replace the term zi' - 2%’ - ... - zir. Thus, each Ap[fy,, k], kK € M, is
m—1
replaced by Z c¥ - X, with cf given by Cy = A" - F},. Then we get:
1=0
m"—1
Am[f] = ago- ZC? - X+
e
m—1 / mr—1 mt—1 m"—1))
(ajo Z C?-X + ajj Z Cz X + @j(m—7) Z C;nij X) - wgz—{—l'
j=1 i=0 i=0 i=0

152

7

Since, ” - 7 is distributive over ” + 7, we can reorder the above equation as

m"—1
Am[f] = (Z apo - C? . X) 'iE?H_l-I'
e
m—zl m"”—1)))
> (Y (ajo- & +ajj-c] + ajm_je) 'X> T
j=1 1=0
which can be rewritten as
mr—1

Anlf] = Z cj-a:il-a:?-...-xil",
§=0

where ¢; = aqp - cg, for 0 <7 <m —1, and ¢; = ajo - c? +ajj- CZ + aj(m_j)cgn_j,
forj-m<i<j-m+m-—1,forall j € M—{0}. Since, the coefficients ¢/ are
given by C; = A™ - F}, this is equivalent to C = (A' ® A") - F = A" . F.

For example, for m = 3 and n = 2, the matrix A2 is constructed as follows:

1 0 0
Al = [-3/2 2 -1/2]
1/2 -1 1/2

and

i 1 0 0 0 0 0 0 0 07

—-3/2 2 —1/2 0 0 0 0 0 0

/2 -1 1/2 0 0 0 0 0 0

~3/2 0 0 2 0 0 —1/2 0 0

A® = 9/4 -3 3/4 -3 4 -1 3/4 -1 1/4

—3/4 3/2 -3/4 1 -2 1 —1/4 1/2 —1/4

1/2 0 0 -1 0 0 1/2 0 0

—3/4 1 -1/4 3/2 -2 1/2 -—3/4 1 —1/4
1/4 -1/2 1/4 -1/2 1 -1/2 1/4 -1/2 1/4 |

Thus, A3[f] for f = MIN(zy,x2) can be computed as C = A2 . F =

o1 0 0 0 0 0 0 0 07 707 [0 7
-3/2 2 —1/2 0 0 0 0 0 0 0 0
/2 -1 1/2 0 0 0 0 0 0 0 0
-3/2 0 0 2 0 0 —1/2 0 0 0 0
9/4 -3 3/4 -3 4 -1 3/4 -1 1/4 1| =] 5/2
-3/4 3/2 -3/4 1 -2 1 —1/4 1/2 -1/4 1 ~1
1/2 0 0 -1 0 0 1/2 0 0 0 0
—3/4 1 —1/4 3/2 -2 1/2 -3/4 1 —1/4 1 -1

| 1/4 -1/2 1/4 -1/2 1 -1/2 1/4 -1/2 14| [2] [1/2]

Finally, A3[f](z1,72) = 32129 — 712% — 2239 + 2223

153

6.3.3 Probabilistic Equivalence Test for Mod-p-DDs

In the previous section we have shown how to compute the A-transform A,[f]
for an arbitrary multi valued function f : M" — M. A,[f] is unique for the
given function f and thus, can be used to determine the equivalence of two
functions fi and fs. To simplify the task of deciding the equivalence of f; and
f2, the equivalence of the two polynomials A[f1] and A[fs] can be decided prob-
abilistically by testing the equivalence for randomly chosen instances. Thus, we
are computing signatures (hash codes) for identifying multiple valued functions
with a certain probability of error.

These signatures can also be used for testing the equivalence of Mod-p-DDs
probabilistically, as in the case of &-OBDDs. For computing signatures for
Mod-p-DDs, we associate a polynomial py, = Ay,[f,] with every node v of a
Mod-p-DD, according to the function f, that the node v is computing.

Let GF(p*) be a Galois Field with p* elements of characteristic p, p - prime,
k> 0.

Definition 6.12 Let G be a Mod-p-DD representing a multiple valued func-
tion f : M™ — M. With each node v € G we associate the polynomial
Pyt (GF((p*))» = GF(p*) defined in the following way:

1. py, = 6;, if v is a terminal node representing the value §; € M,
p—1
2. py = Z H %xj * Pehild;(v), i v is @ non terminal branching

j=0 \vreM—{j}
node with index(v) = 1,

p—1
3. py = Z Pehild; (v) s if v is a @p-node,
j=0
where the operations ™ +7”,” —" and ” -” are computed in the field GF(p").

The polynomial identifying the Mod-p-DD G, pg, is the polynomial associated
with the root node of G. Since p¢g is determined by the function f that is rep-
resented by G, pg remains unchanged for different Mod-p-DDs representations
of the same function.

Following Definition 6.12, pg can be computed with p - |G| many additions, at
most 2p? - |G| many subtractions and at most 2p? - |G| multiplications. Using
GF(p*) of characteristic p, simplifies the polynomial for addition modulo p
operation to ps af, = ps + P, If we consider the elements of GF(p*) as p-ary
vectors of length k, then field addition can be computed in constant time by
bitwise addition modulo p. Multiplication and subtraction of two p-ary vectors
of length k can be computed in time [logp|k. Therefore, pe can be determined
in at most p - |G| + 2p% - |G| - [log p]k + 2p? - |G| - [log p]k time. Since, p and k
are constants, the complexity of computing p¢ is bounded by O(|G)).

During Mod-p-DD synthesis the computation of pg is performed bottom-up
and thus, the complexity of computing the polynomial for a new node takes
only constant time, because the polynomials for all its successor nodes have
already been computed.

154

Input: Mod-p-DDs Py, P.
Output: If f = g the algorithm answers yes, otherwise it returns no with proba-
bility greater than %.

equivalence(Ps, P;) {

chose independently and uniformly at random ay,...,a, € GF(p*);
compute pf(ai,...,a,) and pgy(ai,...,an);
L pp(atyeeern)==pylas,.--ran)) |
return(yes) ;
} else {
return(no) ;

}
}

Figure 6.5: Algorithm for a Probabilistic Equivalence Test for Mod-p-DDs.

For computing the signatures of the nodes v of a Mod-p-DD G, for every variable
z; € {z1,...,zn} of the multiple valued function f : M™ — M represented by
G, we chose the elements A, [z;] = p;, € GF(p*), i = (1,...,n) independently
and uniformly at random. With these values p,; the hash codes p, (pz,, - - - ; Pz,,)
identifying a unique node v of the Mod-p-DD G can be computed efficiently.
Now, all prerequisites are done for defining an algorithm for the probabilistic
equivalence test for Mod-p-DDs.

Let Py and P, be two Mod-p-DDs representing the multiple valued functions
f,g : M® — M. Let k € N, such that |GF(p*)] > p-n. Assume that
ai,...,a, € GF(p*) are generated independently and uniformly at random.

Theorem 6.5 For the Boolean signatures p; and py that are computed for the
Mod-p-DDs Py and Py, it holds that

(1) pf(ala"'aa'fl) :p!](ala"'aa’n)a fo :ga a’nd
(2) Prob(p(ar,-..,an) = pyla,-..,an)) < 1, if f # .

Proof: (1) follows directly from the definition of the A-transform A,,[f] for a
multiple valued function f.

(2) Following the proof given in theorem 4.13 the error bound can be estimated
with Prob(p¢(ai,...,an) = pelat,-..,an)) < %. O

See Fig 6.5 for the algorithm in pseudocode.

The estimation of the probability of degeneracy for Mod-p-DDs follows the same
estimation for &-OBDDs in Theorem 4.16.

By using s parallel signatures the probability of degeneracy in a Mod-p-DD G

representing a multiple valued function f : M™ — M between any two nodes is
|P|>-n®

at most W

155

A
f for 5

Figure 6.6: Cofactor Creation f|;,—¢ for Mod-p-DDs.

2p-1

6.4 Synthesis of Mod-P-DDs

The key operation for the construction of Mod-p-DDs is the Mod-p-DD synthe-
sis procedure. Applying an arbitrary multiple valued operation to two Mod-
p-DDs requires an extension of the CASE algorithm that has already been
introduced for MDD synthesis, resulting in the so called CASE-® algorithm.
The CASE-®-algorithm can be implemented by recursion with the cofactors
of the functions under consideration w.r.t. the top variables of the involved
Mod-P-DDs. Again, as in the case of &-OBDDs, the creation of cofactors has
to be adapted for Mod-P-DDs.

6.4.1 Cofactor Creation for Mod-P-DDs

The adaption of the CASE-algorithm to the CASE-® algorithm necessitates
the creation of Mod-p-DDs for the cofactors f|;,—;,j € M of a multiple-valued
function f associated with a Mod-p-DD.

There, for Mod-p-DDs we have to distinguish two different cases:

The top node vr of a Mod-p-DD P can either be a branching node labeled with
a variable z; € X,,, or it can be a @,-node, connected to branching nodes, where
at least one of its successors is labeled with x;. In the first case, for creating
the cofactor f|;;—;,7 € M, simply the successor v7; of vr that is connected to
the j- edge, has to be returned. In the other case, an @,-node v} has to be
returned that is connected to the cofactors f |z¢:j of its successors vy, ... , VT, -

If the ®p-node v/, does not already exist, it has to be newly created (see Figure
6.6).

6.4.2 Extended CASE-® Algorithm for Mod-P-DDs

As the regular CASE algorithm, the CASE-@-algorithm computes the result of
the application of a p-ary operator ®,, to p operands f1,..., fp, h = ®p(f1,---, fp),
all given in terms of Mod-p-DDs. The CASE-@® algorithm itself requires (p+ 1)
input parameters that determine the p-ary function that should be represented.
Therefore, in a preprocessing step an algorithm called APPLY-® transforms
the p operands fi,..., f, into the (p + 1)-tuple (f,go,...,9p—1) that serves
as input parameter for the CASE-®-algorithm. As a special case ®, = @,

156

h = @,(f1,-..., fp) has to be considered. There, in the preprocessing step, we
can directly create a @p-node and connect it with the p Mod-p-DDs representing
fir-oes fp-

The extension of the CASE-algorithm from MDD synthesis to Mod-p-DDs dif-
fers naturally in the treatment of @,-nodes in the Mod-p-DD. There, the CASE-
@-algorithm follows closely the ITE-@-algorithm for &-OBDDs in the binary
case. The input parameters of the CASE-@ operator are, in general, multiple-
valued functions given in the terms of Mod-p-DDs. The task is to generate the
resultant function h =CASE-&(f, go,91,---,9p—1) recursively.

If f represents only the variable z, f(z) = z, then the result h = CASE —
®(z,91,--.,9p) returned by CASE-® corresponds to a multiple valued branch-
ing node labeled with the variable z and connected to the Mod-p-DDs of
90591, ---,gp—1 AS SUCCESSOTS:

CASE-&® (',L‘agoagla R 7917—1) = (‘r’goagla IR 79])—1)'

Moreover, if g1, ..., gp happen to be the constant functions g; = 0,92 = 1,...,9, =
p — 1, it holds that

CASE-@ (£,0,1,....p—1) = f.

The above equations form the terminal cases for the recursive CASE-@ algo-
rithm.

If f is a complex function, then CASE-&® of the cofactors of f w.r.t. the top
variable z is called recursively, and the results are composed according to the
generalized Boole/Shannon decomposition.

To speed up the performance of the CASE-@® operation, we use a computed
table, which is organized as a hash based cache, to store and recall the already
computed results. Before a new node is created, we always refer to a unique ta-
ble that is organized as a hash table, to prevent the creation of already allocated
nodes. In both, computed table and unique table, every reference is made by
identifying the underlying Mod-p-DDs by their signatures. A node v that is la-
beled with the variable z; is represented by an (p+1)-tuple (z;, vo, v1,. .., Vp—1),
with v;, 1 < j < p — 1 being the node connected to child;(v). To avoid redun-
dant entries in the computed table we transform the (p + 1)-tuple to a standard
form by reordering it in the same way as for the binary case.

The pseudo-code of the CASE-® algorithm is shown in Figure 6.7. First, a
preprocessing step takes care of the transformation of the input parameters
are into a corresponding (p + 1)-tuple or, for the case of performing the com-
putation of @,(f1,..., fp) is taken care of. Then, the CASE-® algorithm is
called and first, possible terminal cases are considered. If the resulting func-
tion has already been computed and stored in the unique table, then it will be
directly returned. In the following step, the cofactors h|y—;, 0 < j < p—1 of
the function h are computed by calling CASE-® recursively with the cofactors
flaz=j>90la=5>91la=js - - - » Gp—1|a=; as its arguments. The resulting Mod-p-DDs of
these recursive calls are composed using the generalized Boole/Shannon decom-
position as (z, hg|g=0, M1|z=1,-- -, Pp—1|z=p—1) to a new Mod-p-DD representing
the required function.

157

Input: Mod-p-DDs Py,,..., Ps,, and an operator ®,
Output:Mod-p-DD P, representing the function h = ®,(fi,---, fp)-

CASE-®(f,90,915---»9p—1) {

transform to_standard tuple(f,go,g1,---,9p—1);
if (terminal_case(f,go,91,---,9p—1,7€8)) {
return(res) ;
}
reorder_tuple_acc_to_variable_order(f, go,g1,---,9p-1);
if (in_computed_table(f,go,g1,---,9p—1,7€s)) {
return(res) ;

}
for (j=0; j<(p—-1); j++) {
h|$:j=CASE_EB(f|ZEZj790|w=ja e agp—1|$=j);

if (signature(h|;—o)==signature(h|,—1)==...==signature(h|z=p—1)) {
res = hlz—o;

} else {
res=createnode(z, hzp=0,...,hg=p—1);

}

insert_in computed_table(f, go, g1, -, 9p—1,T€S);

find or_add in unique_table(res);

return(res) ;

APPLY—@p(Pfl,...,pr, ®p) {

if (®p == @p) {
P, s=create node(®p, Py, .. ,pr) ;
find or add in unique table(P..s);

} else {
transform (Py,...,Pr) into CASE tuple (Pf, Py,..., Py, ,);
Pes=CASE-® (P, Pyy,..., Py, _,);

}

return(P.;) ;

}

Figure 6.7: CASE-® and APPLY-®, Algorithm for Mod-p-DD Synthesis.

158

For a possible implementation of a Mod-p-DD package two possible way can be
considered:

(1) Implementation of a Mod-p-DD package from the scratch, employing only
multiple valued operations, or

(2) Implementation of Mod-p-DDs via a suitable binary encoding, employing
an already existing package for binary decision diagrams.

While possibility (1) requires a new implementation from the scratch, using an
already existing package as proposed in (2) might seem much more convenient,
but it also causes some serious problems (see section Possible Future Work in
the following chapter).

159

160

Chapter 7

Conclusions

7.1 Key Results

In this thesis &-OBDDs have been presented, a data structure for the repre-
sentation of Boolean functions and applicable for formal verification tasks. The
necessity of extending the concept of OBDDs has been motivated, which led to
the introduction of additional operator nodes into the OBDD data structure. &
and = (ezclusive or and equivalence) have qualified to be the most suitable op-
erators for this task, because the required algorithmic properties of the resulting
data structure can be maintained. It has been shown that ®&-OBDDs are a more
powerful data structure for the representation of Boolean functions compared
to OBDD, FBDDs, ESOPs, or OFDDs by simulating these data structures ef-
ficiently with &-OBDDs and by showing the existence of exponential gaps in
the computational power between these data structures and &-OBDDs.
@®-OBDDs are not a canonical data structure and a deterministic equivalence
test for @-OBDDs is not efficient enough to be employed in a practical working
environment. A fast probabilistic equivalence test for &-OBDDs with suffi-
cient reliability has been presented and was applied in a symbolic simulation
environment based on @-OBDDs. For working with @-OBDDs all necessary
manipulation algorithms, as there are the creation of cofactors and the synthe-
sis of @-OBDDs have been shown in detail and their efficiency was proven by
experimental results in symbolic simulation of standard benchmark sets.

For improving the efficiency of @-OBDDs it has been shown that @-OBDD size
is dependent on @-node frequency, @-placement, and also on the chosen vari-
able order. Methods for including additional @-nodes into the &-OBDD data
structure have been presented and a heuristic has been proposed for suitable
@-node placement.

For further optimization, it has been shown, how to move ©&-OBDDs efficiently
within the given data structure. For this purpose, another heuristic maintaining
the given variable order, while changing the position of already existing @-nodes
has been presented and confirmed by experiments.

Implementational details that are crucial for efficient dynamic reordering of &®-
OBDDs have been discussed and it has been shown, how to perform dynamic
reordering of @-OBDD variables, while simultaneously taking care of existing

161

@-nodes within the given data structure. The power of dynamic reordering
heuristics for ®-OBDDs also has been confirmed by experimental results.
Finally, the concept of @&-OBDDs has been extended to an arbitrary finite
domain and Mod-p-DDs have been presented. Because Mod-p-DDs are also not
a canonical data structure, for testing the equivalence of Mod-p-DDs the fast
probabilistic equivalence test for &-OBDDs had to be extended. Additionally, a
method for the efficient computation of a Boolean signature for Mod-p-DDs, as
for arbitrary finite functions has been introduced. Based on this probabilistic
equivalence test, all necessary manipulation algorithms for Mod-p-DDs have
been developed and discussed.

7.2 Possible Future Work

For a further improvement of the efficiency of the ®&-OBDD data structure,
research on heuristics for @-node placement and variable reordering could be
emphasized. More sophisticated heuristics, driven by functional requirements
of the function to be represented should be investigated.

For an exact minimization, the algorithm proposed by Waack for POBDDs can
be adapted to &-OBDDs. Starting in a bottom up approach all functions could
be represented by a linear combination of functions that are representing basis
vectors of the underlying vector space.

But, the runtime complexity of this method as being dependent on the com-
plexity of the Gaussian elimination method for computing the basis vectors and
thus, being at most cubic in the number of nodes prevents its application in a
practical working environment in advance.

For &-OBDDs also other applications besides symbolic simulation of combina-
torial circuits are possible. For the formal verification of sequential designs the
exploration of their state spaces is an important and mandatory task. There, the
symbolic representation of the state space with its characteristic function and
the transition relation for the stepwise computation of the state space could be
performed with @-OBDDs. Because of their improved power of representation,
also state space exploration could possibly benefit of the usage of ®-OBDDs.
Also their utilization in symbolic model checking is possible. Almost all tasks
that can be performed with regular OBDDs can be adapted for the usage of
@®-OBDDs.

On the other hand, we have described all necessary manipulation algorithms for
Mod-p-DDs. The next step would be an efficient implementation of this data
structure to be utilized in symbolic simulation of multiple valued logic designs.
For an implementation of Mod-p-DDs, there are two possible alternative ways:
First, we could develop a new Mod-p-DD package from the scratch, which means
a direct implementation of the multiple valued data structure. But, secondly,
we could also build a Mod-p-DD package on top of the already existing &®-
OBDD package: For representing a multiple valued function f : M" — M with
@®-0OBDDs, we encode f into a Boolean function fg of type

f : {0, 1}lesPlm _y g 1} Mospl

162

Figure 7.1: Binary Encoding of Multiple Valued Variables.

Thus, a p valued variable z; can be simulated by [logp] binary variables

Tigs ooy Tifyogp (See Fig. 7.1 for an illustrating example). This encoding has
already been successfully employed for MDDs. This way of implementation
does also benefit from the already implemented variable reordering techniques
for the binary data structure. Reordering of multiple valued variables z; can
be simulated by group wise reordering of binary variables representing an en-
coding of z;, i.e. keeping the binary variables z;,,... s i1 1 always together
and performing reordering only either by relocating the whole group of binary
variables or by reordering members inside of the group only.

A possible obstacle is the efficient encoding of @, nodes by binary @®-nodes.
Even for the case, if an efficient encoding is found, further improvement by
changing the position of @-nodes will distract the group of @-nodes represent-
ing a @, node and thus, preventing the transformation back. Thus, a binary
encoding would only transform a problem given in terms of multiple valued
logic to binary logic that will be represented with a binary data structure.
Benefits arising form the utilization of a native multiple valued data structure
as Mod-p-DDs could not be further exploited.

For taking the full advantage of Mod-p-DDs it is necessary to undergo an imple-
mentation from the scratch. There, we can get rid of all required encoding and
decoding steps, and problem specifications given directly in terms of multiple
valued logic can be represented and processed.

163

164

Appendix A

Experimental Results

circuit | OBDD size @-OBDD size
ITE (&) nDE (@) pDE (@) stan(®)
sbc 3715 3715 4598 (2781) 5105 (3074) 3715
5967 1732 1755 1073 (676) 1208 (738) 1755
$820 2651 2651 552 (328) 718 (418) 2651
s713 1352 1352 3554 (2114) 3122 (1626) 1352
5641 1352 1352 3550 (2116) 3089 (1609) 1352
$635 656 656 1746 (1118) 668 (44) 656
8526 232 232 371 (190) 342 (163) 232
s510 19076 19076 636 (433) 739 (503) 19076
s499 336 336 640 (123) 798 (261) 336
s444 226 226 390 (199) 399 (213) 226
5420 262227 262227 732 (431) 471 (201) 262227
5386 281 281 295 (150) 298 (140) 281
$3384 748809 748809 | 1142383 (781005) | 1139458 (762028) 748809
§3271 3365 3365 6437 (4064) 6511 (4038) 3365
5208 1033 1033 186 (105) 141 (67) 1033
51512 18896 18896 10941 (7295) 7148 (3499) 18896
51494 1016 1016 1378 (979) 1349 (906) 1016
51488 1016 1016 1316 (928) 1357 (909) 1016
51423 98454 98454 134008 (87748) 113035 (68101) 98454
51269 48177 48177 39922 (27974) 33418 (23231) 48177
s1196 2295 2295 3844 (2374) 3175 (1826) 2295
8085 117841 117841 107915 (70724) 85059 (52984) 117841
bigkey 6170 6173 (3) 79770 (4720) 7633 (4494) 6181 (4)
dsip 13921 13921 9675 (5629) 12363 (7867) 13921
mm4a 675 675 1439 (858) 1407 (866) 675
mm9b 848081 - 658964 (451322) 61233 (43358) -
mm9a 735768 - 533707 (345779) 50926 (35409) -
mult16a 360442 || 262188 (31) 655125 (392968) 655077 (392920) | 262188 (31)
) 3.299.795 n.a 3.405.147 2.196.247 n.a.

100% 103.2% 66.6%

Table A.1: Comparing OBDD and &-OBDD Size for Fixed Variable Order -
Sequential Circuits.

165

circuit OBDD size ®-OBDD size
ITE (@) nDE (@) pDE (@) stan(@)
x3 2760 2760 2369 (1255) 2230 (1096) 2760
x1 1297 1297 2948 (1611) 2978 (1673) 1297
vg2 1044 1044 2071 (1256) 2195 (1294) 1044
vda 4345 4345 1954 (1399) 1895 (1276) 4345
too_large 7096 7096 14507 (8748) 21858 (13963) 7096
terml 580 580 1161 (726) 1059 (628) 580
pair 67685 67929 (284) 108998 (55910) 114057 (60222) | 185223 (293)
my_adder 327677 262188 (30) | 589831 (327674) | 524297 (262139) 262188 (30)
mux 131071 131071 217 (184) 217 (173) 131071
k2 28336 28336 5986 (3955) 7479 (4920) 28336
i9 2278 2278 8754 (5132) 10258 (6509) 2278
i8 4366 4366 14750 (9762) 15307 (9896) 4366
i7 505 505 1000 (496) 889 (385) 505
i5 312 312 763 (391) 636 (324) 312
i4 421 421 1095 (674) 845 (388) 421
i2 335 335 317 (47) 851 (581) 335
frg2 6471 6472 (1) 5031 (2655) 7246 (4451) 6461
frgl 204 204 383 (172) 334 (132) 204
example2 469 469 (2) 644 (306) 485 (146) 453
count 234 234 (7) 294 (92) 308 (177) 226
cm150a 131071 131071 220 (187) 207 (174) 131071
booth8x8 6386 5959 (109) 14456 (9653) 14642 (9591) -
baugh-wooley6x6 830 1792 (223) 3535 (2360) 3209 (1965) -
b9 178 178 318 (161) 315 (160) 178
apex7 1660 1660 1221 (819) 980 (595) 1660
apex1 28336 28336 8901 (6002) 10545 (6930) 28336
alud 1182 1182 2141 (1485) 2780 (1921) 1244
alu32r 189266 189266 (32) 18629 (12196) 18722 (12223) -
alu32 12194 12194 (32) 959 (478) 959 (350) -
alu2 231 231 420 (277) 433 (268) 233
adsb32r 528 624 (96) 897 (553) 867 (492) -
adder16 327812 262310 (32) | 606303 (376808) | 589904 (360409) -
C880 346660 346660 | 329484 (228241) | 318161 (221408) 346660
C499 45922 7030 (32) 13699 (10074) 13704 (9829) -
C432 1733 1733 (1) 4913 (3154) 4589 (2885) -
C1908 36007 36007 37800 (26889) 37760 (26716) 36007
C1355 45922 45922 14162 (10538) 14167 (10293) 45922
rot 166674 166675 (3) | 266795 (177820) | 239984 (154832) -
comp 458698 458698 | 859988 (495583) | 819069 (360453) -
P 2.388.776 2.284.769 2.947.914 2.806.421 n.a.
100% 95.6 123.4% 117.5% n.a.

Table A.2: Comparing OBDD and @&-OBDD Size for Fixed Variable Order -
Combinatorial Circuits.

166

@®-OBDD size
Circuit || OBDD-size I 50% [20% | 10% | 5% | 2,5%
sbc 3715 [| min 4302 3658 3562 3531 3700
avg 4588 3987 3861 3806 3793
max 5038 4219 4274 3961 3993
o BA%] | [&7%] | [5.6%] | [41%] | [2.4%]
s967 1732 || min 1336 1549 1610 1763 1617
avg 1585 1679 1705 1779 1742
max 1855 1833 1797 1809 1787
o || [102%] | [5.9%] | [32%] | [0-8%] | [2-8%]
5820 2651 || min 664 1365 1194 1762 2651
avg 1839 2376 2480 2482 2673
max 2943 3027 2993 2860 2798
o || [34.5%] | [21.5%] | [21.2%] | [15.7%] | [1.7%]
s713 1352 || min 1803 1490 1381 1364 1352
avg 2146 1680 1471 1482 1380
max 2508 1936 1608 1659 1417
o || [105%] | [7.9%) A%] | [74%] | [1.5%]
641 1352 || min 1921 1421 1357 1360 1352
avg 2194 1648 1506 1408 1371
max 2553 1912 1678 1536 1396
o [10.8%] | [8:8%] | [8.1%] | [4.1%] | [0.9%]
5635 656 || min 655 655 656 655 656
avg 659 656 656 655 656
max 663 659 657 656 659
o [0.4%] | [0.1%] [0%] | [0.1%] | [0.1%]
5526 232 || min 264 248 232 232 232
avg 292 264 241 240 234
max 313 290 254 262 244
o A% | [4.5%] | [3.3%] | [4.1%] | [1.2%]
s510 19076 || min 704 712 19016 19020 | 19076
avg 6272 17251 19077 19071 | 19078
max 19198 19119 19149 19095 | 19085
o || [141.7%] | [33.6%)] [0.2%] [0.1%] [0%]
5499 336 || min 425 356 357 339 339
avg 544 397 385 366 355
max 602 441 424 386 372
o [03%] | [6.2%] | [5.4%] | [3.8%] | [2.2%]
s444 226 || min 285 233 228 223 226
avg 331 274 244 237 232
max 377 305 275 263 252
o [B4%] | [9.4%] | [6.1%] | [6.3%] | [4.3%]
5420 262227 || min 495 | 139219 | 131472 | 131474 | 254754
avg 107602 | 236890 | 210778 | 249153 | 261480
max 254760 | 262244 | 262239 | 262236 | 262233
o [92.5%] | [21.6%] | [30.7%] | [16.5%] | [0.9%)]
5386 281 || min 275 280 277 277 281
avg 306 293 290 282 285
max 330 324 304 287 296
o B5.8%] | [4.4%] | [2.7%] %] | [1.7%]
3271 3365 || min 4192 3708 3442 3376 3377
avg 4728 4073 3715 3558 3515
max 5835 4537 4327 4104 4104
o || [11.6%)] 6%] | [6.4%] | [7.2%] | [6.5%]

Table A.3: Influence of ®&-Node Frequency on @&-OBDD Size - Complete Results
(Part 1).

167

@®-OBDD size

Circuit || OBDD-size [50% | 20% | 10%] 5% 25%
5208 1033 || min 140 624 623 624 1031
avg 610 993 914 992 1033

max 1043 1040 1039 | 1034 1038

o | [59-3%] | [12.9%] | [20-8%] | [13%] | [0-1%)

s1512 18896 || min || 7114 | 10662 | 10671 | 18915 | 18915

avg 14371 17369 18163 18935 18961
max 20562 19216 19133 18998 19134
o [[38.1%] | [20.3%] | [14-4%] | [0.1%] | [0.4%]

$1494 1016 || min 1203 1100 1037 | 1014 1016
avg 1284 1145 1094 1056 1037
max 1415 1198 1160 1099 1087
o || [47%] | [3.1%] | [4.2%] | [2.5%] | [2.1%)
51488 1016 || min 1165 | 1012 1022 1016 1016
avg 1230 1101 1050 1037 1022
max 1292 1142 1090 1105 1064
o || [35%] | [3.8%] | [1.7%] | [2.6%] | [1.3%)
$1423 98454 || min || 93909 | 93909 | 97702 | 98557 | 97836

avg 104907 100641 101243 100175 98919
max 116530 106276 107074 | 104556 100470
o | [74%] [4%] | [27%] | [1.9%] | [0.8%]
51269 48176 min 39779 40707 39197 48233 48183
avg 43637 47201 46811 48662 48350
max 50851 51162 49286 49763 49078
o || T7.9%] | [6.9%] | [72%] | [0.9%] | [0.5%]

51196 2294 min 2599 2582 2212 2177 2295
avg 2855 2710 2416 2388 2338

max 3055 3063 2613 2640 2429

o || [4A%] | [5.4%] | [4.3%] | [62%] | [1.8%]

mm4a, 675 min 1000 742 678 681 674
avg 1197 914 859 775 749

max 1306 1186 1027 1025 998

o | [82%] | [14.6%] | [16.7%] | [15%] | [16.9%)

dsip 13921 min 13175 13487 13676 13832 13873

avg 13432 13683 13795 13869 13910
max 13733 13858 13902 13933 13971
o || TL3%] | [0.9%] | [05%] | [0.2%] | [0.2%]

X3 2760 || min 1804 | 1526 2665 2789 2604
avg 2799 2755 2836 2852 2775
max 3365 3022 3020 2991 2862
o |[[195%] | [16.1%] | [3.9%] | [2-3%] | [2-3%)
x1 1297 || min 2170 1576 1450 1322 | 1297
avg 2293 1764 1558 1425 1335
max 2451 1973 1719 1531 1417
o || [43%] | [68%] | [5.5%] | [5.0%] | [4.0%)
vg2 1044 || min 1458 1159 1046 1044 | 1040
avg 1636 1279 1156 1090 1055
max 1887 1541 1306 1156 1114
o || B2%] | [B2%] | [7.2%] | [3.3%] | [1.9%)
vda 4345 |[min 3002 4105 4138 | 4002 4349
avg 3743 4613 4520 | 4436 4401
max 4742 5230 4940 | 4664 4528

o || TA3%] | [71%] | [B.6%] | [4.2%] | [1.2%]

Table A.4: Influence of ®&-Node Frequency on @&-OBDD Size - Complete Results
(Part 2).

168

@®-OBDD size

Circuit || OBDD-size [50% [20% | 10% | 5% [2,5%
too_large 7096 min 15521 11651 10229 8924 8384
avg 17163 12697 10869 9405 8855

max 18260 13552 11381 10015 9623

[[4.6%)] [5%] [3.5%] [3.8%] [4.5%]

term1l 580 min 693 604 580 580 558
avg 829 709 626 596 589

max 959 877 768 674 672

o || [11.9%] | [12.9%] | [10.2%)] [4.8%)] [5%]

pair 67685 min 80092 71236 68739 68234 67923

avg 88606 78894 71982 70609 69241
max 103958 86911 82911 76428 72004

o | [3.1%] 6% | [5.9%] | [35%] | [2.6%)
my_adder 327677 min 297773 262222 262190 262192 262188
avg 390205 310440 285503 292756 264034
max 465113 369380 361218 348200 266310

o || T15.4%] | [11.9%] | [10.4%] | [10.9%] | [0.7%]
mux 131071 min 217 131071 131071 131071 131071
avg 91814 131071 131071 131071 131071
max 131071 131071 131071 131071 131071

o || [68.8%] [0%] [0%] [0%] [0%]
k2 2760 min 11819 21227 21667 25592 28001
avg 19232 25625 27116 27192 28365
max 24927 28661 29122 28896 28463

o || RL7%] | [97%)] 0% | [4.6%] | [0.4%]
i9 2278 min 5263 3431 2789 2506 2380
avg 5757 3717 2992 2633 2451

max 6215 3962 3367 2790 2564

5 6% | [43%] [7%] B% | [24%)

i8 4366 min 9853 6434 5382 4954 4449
avg 10677 7152 5780 5266 4689

max 11089 7686 6401 5661 5114

o | 33%] | [B8%] | [A7%] | [43%] | [3.7%)

i7 505 min 686 566 530 513 507
avg 705 581 543 519 513

max 745 602 556 525 527

o | [22%] | [18%] | [14%] | [05%] | [0.9%)

i5 312 min 434 345 316 312 312
avg 473 372 334 330 315

max 537 415 354 361 326

o || 16.9%] | [53%] | [32%] | [4.8%] | [1.5%]

i4 421 min 520 421 427 421 421
avg 631 492 478 461 424

max 748 619 518 512 445

o || [I0A%] | [11.3%] | [7.7%] | [65%] | [1.6%]

i2 335 min 335 335 335 335 335
avg 645 335 386 335 335

max 854 335 852 335 335

o || AT.2%] [0%] | [42.2%] [0%] [0%]

frg2 6471 min 6583 6449 6559 6092 6445
avg 7303 6939 6689 6512 6580

max 7853 7324 6951 6749 6912

o || 16.3%] A% | 7% | [3.7%] [2%]

frgl 204 min 248 220 204 204 204
avg 272 233 215 209 206

max 296 250 246 242 216

o | B5% | B8% | BA% | 2% | [1.9%

Table A.5: Influence of ®-Node Frequency on &-OBDD Size - Complete Results
(Part 3).

169

@®-0OBDD size
Circuit || OBDD-size I 50% | 20% | 10% | 5% [2,5%
example2 469 min 479 467 456 466 468
avg 499 483 475 475 472
max 516 496 485 483 482
o [2.2%)] [1.8%] [1.6%] [1%] [0.8%]
count 234 min 320 249 239 234 234
avg 430 296 282 250 234
max 483 341 375 277 234
o [11.3%] | [10.4%] | [14.5%] [6.1%] [0%]
cm150a 131071 min 207 207 207 131071 | 131071
avg 39466 | 117984 | 117984 131071 | 131071
max 131071 | 131071 | 131071 131071 | 131071
o || [160.1%)] [35%)] [35%] [0%] [0%]
booth8x8 6386 min 7486 6636 6120 5975 5964
avg 10410 8489 6851 6380 6404
max 12550 10752 9040 7252 7648
o [18.7%] | [12.2%] | [14.5%] [6.2%)] [9.4%]
bw6x6 830 min 2396 1855 1812 1795 1796
avg 2555 2099 1951 1834 1842
max 2812 2361 2131 1914 1985
o [5.6%)] [6.2%] [5.6%)] [1.9%] [3.2%]
b9 178 min 197 194 178 178 178
avg 232 221 198 183 181
max 258 241 221 193 197
4 [7.7%)] [6.7%] [6.5%)] [3.2%] [3.3%]
apex7 1660 min 1146 1342 1363 1585 1510
avg 1324 1538 1550 1625 1628
max 1528 1692 1663 1679 1678
e R | [73%] | B2%] | [25%] | B3%]
apexl 28336 min 15504 24051 21372 21508 26536
avg 23346 28374 26521 27338 28095
max 28972 30908 30095 28740 28728
o [19.6%] [6.4%] | [10.6%] [8.5%] [2.7%]
alu4 1182 min 1618 1282 1053 1194 1184
avg 1944 1560 1298 1340 1217
max 2292 2022 1536 1740 1331
o [11%] | [13.2%] | [10.6%)] [12.6%] [4%)]
alu32r 189266 min 63974 96157 | 153622 170621 | 162704
avg 92939 | 146516 | 167093 182239 | 182294
max 136123 | 174227 | 188298 189982 | 190099
o [22.1%)] | [14.9%] [6.2%] [3.9%] [5.4%]
alu32 12194 min 5192 8003 10096 10799 11679
avg 6877 9839 11022 11572 12004
max 8403 10831 11886 12211 12321
o [15.0%] [8.0%] [5.6%)] [3.6%)] [1.8%]
alu2 231 min 330 254 244 231 231
avg 371 310 256 247 236
max 404 393 275 281 244
o [6.1%] | [16.4%)] [3.9%] [6%] [1.6%]
adsb32r 528 min 772 682 640 628 631
avg 799 703 662 649 636
max 827 746 692 667 654
o [2.3%)] [3.1%] [1.9%] [1.6%)] [0.9%]
adder16 327812 min 320025 | 285085 | 262411 | 262310 | 262310
avg 420763 | 342228 | 287074 275827 | 264098
max 537425 | 455693 | 398660 356718 | 273939
o [18.2%] | [16.9%)] | [14.6%] [10.4%] [1.4%]

Table A.6: Influence of ®-Node Frequency on @&-OBDD Size - Complete Results
(Part 4).

170

@®-OBDD size
Circuit OBDD-size || 50% | 20% | 10% | 5% | 2,5%
C499 45922 min 7425 7150 7036 7030 7030
avg 10190 7683 7846 7100 7080
max 13254 8652 13308 7260 7272
o [22.4%)] [7.2%] [25%] [1.2%] [1.3%]
C432 1733 min 2457 1879 1765 1736 1733
avg 3314 2473 2143 1906 1767
max 4225 3415 3000 2087 1978
o [13.6%)] [17.9%)] [17.4%] [8%] [4.2%]
C1908 36007 min 36319 37442 35741 35947 36007
avg 40919 41304 39071 37861 36652
max 49082 46944 45982 44697 38739
o [9.4%)] [6.8%)] [7.5%] [7%] [2.3%]
C1355 45922 min 23046 35462 43336 42510 45922
avg 32589 41617 45857 46232 46049
max 42768 47310 49002 50684 47104
o [18.5%] [7.6%)] [4%] [4.4%] [0.8%]
bigkey 6170 min 8051 7157 6639 6417 6253
avg 8139 7310 6770 6479 6322
max 8225 7426 6862 6555 6369
o [0.5%] [1.1%] [0.9%] [0.6%] [0.5%]
rot 166674 min 202102 170609 170856 167104 163410
avg 217670 188105 178755 172378 167767
max 235279 215030 189352 177577 175387
o [4.7%] [6.5%] [3.1%] [1.5%] [1.8%]
multl6a 360442 min 408863 279404 265291 262190 262188
avg 509929 330139 309691 311544 280296
max 605804 376504 451340 451611 328478
o [13.4%)] [10.4%)] [17.6%)] [22.2%)] [9.8%]
b)) 2.406.120 min 1.723.875 | 7.810.664 | 1.842.396 | 2.003.041 | 2.125.959
avg 2.386.097 | 2.326.164 2.200748 | 2.254.635 | 2.186.692
max 3.114.133 | 2.686.855 | 2.678.278 | 2.589.747 | 2.278.346

Table A.7: Influence of ®-Node Frequency on @-OBDD Size - Complete Results
(Part 5).

171

®-OBDD(@-nodes)

Circuit OBDD nDE || 0.6 | 0.8 | 1.0 | 1.2] 1.5 | 2.0
sbc 3715 4598 3757 3755 3792 3785 3775 3767
5967 1732 1073 1683 1683 1655 1642 1631 1640
5820 2651 552 1642 1642 1638 1634 2117 2651
s713 1352 3554 1433 1433 1408 1386 1366 1355
s641 1352 3550 1423 1423 1398 1376 1360 1355
5635 656 1746 798 793 660 660 659 655
5526 232 371 269 267 259 246 229 231
5510 19076 636 9738 9738 9742 9740 9713 9924
5499 336 640 570 570 337 337 337 356
s444 226 390 246 246 235 232 225 225
5420 262227 732 262334 262334 262311 262245 262227 262227
5386 281 295 273 255 262 260 271 280
53271 3365 6437 4175 3865 3541 3498 3403 3369
5208 1033 186 1054 1054 1049 1049 1033 1033
51512 18896 10941 18763 18762 18746 18727 18690 18729
51494 1016 1378 1287 1287 1073 1078 1070 1015
51488 1016 1316 1238 1200 1030 1033 1023 1015
51423 98454 134008 99836 98531 98462 98460 98415 98519
51269 48176 39922 50769 49966 49072 49068 48221 48211
51196 2294 3844 2341 2341 2353 2341 2291 2263
rot 166674 266795 161506 163788 166825 166757 166705 166700

mult16a 360442 655125 163839 163839 163838 163838 163838 163838
mm9b 848081 658964 264856 264856 264856 264856 264838 264838
mm9Ya 735768 533707 220374 220374 220374 220374 220356 220356
comp 458698 859988 544543 544543 544541 544539 544549 544539
mm4a 675 1439 680 683 671 671 674 674
dsip 13921 9675 7722 13082 717 7715 13923 13920
x3 2760 2369 2625 2495 2429 2428 2762 2761
x1 1297 2948 1358 1336 1331 1329 1307 1298
vg2 1044 2071 1120 1107 1050 1045 1042 1042
vda 4345 1954 4342 4048 4214 4293 4437 4344

too_large 7096 14507 7097 7097 7091 7090 7095 7095
terml 580 1161 590 586 584 584 579 579
pair 67685 108998 68085 68085 68006 68007 67983 68012

my_adder 327677 589831 196614 196613 196613 196613 196608 196608
mux 131071 217 131072 131072 131072 131072 131072 131070
k2 28336 5986 27474 27460 26361 27518 28137 28335

i9 2278 8754 3751 2277 2277 2277 2277 2277
i8 4366 14750 5208 4466 4433 4385 4365 4365
i7 505 1000 633 504 632 578 504 504
i5 312 763 523 460 523 451 329 317
i4 421 1095 430 430 430 430 428 420
i2 335 317 336 336 334 334 334 334
frg2 6471 5031 6235 6326 6348 6344 6354 6465
frgl 204 383 208 206 206 204 203 203

example2 469 644 457 473 456 456 454 454
count 234 294 226 235 226 226 227 225

cm150a 131071 220 131072 131072 131072 131072 131070 131070
bw6x6 830 3535 1733 1732 1714 1705 1693 1675
b9 178 318 204 190 198 196 182 179
apex7 1660 1221 1736 1569 1570 1556 1536 1659
apex1l 28336 8901 38460 37389 26238 26314 28324 28337
alu4 1182 2141 1491 1641 1269 1265 1253 1243
alu32r 189266 18629 185397 185395 185394 185380 185361 188583
alu32 12194 959 8161 8161 8303 8686 10709 12193
alu2 231 420 297 240 237 234 232 232

adsb32r 528 897 698 688 688 687 685 623

adderl6 327812 606303 458850 458850 262310 262308 262293 262293
C499 45922 13699 7093 7093 7029 7029 7029 7029
C432 1733 4913 1342 1342 1470 1736 1732 1732
C1908 36007 37800 41792 40971 35869 36013 36009 36007
C1355 45922 14162 47515 45921 45921 45921 45921 45921
bigkey 6170 7970 5518 5518 6188 6188 6176 6172

% 4.468.873 | 4.687.023 || 3.216.892 | 3.215.694 | 2.997.931 | 2.999.501 | 3.009.641 | 3.015.341
100% 104.9% 72.0% 72.0% 67.1% 67.2% 67.3% 67.5%

Table A.8: Locally Greedy Heuristic for @-Node Placement - (MAX/nDE).

172

®-OBDD

Circuit OBDD pDE || 0.6 | 0.8 | 1.0 | 1.2] 1.5 | 2.0
sbc 3715 5105 3819 3801 3781 3826 3803 3733
5967 1732 1208 1707 1708 1706 1710 1691 1676
5820 2651 718 1644 1644 1636 1634 2119 2651
s713 1352 3122 1504 1504 1486 1395 1366 1355
s641 1352 3089 1482 1482 1464 1375 1360 1355
5635 656 668 659 659 657 656 656 655
5526 232 342 248 246 242 238 229 231
5510 19076 739 9741 9741 9746 9738 9716 9926
5499 336 798 568 568 568 338 338 356
s444 226 399 245 245 241 234 224 225
5420 262227 471 262221 262221 262226 262226 262226 262226
5386 281 298 268 268 268 263 276 280
53271 3365 6511 4348 3832 3613 3483 3397 3369
5208 1033 141 1031 1031 1032 1032 1032 1032
51512 18896 7148 19031 19019 19004 18988 18969 18940
51494 1016 1349 1148 1148 1111 1019 1061 1015
51488 1016 1357 1138 1138 1050 1003 1003 1015
51423 98454 113035 101073 98473 101349 98440 98377 98517
51269 48176 33418 50324 49932 49214 49050 48220 48211
51196 2294 3175 2179 2192 2212 2203 2173 2179
rot 166674 240643 161550 163861 163973 166724 166679 166682

mult16a 360442 745320 163838 163838 163838 163838 163838 163838
mm9b 848081 61233 678306 515849 264918 264856 264838 264838
mm9Ya 735768 50926 220384 220384 220375 220375 220356 220356
comp 458698 544533 544533 544541 544541 544539 544539 544539
mm4a 675 1407 687 687 674 672 674 674
dsip 13921 12363 7724 7719 7719 7715 7716 13920
x3 2760 2230 2683 2683 2511 2436 2761 2761
x1 1297 2978 1400 1400 1387 1380 1325 1309
vg2 1044 2195 1119 1119 1097 1044 1042 1043
vda 4345 1895 3868 4116 4096 4031 4268 4344

too_large 7096 21858 7096 7096 7090 7090 7095 7095
terml 580 1059 583 583 582 582 579 579
pair 67685 114057 68128 68114 68102 68034 67992 68013

my_adder 327677 524297 196614 196613 196613 196613 196608 196608
mux 131071 217 131072 131072 131072 131072 131072 131072
k2 28336 7479 29410 29411 28356 27390 27823 28335
i9 2278 10258 3751 3633 2277 2277 2277 2277
i8 4366 15307 6473 5336 4641 4580 4365 4365
i7 505 889 633 633 632 578 504 504
i5 312 636 399 399 399 362 329 317
i4 421 845 424 424 424 424 424 420
i2 335 851 336 336 336 334 334 334
frg2 6471 7246 6202 6196 6358 6364 6364 6462
frgl 204 334 208 208 206 204 203 203

example2 469 485 454 454 454 454 456 454
count 234 308 307 307 307 230 227 225

cm150a 131071 207 131072 131072 131072 131072 131070 131070
bw6x6 830 3209 1652 1648 1635 1630 1628 1641
b9 178 315 200 200 200 192 184 179
apex7 1660 980 1788 1711 1560 1540 1536 1659
apex1l 28336 10545 38937 38889 37667 27643 27974 28335
alu4 1182 2780 1678 1342 1269 1262 1252 1243
alu32r 189266 18722 185410 185398 185394 185290 185268 186902
alu32 12194 959 8161 8161 8161 8161 8161 12067
alu2 231 433 289 289 238 234 232 232

adsb32r 528 867 693 688 687 687 686 623

adderl6 327812 589904 458850 458850 458850 262398 262398 262293
C499 45922 13704 7093 7093 7029 7029 7029 7029
C432 1733 4589 1340 1340 1337 1734 1732 1732
C1908 36007 37760 41795 41787 41767 36008 36008 36007
C1355 45922 14167 47419 47560 45937 45921 45921 45921
bigkey 6170 7633 5519 5519 5518 6188 6176 6172

% 4.468.873 | 3.261.714 || 3.634.456 | 3.469.411 | 3.213.905 | 3.000.038 | 3.000.179 | 3.013.619
100% 73% 81.3% 77.6% 71.9% 67.1% 67.1% 67.4%

Table A.9: Locally Greedy Heuristic for @-Node Placement - (MAX/pDE).

173

®-OBDD(®-nodes)

Circuit OBDD nDE || 0.6 | 0.8 | 1.0 | 1.2] 1.5 | 2.0
sbc 3715 4598 3755 3733 3752 3779 3765 3727
5967 1732 1073 1682 1682 1664 1654 1640 1754
5820 2651 552 1642 1635 1628 1626 2653 2651
s713 1352 3554 1431 1425 1401 1367 1367 1351
s641 1352 3550 1423 1415 1391 1361 1361 1351
5635 656 1746 693 692 655 655 655 655
5526 232 371 265 255 231 231 231 231
5510 19076 636 9738 9721 9863 9882 9924 9924
5499 336 640 562 338 356 356 356 356
s444 226 390 239 225 225 225 225 225
5420 262227 732 262332 262322 262227 262227 262227 262227
5386 281 295 257 262 272 280 280 280
53271 3365 6437 3799 3661 3400 3392 3368 3365
5208 1033 186 1052 1050 1033 1033 1033 1032
51512 18896 10941 18758 18745 18683 18694 18733 18911
51494 1016 1378 1249 1200 1085 1062 1015 1015
51488 1016 1316 1200 1151 1023 1019 1015 1015
51423 98454 134008 101394 101384 101506 98589 98556 98545
51269 48176 39922 49925 49671 49042 49013 48180 48176
51196 2294 3844 2342 2323 2305 2451 2267 2294
rot 166674 266795 161507 163747 163832 166700 166678 166685

mult16a 360442 655125 163839 163838 163838 163838 163838 163838
mm9b 848081 658964 264856 264838 264838 264838 264838 264838
mm9Ya 735768 533707 220374 220356 220356 220356 220356 220356
comp 458698 859988 544541 544541 544539 544539 544539 544539
mm4a 675 1439 680 683 674 674 674 674
dsip 13921 9675 7719 13082 13887 13920 13920 13920
x3 2760 2369 2511 2495 2394 2390 2761 2761
x1 1297 2948 1349 1336 1308 1300 1298 1296
vg2 1044 2071 1120 1107 1050 1046 1042 1043
vda 4345 1954 4268 4048 4102 4291 4496 4344

too_large 7096 14507 7097 7097 7090 7090 7095 7095
terml 580 1161 590 586 579 579 579 579
pair 67685 108998 68069 68046 67995 67979 67976 67960

my_adder 327677 589831 196613 196610 196610 196610 196608 196608
mux 131071 217 131072 131072 131072 131072 131072 131070
k2 28336 5986 27474 27460 26492 28021 28503 28335
i9 2278 8754 3633 2277 2277 2277 2277 2277
i8 4366 14750 5119 4466 4365 4365 4365 4365
i7 505 1000 632 504 504 504 504 504
i5 312 763 523 460 327 311 311 311
i4 421 1095 430 430 428 428 420 420
i2 335 317 336 336 334 334 334 334
frg2 6471 5031 6379 6356 6350 6342 6341 6465
frgl 204 383 208 206 203 203 203 203

example2 469 644 456 456 453 452 452 452
count 234 294 226 227 227 225 225 225

cm150a 131071 220 131072 131072 131072 131072 131070 131070
bw6x6 830 3535 1732 1700 1707 1661 1661 1659
b9 178 318 204 190 182 179 179 177
apex7 1660 1221 1657 1569 1544 1532 1532 1659
apex1l 28336 8901 37596 37389 26345 26956 28228 28336
alu4 1182 2141 1783 1659 1251 1243 1243 1243
alu32r 189266 18629 185392 185391 185551 185493 185513 189295
alu32 12194 959 8161 8184 10652 11378 11913 12193
alu2 231 420 296 242 234 232 232 232

adsb32r 528 897 691 687 623 623 623 623

adderl6 327812 606303 458850 458851 262293 262293 262293 262293
C499 45922 13699 7093 7093 7029 7029 7029 7029
C432 1733 4913 1339 1614 1732 1732 1732 1732
C1908 36007 37800 41760 40971 38316 36009 36009 36006
C1355 45922 14162 45921 45921 45921 45921 45921 45921
bigkey 6170 7970 5518 6170 6172 6172 6172 6172

% 4.468.873 | 4.687.023 || 3.214.424 | 3.218.253 | 3.008.490 | 3.009.105 | 3.011.906 | 3.016.222
100% 104.9% 71.9% 72.0% 67.3% 67.3% 67.4% 67.5%

Table A.10: Locally Greedy Heuristic for @-Node Placement - (ADD/nDE).

174

®-OBDD(®-nodes)

Circuit OBDD MAX ADD MAX
nDE-first | pDE-first | nDE-first | pDE-first nDE | pDE
sbc 3715 4503 4953 4551 5022 3792 3781
5967 1732 1083 1206 1083 1197 1655 1706
5820 2651 558 710 572 712 1638 1636
s713 1352 3504 3083 3527 3119 1408 1486
5641 1352 3497 3039 3520 3073 1398 1464
5635 656 1672 690 1745 667 660 657
8526 232 342 321 368 341 259 242
8510 19076 617 684 619 699 9742 9746
5499 336 404 585 639 797 337 568
s444 226 382 374 389 398 235 241
5420 262227 698 469 731 470 262311 262226
5386 281 311 309 299 304 262 268
83271 3365 6180 6218 6434 6510 3541 3613
5208 1033 170 139 185 140 1049 1032
51512 18896 11042 7069 10940 7147 18746 19004
51494 1016 1368 1290 1400 1297 1073 1111
51488 1016 1288 1284 1321 1297 1030 1050
51423 98454 134283 113365 133993 113363 98462 101349
51269 48176 39831 33337 39875 33375 49072 49214
51196 2294 3918 3409 3958 3251 2353 2212
bigkey 6170 8888 8268 7969 7632 6188 5518
dsip 13921 11235 13704 9674 12362 7717 7719
mmda 675 1429 1394 1438 1406 671 674
mm9a 735768 533688 550714 533706 550741 220374 220375
mm9b 848081 658945 629337 658963 629363 264856 264918
multl6a 360442 376795 376794 376796 376794 163838 163838
x3 2760 2171 2011 2364 2141 2429 2511
x1 1297 2894 2856 2933 2949 1331 1387
vg2 1044 2054 2127 2063 2133 1050 1097
vda 4345 2106 1920 1965 1906 4214 4096
too_large 7096 14500 21852 14506 21858 7091 7090
terml 580 1059 1052 1159 1058 584 582
pair 67685 108813 113859 108862 113926 68006 68102
my_adder 426088 393209 327675 393212 327678 196613 196613
mux 131071 216 214 216 216 131072 131072
k2 28336 6127 7530 5997 7503 26361 28356
i9 2278 5504 7047 5789 7347 2277 2277
i8 4366 10646 14652 14624 15306 4433 4641
i7 505 870 759 999 888 632 632
i5 312 546 545 716 619 523 399
i4 421 1084 844 1086 844 430 424
i2 335 316 848 316 850 334 336
frg2 6471 5541 8302 5113 7393 6348 6358
frgl 204 377 328 382 333 206 206
example2 469 638 504 643 508 456 454
count 234 308 521 308 572 226 307
cml150a 131071 217 204 219 206 131072 131072
bw6x6 830 3360 3305 3408 2997 1714 1635
b9 178 281 285 312 308 198 200
apex7 1660 1106 891 1207 967 1570 1560
apex1l 28336 8702 10454 8527 10362 26238 37667
alu4 1182 2135 2196 2137 2211 1269 1269
alu32r 189266 18785 14572 18628 18782 185394 185394
alu32 12194 1088 682 958 958 8303 8161
alu2 231 378 358 419 362 237 238
adsb32r 528 804 774 868 837 688 687
adder16 327812 606407 590010 606286 589886 262310 458850
C499 45922 13634 13639 13698 13671 7029 7029
C432 1733 3925 3653 4912 4588 1470 1337
C1908 36007 38002 38003 37842 37806 35869 41767
C1355 45922 14562 14567 14161 14166 45921 45937
comp 458698 859981 819062 859985 819066 544541 544541
rot 166674 264315 239836 266731 239946 166825 163973
b 4.468.873 4.203.380 | 4.030.682 | 4.208.246 | 4.034.624 2.997.931 3.213.905
100% 94.1% 90.2 % 94.2% 90.3 % 67.1% 71.9%

Table A.11: Locally Greedy Heuristic for @-Node Placement — (nDE /pDE first).

175

Circuit @-OBDD size [Bytes]
binary @-nodes | meta-@-nodes
sbc 165528 135332 [82%]
5967 38628 27304 [71%)]
5820 19872 16532 [83%]
s713 127944 115428 [90%)]
5641 127800 115360 [90%)]
s635 62856 64692 [102%]
5526 13356 10836 [81%]
s510 22896 15444 [67%]
5499 23040 24128 [104%]
s444 14040 11136 [79%]
5420 26352 19932 [75%]
5386 10620 9900 [93%]
83271 231732 189228 [81%)]
5208 6696 5092 [76%]
51512 393876 330636 [83%)]
51494 49608 36116 [72%)]
51488 47376 34332 [72%)]
51423 4824288 3935156 [81%]
51269 1437192 1101680 [76%]
51196 138384 118808 [85%]
bigkey 286920 203712 [70%]
dsip 348300 292340 [83%]
mm4a 51804 34256 [66%)
mult16a 23584500 23852212 [101%]
mm9b 23722704 18157936 [76%)]
mm9a 19213452 14583716 [75%]

[¥]| 74.989.764 | 63.437.244 [84.6%] |

Table A.12: @-OBDD Size for Binary @-Nodes vs. Meta-®-Nodes (Part 1) —
Sequential Circuits.

176

Circuit @-OBDD size [Bytes]
binary @-nodes | meta-@-nodes
x3 85284 76072 [89%)
x1 106128 81780 [77%]
vg2 74556 66084 [88%)]
vda 70344 43336 [61%)]
too_large 522252 423484 [81%)
term1 41796 34192 [81%)
pair 3923928 3409992 [86%)]
my_adder 21233916 18873336 [88%]
mux 7812 1960 [25%]
k2 215496 161348 [74%)
i9 315144 236480 [75%)
is 531000 404896 [76%)
i7 36000 31172 [86%)]
i5 27468 21660 [78%]
i4 39420 37320 [94%)]
i2 11412 10880 [95%]
frg2 181116 139004 [76%]
frgl 13788 11684 [84%]
example2 23184 21168 [91%)
count 10584 10068 [95%]
cm150a 7920 1960 [24%]
booth8x8 520416 444428 [85%)
baugh-wooley6x6 127260 95832 [75%)
b9 11448 10700 [93%]
apex7 43956 27720 [63%)
apexl 320436 197496 [61%]
alud 77076 53692 [69%)
alu32r 670644 460920 [68%)]
alu32 34524 31628 [91%)
alu2 15120 9856 [65%]
adsb32r 32292 47448 [146%)
adderl6 21826908 21629848 [99%)]
C880 11861424 8576036 [72%)]
C499 493164 670188 [135%)
C432 176868 184040 [104%]
C1908 1360800 1162344 [85%)
C1355 509832 670024 [131%)]
rot 9604620 9197664 [95%)]
comp 30959568 27142104 [87%)

| D [106.124.904 | 94.709.844 [89-2%] |

Table A.13: ®&-OBDD Size for Binary @-Nodes vs. Meta-®-Nodes (Part 2) —
Combinatorial Circuits.

177

Circuit @®-OBDD size [Bytes]
binary @-nodes | meta-@-nodes
sbc 165528 135148 [81%]
s967 38628 27268 [70%)]
5820 19872 16660 [83%]
s713 127944 115808 [90%)]
5641 127800 115740 [90%)]
5635 62856 69032 [109%)]
§526 13356 10836 [81%]
s510 22896 15380 [67%]
5499 23040 24128 [104%)]
s444 14040 11092 [79%]
5420 26352 19869 [75%]
5386 10620 9244 [87%)]
s3271 231732 187596 [80%)]
5208 6696 5092 [76%)]
51512 393876 330064 [83%)]
51494 49608 35668 [71%)]
51488 47376 33240 [70%)]
51423 4824288 3913248 [81%)]
51269 1437192 988904 [68%)|
51196 138384 117684 [85%]
bigkey 286920 203712 [70%)]
dsip 348300 292340 [83%)]
mm4a 51804 34020 [65%)
mm9b 23722704 18157936[76%]
mm9a 19213452 14583716 [75%
mult16a 23584500 23851068 [101%)]

| Py [74.989.764 [63.304.493 [84.4%] |

Table A.14: &-OBDD Size for Synthesis

Sequential Circuits.

178

with Meta-®-Nodes (Part 1)

Circuit @-OBDD size [Bytes]
binary @-nodes | meta-@-nodes
x3 85284 75992 [89%)
x1 106128 81780 [77%]
vg2 74556 65028 [87%)]
vda 70344 43572 [61%)]
too_large 522252 412176 [78%)
term1 41796 33400 [79%)
pair 3923928 3407336 [86%)]
my_adder 21233916 18873336 [88%]
mux 7812 1960 [25%]
k2 215496 186864 [87%)
i9 315144 236480 [75%)
i8 531000 403068 [75%)]
i7 36000 31324 [87%)]
i5 27468 21660 [78%]
i4 39420 37320 [94%)]
i2 11412 10880 [95%]
frg2 181116 135120 [74%)]
frgl 13788 11684 [84%]
example2 23184 20924 [90%]
count 10584 10068 [95%]
cm150a 7920 1960 [25%]
booth8x8 520416 443264 [85%)|
baugh-wooley6x6 127260 94728 [74%)]
b9 11448 10700 [93%]
apex7 43956 26748 [60%)]
apexl 320436 363867 [114%)]
alud 77076 53368 [69%]
alu32r 670644 460920 [68%)]
alu32 34524 31628 [91%)
alu2 15120 9812 [64%)
adsb32r 32292 47448 [146%)
adderl6 21826908 21629884 [99%)]
C880 11861424 8603272 [73%)]
C499 493164 670188 [135%)
C432 176868 187656 [106%]
C1908 1360800 1161388 [85%)]
C1355 509832 670024 [131%)]
rot 9604620 9197664 [95%)]
comp 30959568 27142104 [87%)

| D [106.124.904 | 94.906.595 [89.4%] |

Table A.15: &-OBDD Size for Synthesis with Meta-®-Nodes (Part 2)
Combinatorial Circuits.

179

Circuit @-OBDD size [Bytes]

OBDD | pDE-meta | Jiggle (1) | Jiggle (2) | Jiggle (3)
sbc 133740 135892 117584 117220 -
5967 62352 27464 23612 23564 -
5820 95436 16572 13856 13460 -
s713 48672 115788 98272 98128 -
s641 48672 115720 98244 98100 -
5635 23616 64692 42688 42688 -
5526 8352 10836 9324 9324 -
8510 686736 15484 12388 11872 -
5499 12096 24128 12964 - -
s444 8136 11416 8424 - -
5420 9440172 19932 16436 16412 -
5386 10116 9900 8552 - -
53271 121140 189548 141100 - -
5208 37188 5092 4448 4436 -

51512 680256 331236 300732 300732 -
51494 36576 36196 31068 29688 -
51488 36576 34492 30092 29584 29296
51423 3544344 3938476 3360020 3341752 -
51269 1734336 1101800 965772 964792 963868
51196 82584 118968 102108 101800 101776
mmd4a 24300 34376 29632 29180 28412
dsip 501156 292420 254988 238376 -
bigkey 222120 203712 184552 - -
8085 4242276 2614032 2255804 2253144 2253004
by 21.840.948 9.468.172 8.123.556 | 8.080.368 | 8.078.044
230.7% 100.0 % 85.7 % 85.3 % 85.3 %

not finished
mm9a 26487648 21382240 - - -
mm9b 30530916 24422348 - - -
multl6a 12975912 23852212 - - -

Table A.16: Jiggle Heuristic for @-node Placement — Sequential Circuits.

180

Circuit @®-OBDD size [Bytes]

OBDD pDE-meta | Jiggle (1) | Jiggle (2) [Jiggle (3)
x3 99360 76232 64520 - -
x1 46692 81900 46972 - -
vg2 37584 66124 39140 - -
vda 156420 43416 35096 31028 -

too_large 255456 423524 371800 369712 369580
terml 20880 34232 24864 19704 -
pair 2436660 3411992 3100748 3100316 -
my_adder 11796372 18873336 16252724 13369124 -
mux 4718556 2240 1896 - -
k2 1020096 161748 150268 149432 -
i9 82008 236480 82896 - -
i8 157176 404896 283212 202136 -
i7 18180 31172 18240 - -
i5 11232 21660 12672 11196 -
i4 15156 37320 22920 15164 -
i2 12060 10880 10396 - -
frg2 232956 142604 119036 - -
frgl 7344 11684 7324 - -
example2 16884 21288 16132 - -
count 8424 10068 8836 - -
cml150a 4718556 2280 1876 - -
booth8x8 229896 445108 444060 437500 437464
baugh-wooley6x6 29880 96592 87752 86652 -
b9 6408 10740 6744 - -
apex7 59760 29080 23476 - -
apexl 1020096 197656 187108 185165 -
alu4 42552 53772 40064 38108 34448
alu32r 6813576 460920 334264 - -
alu32 438984 31628 26384 - -
alu2 8316 9856 7928 - -
adsb32r 19008 47448 41624 38072 -
adderl6 11801232 21629848 21238784 - -
C499 1653192 670188 671680 670072 -
C432 62388 184080 83044 - -
C1908 1296252 1163384 1129004 1109496 1108708
C1355 1653192 670024 671516 669908 -
% 51.002.784 49.805.400 45.665.000 42.638.916 42.634.300
1024 % 100.0 % 91.6 % 85.6 % 85.6 %

not finished
C880 12479760 8576876 - - -
comp 16513128 27142104 - - -
rot 6200064 9197664 - - -

Table A.17: Jiggle Heuristic for @-node Placement — Combinatorial Circuits.

181

Circuit @®-OBDD size [Bytes]

OBDD || pDE-DynJiggle | Jiggle (1) | Jiggle (2) | Jiggle (3)
sbe 133740 135452 120152 119400 -
$967 38628 27568 23728 23716 -
5820 95436 16908 14612 14108 -
s713 48672 114980 98396 98216 -
5641 48672 114912 97412 97376 -
5635 23616 69032 46092 - -
$526 8352 10836 9196 - -
$510 686736 15444 12016 11696 -
$499 12096 24128 12964 - -
s444 8136 11136 10292 - -
$420 9440172 19932 17812 - -
$386 10116 9900 8316 - -

§3271 121140 189184 169292 - -
5208 37188 5092 4460 - -
51512 680256 330636 303736 303596 -
51494 36576 36068 32028 31856 -
51488 36576 34216 28772 28532 -
51423 3544344 3937408 3622180 3561860 -
51269 1734336 1106220 1009468 1008068 1007172
51196 82584 118484 102980 103004 -
8085 4242276 4376740 4242916 4187524 -
bigkey 222120 203712 184052 - -
dsip 501156 292340 254172 245360 -
mm4a 24300 34256 28728 - -
mm9a 26487648 21406700 21405004 - -
mm9b 30540926 24485432 24482980 - -
mult16a 12975912 23822712 19286296 - -
by 91.821.710 80.949.428 | 75.628.052 | 75.500.380 | 75.494.204
100.0 % 88.2 % 82.4 % 82.2 % 82.2 %

Table A.18: Dynamic Application of the Jiggle Heuristic — Sequential Circuits.

182

Circuit @®-OBDD size [Bytes]

OBDD | pDE-DynJiggle Jiggle (1) Jiggle (2) Jiggle (3)
x3 99360 77636 71184 71064 -
x1 46692 81780 75416 75456 -
vg2 37584 66084 53360 52152 51828
vda 156420 44168 34556 33968 -

too_large 522252 422884 421724 420892 -
terml 20880 34192 24732 - -
pair 2436660 3410052 3153832 3147496 3147436
my_adder 11796372 18854096 14486324 14486056 -
mux 4718556 1960 1896 - -
k2 1020096 161892 150268 149432 -

i9 82008 236480 214536 - -

i8 157176 404736 283040 283804 -

i7 18180 31324 21912 - -

i5 11232 21660 12672 12396 -

i4 15156 37320 23864 23704 -

i2 12060 10880 10396 - -
frg2 232956 139140 120532 120292 -
frgl 7344 11684 12716 - -
example2 16884 21168 18152 - -
count 8424 10068 8836 - -
cm150a 4718556 1960 1876 1876 -
booth8x8 229896 444376 445116 441412 441048
baugh-wooley6x6 29880 95752 90616 90252 -
b9 6408 10700 8996 - -
apex7 59760 27720 23268 - -
apex1l 1020096 201152 182324 - -
alu4 42552 53740 38904 38712 -
alu32r 6813576 460920 364968 - -
alu32 438984 31628 28464 - -
alu2 8316 9984 8712 8260 -
adsb32r 19008 47448 39692 - -
adder16 11801232 21467152 20836304 20823676 -
C880 12456 10571900 10291912 10170540 10085944
C499 16524 670188 671924 670388 -
C432 62388 186136 175592 - -
C1908 1296252 1162736 1240312 - -
C1355 1653192 670024 921260 897168 894744
comp 16513128 19746056 19663748 18741360 18741216
rot 36166674 7705076 7112688 6918432 -

P 102.325.170 87.643.852 | 81.346.724 | 80.055.460 | 79.967.320
100.0 % 85.7 % 79.5 % 78.2 % 78.2 %

Table A.19: Dynamic Application of the Jiggle Heuristic - Combinatorial Cir-

cuits.

183

Circuit || OBDD-size @©-OBDD size [Bytes]
Sifting pDE-meta | Sifting | + Dynamic Jiggle
sbc 38052 135332 38556 35672
5967 14184 27304 16156 14652
5820 8172 16532 7044 6264
s713 22644 115428 18408 17888
s641 22644 115360 16044 14660
5635 4716 64692 10364 3356
58526 5076 10836 4344 3896
$510 5904 15444 6684 5840
5499 11880 24128 12952 12600
s444 5796 11136 1588 1340
5420.1 2916 19932 3376 2708
5386 4428 9900 3972 3708
53271 31104 189228 41156 29908
5208 2196 5092 2308 2088
51512 28224 330636 16072 14280
51494 14076 36116 14652 12888
51488 14076 34332 14992 13356
51423 64656 3935156 55580 54468
51269 78804 1101680 79140 76328
51196 23076 118808 21984 19384
bigkey 140292 203712 141432 140192
dsip 88416 292340 108468 89436
mm4a 8604 34256 8168 8244
mm9b 90936 18157936 74108 73292
mm9a 72828 14583716 57264 56472
multl6a 7380 23852212 8032 8032
2 811.080 63.437.244 782.844 720.952
100% 7821% 96.5% 88.9%
s007 271152 - 275552 274628
5838.1 6444 - 6516 5984
53384 32616 - 40744 32432
513207.1 108288 - 97444 96760
513850.1 451404 - 415404 404588
2 1.680.984 - 1.618.504 1.535.344
100% 96.3% 91.3%

Table A.20: Dynamic Application of the Sifting Heuristic - Sequential Circuits.

184

Table A.21: Dynamic Application of the Sifting Heuristic - Combinatorial Cir-

cuits.

Circuit OBDD-size ®-OBDD size [Bytes]
Sifting | pDE-meta | Sifting | + Dynamic Jiggle
x3 20628 76072 21468 20088
x1 17244 81780 18020 16972
vg2 8244 66084 8516 8208
vda 17892 43336 18748 17368
too_large 20484 522252 20552 20448
terml 5868 34192 6200 5760
pair 128664 3409992 106776 106376
my_adder 4716 18873336 5868 5100
mux 1188 1960 1288 1152
k2 45972 161348 47124 45160
i9 51840 236480 52840 51812
i8 48348 236480 50092 48488
i7 14148 31172 20800 13928
i5 4824 21660 4788 4788
i4 8928 37320 9360 8568
i2 7380 10880 7344 7344
frg2 51624 139004 53136 50624
frgl 3348 11684 3436 3312
example2 10620 21168 12140 8960
count 2916 10068 3196 3152
cml150a 1188 1960 1240 1152
booth8x8 220320 444428 256192 254688
bw6x6 28980 95832 67940 67628
b9 3960 10700 4756 3852
apex7 10944 27720 11576 9392
apexl 45864 197496 45912 44872
alud 21708 53692 21904 21724
alu32r 61956 460920 64736 61920
alu32 17208 31628 19988 17172
alu2 5832 9856 5768 5760
adsb32r 12420 47448 13444 13356
adderl6 8136 21629848 13520 11128
C880 375840 8576036 358096 344160
C499 958464 670188 196708 187892
C432 43560 184040 37160 36792
C1908 230220 1162344 231412 230112
C1355 1064232 670024 1065340 1064196
rot 215028 9197664 224408 209332
comp 4608 27142104 3928 3796
b)) 3.811.344 | 94.709.844 3.115.020 3.052.0932
100% 2485% 81.7 % 80.1%
dpath32 23112 - 48140 47688
dalu 29916 - 31332 30012
alul28 1695960 - 1707188 1707188
add128r 75672 - 83840 78548
i10 2446956 - 1906792 1904572
mm30a 3621276 - 3010564 3009244
C3540 862200 - 862076 862076
C5315 66384 - 62760 53780
C7552 296674 - 254196 254196
P 12.020.404 n.a. | 11.082.232 11.000.212
100% n.a. 92.2% 91.5%

185

186

Bibliography

[ABH+86] M. Ajtai, L. Babai, P. Hajnal, J. Komlos, P. Pudlak, V. Rédl, E. Sze-
meredi, G. Turan, Two Lower Bounds for Branching Programs, in Proc.
of 18th ACM Symposium on the Theory of Computing (STOC), 1986,
30-38.

[Ake78] S. B. Akers, Binary Decision Diagrams, in IEEE Transactions on Com-
puters, vol. ¢-27, no. 6, 1978, 509-516.

[BCY5] R. E. Bryant, Y.-A. Chen, Verification of Arithmetic Circuits with Bi-
nary Momentum Diagrams, in Proc. 32nd ACM/IEEE Design Automa-
tion Conference (Santa Clara, CA), 1995, 535-541.

[BCW80] M. Blum, A. K. Chandra, M N. Wegman, Equivalence of Free
Boolean Graphs can be decided Probabilistically in Polynomial Time,
in Information Processing letters 10, No. 2, 1980, 80-82.

[BD95] B. Becker, R. Drechsler, How many Decomposition Types do we need?,
in Proc. IEEE European Design and Test Conference, 1995, 438-443.

[BDT97] B. Becker, R. Drechsler, M. Theobald, On the Expressive Power of
OKFDDs, in Formal Methods in System Design 11, 1997, 5-21.

[BDW95] B. Becker, R. Drechsler, R. Werchner, On the Relation between
BDDs and FDDs, in Information and Computation 123(2), 1995, 185-
197.

[BFG+97] I. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo,
F. Somenzi, Algebraic Decision Diagrams and their Applications, in
Journal of Formal Methods in System Design 10(2/3), 1997, 171-206.

[BHRY5] Y. Breitbart, H. B. Hunt III, D. Rosenkrantz, On the Size of Binary
Decision Diagrams Representing Boolean Functions, Theoretical Com-
puter Science 145, 1995, 45-69.

[BHS+96] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincenteli, F. So-
menzi, et al., VIS: A System for Verification and Synthesis, in Proc.
Computer-Aided Verification’96, vol 1102 of Lecture Notes in Computer
Science, Springer, 1996, 428-432.

187

[BLS+95] B. Bollig, M. Libbing, D. Sieling, I. Wegener, Complexity Theoret-
ical Aspects of OFDDs, in Proc. of IFIP WG 10.5 Workshop on Appli-

cations of the Reed-Muller Ezpansion in Circuit Design (Chiba, Japan,),
1995, 198-205.

[BLS+99] B. Bollig, M. Lébbing, D. Sieling, I. Wegener, On the Complexity of
the Hidden Weighted Bit Function for Various BDD Models, in Theo-
retical Informatics and Applications 33, 1999, 103-115.

[BM77] G. Birkhoff, S. MacLane, Brief Survey of Modern Algebra, 4th ed.,
MacMillan, New York, 1977.

[Bra92] K. Brace, Ordered Binary Decision Diagrams for Optimization in Sym-
bolic Switch-Level Analysis of MOS Circuits, PhD Thesis, Dept. of Elec-
trical and Computer Engeneering, Carnegie Mellon University, Pitts-
burgh, PA, 1992.

[Bry86] R. E. Bryant, Graph-based Algorithm for Boolean Function Manipu-
lation, in IEEE Transactions on Computers C-35 No. 8, 1986, 677-691.

[Bry91] R. E. Bryant, On the Complexity of VLSI Implementations and Graph
Representations of Boolean Functions with Applications to Integer Mul-
tiplication, in IEEFE Transactions on Computers 40 Vol. 2, 1991, 205-
213.

[Bry92] R. E. Bryant, Symbolic Manipulation with Ordered Binary Decision
Diagrams, in ACM Computing Surveys 24 Vol. 3, 1992, 293-318.

[BRB90] K. S. Brace, R. L. Rudell, R. E. Bryant, Efficient Implementation of
a BDD Package, in Proc. of the 27th ACM/IEEE Design Automation
Conference, 1990, 40-45.

[BSS+98] B. Bollig, M. Sauerhoff, D. Sieling, I. Wegener, Hierarchy Theorems
for kOBDDs and kIBDDs, in Theoretical Computer Science 205, 1998,
45-60.

[Bur91] J. R. Burch, Using BDDs to Verify Multipliers, in Proc. of the 28th
ACM/IEEE Design Automation Conference, 1991, 408-412.

[BW96] B. Bollig, I. Wegener, Improving the Variable Ordering of OBDDs in
NP-complete, in IEEE Transactions on Computers 45, 1996, 993-1002.

[CHS74] R. L. Constable, H. B. Hunt III, S. Sahni, On the Computational
Complexity of Scheme Equivalence, in Proc. 8th Princeton Conference
on Information Sciences and Systems, 1974.

[CFM+93] E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, X. Zhao,
Multi Terminal Binary Decision Diagrams: An Efficient Data Structure
for Matrix Representation, in Proc. of the International Workshop on
Logic Synthesis, 1993, 1-15.

188

[DS00] E. Dubrova, H. Sack, Probabilistic Verification of Multiple-Valued Func-
tions, in Proc. of 30th IEEE International Symposium on Multiple-
Valued-Logic (ISMVL 2000), (Portland, Oregon, USA), 2000, 460-466.

[DDGY8] R. Drechsler, N. Drechsler, W. Gunther, Fast Exact Minimization of
BDDs, in Proc. 35th ACM/IEEE Design Automation Conference (San
Francisco, CA), 1998, 200-205.

[DGI9] R. Drechsler, W. Gunther, Using Lower Bounds During Dynamic BDD
Minimization, in Proc. 36th ACM/IEEE Design Automation Conference
(New Orleans, LA), 1999, 29-32.

[DST+94] R. Drechsler, A. Sarabi, M. Theobaldi, B. Becker, M. A. Perkowski,
Efficient Representation and Manipulation of Switching Functions based
on Ordered Kronecker Functional Decision Diagrams, in Proc. of the
31th IEEE/ACM Design Automation Conference, 1994, 415-419.

[FFK88] M. Fujita, H. Fujisawa, N. Kawato, Evaluation and Improvements
of Boolean Comparison Method based on Binary Decision Diagram, in
Proc. 25th ACM/IEEE Design Automation Conference, 1988, 2-5.

[FHS78] S. Fortune, J. Hopcroft, E. Meineche Schmidt, The Complexity of
Equivalence and Containment for Free Single Variable Program Schemes,

in Proc. of the 5th International Colloguium on Automata, Languages,
and Programming (ICALP), LNCS 62, Springer, 1978, 227-240.

[FMK91] M. Fujita, Y. Matsunaga, T. Kakuda, On Variable Ordering of Binary
Decision Diagrams for the Application of Multi-Level Logic Synthesis,

in Proc. European Design Automation Conference (Amsterdam), 1991,
50-54.

[FOH93] H. Fujii, G. Ootomo, C. Hori, Interleaving Based Variable Ordering
Methods for Ordered Binary Decision Diagrams, in Proc. IEEE/ACM
Int. Conf. on Computer Aided Design (ICCAD’93), 1993, 38-41.

[FS90] S. J. Friedman, K. J. Supowit, Finding the Optimal Variable Order
for Binary Decision Diagrams, in IEEE Transactions on Computers 39,
1990, 710-713.

[GM93] J. Gergov, Ch. Meinel, Frontiers of Feasible and Probabilistic Feasi-
ble Boolean Manipulation with Branching Programs, in Proc. 10th An-
nual Symp. on Theoretical Aspects of Computer Science, 665 of LNCS,
Springer, 1993, 576-585.

[GM94a] J. Gergov, Ch. Meinel, Efficient Analysis and Manipulation of OB-
DDs can be Extended to FBDDs, in IEEE Transactions on Computers,
43(10), 1994, 1197-12009.

[GM94b] J. Gergov, Ch. Meinel, On the Complexity of Analysis and Manipula-
tion of Boolean Functions in Terms of Decision Diagrams, in Information
Processing Letters 50, 1994, 317-322.

189

[GM96] J. Gergov, C. Meinel, Mod2-OBDDs: A Data Structure that gener-
alizes EXOR-sum-of-products and Ordered Binary Decision Diagrams,
in Formal Methods in System Design 8, Kluwer Academic Publishers,
1996, 273-282.

[Gup92] A. Gupta, Formal Hardware Verification Methods: A Survey, in For-
mal Methods in System Design, vol.1, no.4, 1992, 335-383.

[HS96] G.D. Hachtel, F. Somenzi, Logic Synthesis and Verification Algorithms,
Kluwer Academic Publishers, 1996.

[Hof95] D. R. Hof, Intel takes a Bullet - and Barely breakes Stride, in Bussiness
Week, January 1995, 38-39.

[ISY91] N. Isiura, H. Sawada, S. Yajima, Minimization of Binaty Decision Dia-
grams based on the Exchange of Variables, in Proc. IEEE International
Conference on Computer Aided Design (Santa Clara, CA), 1991, 472-
475.

[JAB+92] J. Jain, M. Abadir, J. Bitner, D. S. Fussell, J. A. Abraham, IBDDs:
An Efficient Functional Representatikon for Digital Designs, in Proc of
the European Conference on Design Automation (1992), 440-446.

[JBF+92] J. Jain, J. Bitner, D. S. Fussell, J. A. Abraham, Probabilistic Veri-
fication of Boolean Functions, in Formal Methods in System Design 1,
1992, Kluwer Academic Publishers, 65-116.

[JPH+91] S.-W. Jeong, B. Plessier, G. Hachtel, F. Somenzi, Extended BDD’s:
Trading off Canonicity for Structure in Verification Algorithms, in Proc.
ACM/IEEE International Conference on Computer Aided Design, 1991,
464-467.

[Kar88] K. Karplus, Representing Boolean Functions with If-Then-Else DAGs,
Technical Report UCSC-CRL-88-28, Computer Engeneering, University
of California at Santa Cruz, 1988.

[KSR92] U. Kebschull, E. Schubert, W. Rosenstiel, Multilevel Logic Synthesis
based on Functional Decision Diagrams, in Proc. of the European Design
and Test Conference, 1992, 43-47.

[KVB+98] T. Kam, T. Villa, R. Brayton, A. Sangiovanni-Vincentelli, Multi-
Valued Decision Diagrams: Theory and Applications, Multiple- Valued
Logic, An International Journal 4, 1998, 9-62.

[Lee59] C. Y. Lee, Representation of Switching Functions by Binary Decision
Programs, in Bell System Technical Journal, vol. 38, 1959, 985-999.

[LGS] LGSynth93 Benchmarks:
http://www.cbl.ncsu.edu/CBLDocs/1gs91.html.

[LN86] R. Lidl, H. Niederreiter, Introduction to Finite Fields and their Appli-
cations, Cambridge University Press, 1986.

190

[Lon93] D. Long, Model Checking, Abstraction and Compositional Verification,
Ph.D. Thesis, Carnegie Mellon University, 1993.

[LPV94] Y.-T. Lai, M. Pedram, S. B. K. Vrudhula, EVBDD-based Algorithms
for Integer Linear Programming, Spectral Transformation and Function

Decomposition, in IEEE Transactions on Computer Aided Design od
Integrated Circuits and Systems 13, 1994, 959-975.

[LS92] Y.-T. Lai, S. Sastry, Edge Valued Binary Decision Diagrams for Multi-
Level Hierarchical Verification, in Proc. 29th ACM/IEEE Design Au-
tomation Conference, 1992, 608-613.

[MBS88] J.-C. Madre, J.-P. Billon, Proving Circuit Correctness using Formal
Comparison between Expected and Extracted Behaviour, in Proc. 25th
ACM/IEEE Design Automation Conference (Anaheim, CA), 1988, 205-
210.

[McC86] E. J. McClusky, Logic Design Principles, Prentice-Hall, 1986.

[Mei88] Ch. Meinel, Modified Branching Programs and their Computational
Power, Habilitationsschrift, Humboldt-Universitat Berlin, 1988. Pub-
lished as Lecture Notes in Computer Science LNCS 370, Springer, 1988.

[Mei90] Ch. Meinel, Polynomial Size {2-Branching Programs and their Compu-
tational Power, Information and Computation 85, 1990, 163-182.

[Mil93] D. M. Miller, Multiple-Valued Logic Design Tools, Proc. 23rd Int.
Symp. on MVL, 1993, 2-11.

[MIY90] S. Minato, N. Ishiura, S. Yajima, Shared Binary Decision Diagrams
with Attributed Edges, in Proc. 27th ACM/IEEE Design Automation
Conference (Florida, FL), 1990, 52-57.

[Moo65] G. E. Moore, Cramming more Components onto Integrated Circuits,
Electronic Magazine, vol.38, no.8, 1965, 114-117.

[Mo0095] G. E. Moore, Lithography and the Future of Moore’s Law, in Proc. of
the SPIE, vol.2440, 1995, 2-17.

[MR95] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge Uni-
versity Press, 1995.

[MS97] C. Meinel, A. Slobodova, Speeding Up Variable Ordering of OBDDs,
in Proc. International Conference on Computer Design (Austin, TX),

1997, 338-343.

[MS97a] C. Meinel, H. Sack, Case Study: Manipulating &-OBDDs by Means of
Signatures, in Proc. of the 8rd International Workshop on Applications
of the Reed-Muller Ezpansion in Circuit Design (Ozford, UK), 1997,
175-186.

191

[MS98] C. Meinel, H. Sack, ®-OBDDs - A BDD Structure for Probabilistic
Verification, in Proc. Workshop on Probabilistic Methods in Verification,
1998, 141-151.

[MS99] C. Meinel, H. Sack, Algorithmic Considerations of &-OBDD Reorder-
ing, in Proc. of the 4th International Workshop on Applications of the
Reed-Muller Ezpansion in Circuit Design (Victoria, BC, Canada), 1999,
197-184.

[MS00] C. Meinel, H. Sack, Mod20BDDs - a BDD Structure for Probabilis-
tic Verification, in Electronic Notes in Theoretical Computer Science,
vol.22, 2000.

[MT98] Ch. Meinel, T. Theobald, Algorithms and Data Structures in VLSI
Design: OBDD - Foundations and Applications, Springer, Heidelberg,
1998.

[Mul54] D. E. Muller, Application of Boolean Algeba to Switching Circuit De-
sign and Error Detection, in IRE Transactions on Electronic Computing
EC-3, 1954, 6-12.

[MW86] J. C. Muzio, T. C. Wesselkamper, Multiple- Valued Switching Theory,
Adam Hilger Ltd Bristol and Boston, 1986.

[MWBS88] S. Malik, A. R. Wang, R. K. Brayton, A. Sangiovanni-Vincentelli,
Logic Verification Using Binary Desicion Diagrams in a Logic Synthe-
sis Environment, in Proc. of the 25th ACM/IEEE Design Automation
Conference, 1988, 268-271.

[No+99] A. Nozoe et al., A 256-Mb Multilevel Flash Memory with 2 MB/s
Program Rate for Mass Storage Applications, in Proc. of 1999 IEEE
Int. Solid-State Circuits Conference (ISSCC’99), 1999, 110-111.

[OM97] T. Okuda, T. Murotani, A Four-Level Storage 4-Gb DRAM in IEEE
Journal of Solid-State Circuits 32, 11, 1997, 1743 - 1747.

[PS95] S. Panda, F. Somenzi, Who are the Variables in your Neighbourhood, in
Proc. International Conference on Computer Aided Design (San Jose,
CA), 1995, 74-77.

[Raz87] A. A.Razborov, Lower Bounds on the Size of Bounded Depth Networks
over a Complete Basis with Logical Addition, in Math. Notes 41(4),
1987, 333-338.

[Rud93] R. Rudell, Dynamic Variable Ordering for Ordered Binary Decision
Diagrams, in Proc. International Conference on Computer Aided Design
(Santa Clara, CA), 1993, 42-47.

[Reeb4] L. S. Reed, A Class of Multiple Error-Correcting Codes and their De-
coding Scheme, in IRE Transactions on Information Theory 4, 1954,
38-42.

192

[SDMO00] H. Sack, E. Dubrova, Ch. Meinel, Representation of Multiple-Valued
Functions with Mod-p-Decsion Diagrams, in Proc. of IEEE/ACM Int.
Workshop of Logic Synthesis (IWLS2000), (Dana Point, CA, USA),
2000, 341-348.

[Sch80] J. Schwartz, Fast Probabilistic Algorithms for Verification of Polyno-
mial identities, Journal of the ACM, 27, 1980, 701-717.

[Shad49] C. E. Shannon, The Synthesis of Two-Terminal Switching Circuits, in
Bell Systems Technical Journal 28, 1949, 59-98.

[SKM+90] A. Srinivasan, T. Kam, S. Malik, R. Brayton, Algorithms for Dis-
crete Function Manipulation, in Proc. International Conference on Com-
puter Aided Design, 1990, 92-95.

[Som96] F. Somenzi, CUDD: Colorado University Decision Diagram Pachage,
ftp://vlsi.colorado.edu/pub/, 1996.

[SS98] R. S. Stankovic, T. Sasao, Decision Diagrams for Discrete Functions:
Classification and Unified Interpretation, in Proc. of Asia and South
Pacific Design Automation Conference, 1998, 439-446.

[SSL+92] E. M. Sentovitch, K. J. Singh, L. Lavagno, et al., SIS A System
for Sequential Circuit Synthesis, Technical Report UCB/ERL M92/41,
FElectronics Research Labs, University of California, Berkeley, 1992. d

[STP86] P. A. Scott, S. E. Tavares, L. E. Peppard, A Fast VLSI Multiplier for
GF(2™), in IEEE Journal of Selected Areas of Communication vol.4,
1986,62-66.

[SW93] D. Sieling, I. Wegener, Reduction of OBDDs in Linear Time, in Infor-
mation Processing Letters 48, 1993, 139-144.

[SW95] D. Sieling, I. Wegener, Graph Driven BDDs - A New Data Structure for
Boolean Functions, Theoretical Computer Science 141, 1995, 283-310.

[Thi00] T. Thierauf, The Computational Complexity of Equivalence and
Isomorphism Problems, Lecture Notes in Computer Science 1852,
Springer-Verlag, 2000.

[VIS96] The VIS Group, VIS: A System for Verification and Synthesis, in Proc.
8th Int. Conf. on Computer Aided Verification, Springer Lecture Notes
in Computer Science, 1102, Edited by R. Alur and T. Henzinger, New
Brunswick, NJ, 1996, 428-432.

[Waa97] S. Waack, On the Descriptive and Algorithmic Power of Parity Or-
dered Binary Decision Diagrams, in Proc. 14th Symp. on Theoretical
Aspects of Computer Science, 1200 of LNCS, Springer, 1997.

[Weg87] 1. Wegener, The Complexity of Boolean Functions, Series in Computer
Science, Wiley-Teubner, Stuttgart/Chichester, 1987.

193

[Weg00] I. Wegener, Branching Programs and Binary Decision Diagrams : The-
ory and Applications, (Siam Monographs on Discrete Mathematics and
Applications), Society for Industrial & Applied Mathematics, July 2000.

[Zip70] R. Zippel, Probabilistic Algorithms for Sparse Polynomials, in Proc.
International Symposium on Symbolic and Algebraic Computation, Lec-
ture Notes in Computer Science 72, Springer-Verlag, 1979, 216-226.

194

